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Abstract: This paper proposes an optimization process based on a parametric platform for building
climate responsive design. Taking residential buildings in six typical American cities as examples,
it proposes thermal environment comfort (Discomfort Hour, DH), building energy demand (BED) and
building global cost (GC) as the objective functions for optimization. The design variables concern
building orientation, envelope components, and window types, etc. The optimal solution is provided
from two different perspectives of the public sector (energy saving optimal) and private households
(cost-optimal) respectively. By comparing the optimization results with the performance indicators of
the reference buildings in various cities, the outcome can give the precious indications to rebuild
the U.S. residential buildings with a view to energy-efficiency and cost optimality depending on
the location.

Keywords: building climate responsive design; multi-objective optimization; energy saving optimal;
cost-optimal

1. Introduction

In recent years, the parametric simulation of building performance has gradually become a
common method in the field of building energy-saving design. Social and economic development
requires sustainable building design to achieve low energy consumption on the premise of ensuring
a high-performance building environment. Thus, building energy-saving design cannot sacrifice
performance for low energy consumption. Increasing attention has been paid to the impact of the indoor
environmental performance of residential buildings on the physical and mental health of residents.
As the pursuit of improving the performance of a single environment often adversely affects the
performance of other aspects, the research on multi-factors environment and its coupling performance
has grown fast. Multi-variable energy-saving design scheme and process is more complicated than
the single-variable energy-saving strategy, the value and significance of the multi-variable design
have also greater effect on building performance improvement. In addition, from the perspective
of architectural design, the design strategy proposed based on a single objective (such as improving
indoor lighting environment, ventilation, solar shading, etc.,) during the schematic design stage does
not fully conform to the architect’s way of thinking and cannot effectively facilitate the building design.
Therefore, it is necessary to establish the relationship between multi-variable design elements and
multi-objectives, in order to setting up an integrated and systematic analysis framework.
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2. Background and Literature

2.1. The Logic of Building Climate Responsive Optimization Design

The building climate responsive design strategy aims to study the climate control methods
applicable to the building comfort space. By considering the climate differences in different places and
using appropriate strategies to improve the occupants’ thermal comfort, the building environment is
adjusted in order to providing a comfortable indoor thermal environment for human daily activities.
In this method, the choice of building technology is based on the relationship between external climatic
conditions and human needs [1–3].

In order to quantitatively analyze the environmental benefits of building climate responsive
design, the research proposes an optimization process based on building simulation, integrates building
performance simulation and optimization, and implements a reverse search for optimal performance
parameters. Architectural design is essentially an optimization problem. Architects are constantly
improving the design based on existing means to meet the design requirements in the best way which
is an iterative process [4,5]. In general, the design process can be divided into two main stages:
the divergent stage, which is mainly to generate conceptual alternatives; and the convergence stage,
which is mainly used to evaluate and select the best conceptual design from the proposed alternatives.
In all stages of design, from the conceptual design stage to the detailed design stage, the steps of
divergence and convergence are always repeated. Until the end of the design phase, the number
of alternatives gradually decreased, leaving only one or a few solutions. This iterative process is
the process of design exploration, which aims to study and develop the design space and provide
information for decision-making throughout the design process, as shown in Figure 1.
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The traditional architectural design process does not have an integrated system and method
in the early scheme divergence stage and the late convergence stage. Architectural design in the
traditional sense is always judged based on the architect’s experience, and the architect’s cognitive level
determines whether the project can achieve the expected objectives. When the design problem involves
a large number of complex variables, it is difficult to achieve the optimal goal only by the architect’s
subjective judgment. The development of today’s building simulation technology can effectively
assist designers in making decisions to eliminate uncertain assumptions in the design process to a
certain extent, and quantitatively evaluate the design scheme. However, these procedures are quite
complicated, and the data required for calculation is very detailed, which is difficult to obtain in the
early stage of the design, so the relevant scheme can only be evaluated in the later stage of the design.
Most of the decisions that have a significant impact on energy consumption are made in the early
design stage. Therefore, in the traditional design process, it is difficult to effectively assist the building
climate responsive design by relying solely on these simulation programs [6,7].

The study proposes the use of optimized search methods based on building environment
simulation. More in detail, based on building simulation tools, a Monte Carlo simulation framework
was established to analyze and search the uncertainty of the input parameters, and use automation
to solve the problem that it is difficult to determine the input parameters in the traditional sense.
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Optimization is the process of finding the best combination of different solutions when the given
constraints are met. The execution of optimization requires decision variables, objective functions,
and constraints. The Equation (1) expresses the general mathematical optimization process.

minx ∈ Rnƒ(X)
Subject to: gi(X) ≤ 0, i = 1, 2, . . . , m

Kj(X) = 0, j = 1, 2, . . . , p
(1)

where, X represents different decision variables, ƒ(X) are objective functions, constraints are gi(X) ≤ 0,
I = 1, 2, . . . , m and Kj(X) = 0, j = 1, 2, . . . , p. Determining decision variables, objective functions,
and constraints are the most important parts of the optimization process, and different optimization
algorithms can be selected based on the classification of different objective functions and constraints.

The optimization method can effectively search for solutions, so as to realize the automation
and integration of design simulation. The traditional “forward” design process follows the energy
evaluation process in the building design process. The user selects the values of decision variables
(such as building size, materials, and climate data), inputs the data into the physical model, then
calculates and outputs energy performance predictions. In the forward process, a set of known design
parameters is required, from which the user can estimate performance. However, in the early stages of
design, the design objectives have been determined, and the user aims to seek designs that meet the
performance goals. Therefore, the “inverse” modeling process that uses the goals to infer the design
parameter values is more in line with the nature of the earlier design stage.

In the reverse workflow of early design, performance preferences and boundary conditions
(such as weather and building type) are known, and the values of decision variables are unknown.
The following Equation (2) expresses the method of inverse modeling search. Assuming that y is a
performance index, the thermal load model of the building can be expressed as:

y = ƒ(x1, x2, x3, . . . , xn) = ƒ(xdesign, xscenario) (2)

where y is a function of different decision variables xi, like building orientation and shape coefficient
which can be divided into two groups, i.e., design parameter variables and scenario variables. Design
parameter variable xdesign represents the parameter variable of architectural design, while the scenario
variable xscenario contains boundary conditions related to building operation and climate parameters.
ƒ is corresponding to energy simulation tools which calculates the value of a given decision variable
x based on a physical function. By function ƒ, forward modeling can find y through given x (as in
Equation (3)), while reverse modeling finds multiple x through given y (as in Equation (4)).

x: (x1, x2, x3, . . . , xn) design parameters→y:performance (forward modeling) (3)

y: performance→x: (x1, x2, x3, . . . , xn) design parameters (reverse modeling) (4)

In the initial stage of design, there are many design and scene parameters x that have not yet been
determined. In this case, the probability distribution relationship between x and y within the possible
range can be obtained using a probabilistic method. Figure 2 graphically represents the logic of the
current deterministic forward model (Figure 2a), the probabilistic forward model (Figure 2b), and the
probabilistic reverse model proposed in this study (Figure 2c).
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2.2. State-of-the-Art

There are many scholars in the field of building optimization by integrating rhino, grasshopper
(GH), building performance simulation plug-ins (such as DIVA) and GH evolution solver: Galapagos,
to conduct building performance optimization, including building energy-efficient skin optimization,
high performance building system optimization, building orientation optimization, building operations
optimization, life cycle assessment and alternative energy applications [8–11], etc. However, in the
GH platform, Galapagos can only optimize one objective function at a time, so when dealing with
architectural multi-objective optimization problems, it is necessary to reprocess the data results, or use
other evolutionary solvers of the platform, such as Octopus.

For the multi-objective building optimization, Asadi et al. [12] proposed another operation process,
that is, using TRNSYS, GenOpt, and Tchebycheff optimization technology developed in MATLAB to
simulate and optimize the building environment.

Asl et al. [13] also explored Revit’s plug-in Dynamo to extend the parametric functions of the
platform. They also used NSGA-II’s free software package Optimo to solve optimization problems.

In terms of research on building renovation and design by multi-objective optimization methods,
Giovanni Pernigotto et al. [14] defined the decision variables and their ranges based on the lowest
building energy consumption and the lowest investment cost to achieve the best combination of
renovation parameters. The strategies mentioned in this study are common measures for building
renovation, such as the thermal insulation performance of external walls and windows, the size of
windows and the lighting effect of glass, etc., which are convenient for large-scale popularization
and application.

Tomás Méndez Echenagucia et al. [15] investigated the open space of office buildings, including
location, shape, window type and thickness of masonry walls as decision variables, using EnergyPlus
and NSGA-II algorithm (Non-dominated Sorting Genetic Algorithm) for building environment
simulation and multi-objective optimization to search Pareto frontier for building energy
efficiency design.

Alessandro Prada and Giovanni Pernigotto et al. [16,17] discussed the robustness of the optimal
solution obtained by GA multi-objective optimization to the quality of the weather data used. Using the
climate parameters of six different reference years in Trento and Monza in northern Italy, they applied
four energy-saving measures related to building envelopes and HVAC systems to six typical building
types, and studied when to adopt NSGA -II Genetic algorithm selects the most cost-effective building
energy-saving renovation measures, to what extent the uncertainty of typical weather conditions will
affect the results of building energy-saving renovation and TRNSYS simulation.

Paola Penna et al. [18] evaluated the optimal combination of building energy efficiency measures
(EEM) by using multi-objective optimization algorithms and dynamic simulation tools to achieve
the results of economic optimization, minimum energy consumption and maximum thermal
environment comfort.
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Based on the perspective of architectural design, the research on the climatic responsive design of
residential buildings presents a trend of gradually deepening and refining over time, which is reflected
in the following characteristics:

(1) From energy-saving design practice or theoretical research based on qualitative analysis to energy
consumption simulation based on quantitative research.

(2) Research related to building energy consumption is becoming more and more comprehensive,
from only focusing on building thermal performance or energy consumption of air conditioning
systems to a comprehensive evaluation system that also considers other factors such as total
building energy consumption, lighting, and indoor thermal comfort, etc.

(3) The research of building energy-saving design variables usually manifests as the research of single
variable and multi-variable combination. The research of single variable is an indispensable
basic part, and the combination of multi-variable constitutes the final goal of the research and a
complete building energy-saving design process.

(4) “Performance coupling factor” has been paid attention to, and the impact of indoor building
environmental performance quality on the physical, mental health and comfort of residents
has been paid more and more attention. The pursuit of a single environmental performance
improvement often has an adverse effect on other aspects of performance, related researches on
multi-factors environment and its coupling performance are getting increasing attention.

(5) New tools or methods for building energy consumption simulation combined with parametric
methods, BIM technology or computer programming technology are constantly emerging. On
this basis, the amount of simulated data is increasing, and the reliability of the simulation results
is improving.

Multi-variable energy-saving design schemes and processes are more complicated than
single-variable energy-saving strategies, and under the combined effect of multi-variables, the value
and significance of building performance improvement are also greater. In addition, based on the
perspective of architectural design, the design strategy proposed based on a single objectives (such as
improving indoor lighting environment, ventilation or solar shading) during the schematic design
stage does not fully conform to the architect’s way of thinking and cannot effectively facilitate the
building design. Therefore, it is necessary to establish the relationship between multi-variable design
elements and multi-objectives, in order to building an integrated and systematic analysis framework.

For building climate responsive design, energy consumption, indoor thermal environment and
building life cycle cost are three conflicting basic factors. Generally speaking, to make the indoor thermal
environment satisfy the human comfort as much as possible, it will lead to an increase in building
energy consumption and costs. The three often contradict each other, while in the decision-making
process, it is crucial to trade off these three objectives. If the building energy consumption and life cycle
costs are required to be reduced while maintaining the indoor thermal environment, it is necessary to
carry out quantitative prediction and multi-objective optimization of the built environment factors.

Based on the meteorological parameters and design codes of typical cities in different climatic
regions in the United States, a framework for optimizing the climate responsive design parameters of
residential buildings in typical cities has been established. Building energy demand, thermal comfort,
and life cycle costs are used as performance indicators to analyze optimal energy-saving design of
residential buildings in U.S. typical cities.

2.3. Research Objects and Optimization Process

The United States is located in the Western Hemisphere which is composed of the United States,
Alaska, and Hawaii. East and West are adjacent to the Atlantic and Pacific ocean. Because of the vast
territory of the United States, it is one of the countries with the most climatic types in the world.
Most of the climate of the United States is temperate and subtropical, and only the southern end of the
Florida Peninsula is tropical. Alaska is located between 60 and 70 degrees north latitude and is a cold
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climate zone within the Arctic Circle. Hawaii is located south of the Tropic of Cancer and is a tropical
climate zone. The United States divides the country into eight different main climate types as shown in
Figure 3 [19].
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Because of the diverse and complex climate types in the United States, the study only selected
typical cities in the United States’ six climatic regions for analysis. Figure 4 shows the geographic
location of typical cities on the map of the United States. Table 1 lists the heating period of typical
cities based on the actual heating survey in each city.
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Table 1. Heating period in US typical cities [21].

Climate Zone Typical Cities Heating/Cooling
Degree Days

Heating Period
(Day/Month)

Heating Hours of
Each Day

2 Houston 3500 < CDD (10 ◦C) ≤ 5000 No mandatory
requirement -

3 Los Angeles 2500 < CDD (10 ◦C) ≤ 3500
HDD (18 ◦C) ≤ 3000

No mandatory
requirement -

5 Chicago 3000 < HDD (18 ◦C) ≤ 4000 15/9–1/6 14 h
6 Helena 4000 < HDD (18 ◦C) ≤ 5000 1/10–1/5 24 h
7 Duluth 5000 < HDD (18 ◦C) ≤ 7000 15/10–15/4 24 h
8 Fairbanks 7000 < HDD (18 ◦C) No restrictions 24 h

The building climate responsive analysis in this study is based on an integrated parametric
simulation process. The research proposes a multi-objective optimization process based on parametric
simulation of building performance, which consists of two parts and is divided into three steps,
as shown in Figure 5. The data collection and generation steps constitute Part 1: Design prototype
generation. The optimization steps constitute Part 2: design optimization. Part 1 collects specific design
parameters, such as building shape coefficients, window-to-wall ratios, etc., as well as the default
parameters, such as constraint parameters, etc., used to generate design prototypes. Part 2 optimizes
the architectural design prototype generated in Part 1. The result of this process is a series of optimized
architectural design solutions for designers to evaluate, select and further develop. For building
climate responsive design, the result is a building design solution with high thermal comfort and low
energy consumption, which can be embodied in the process shown in Figure 6.
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This research is based on the Rhino/Grasshopper parametric platform, using Ladybug and
honeybee environment analysis plug-ins to conduct modeling analysis of the building environment
and energy demand. The application of this workflow can be shown in Figure 7 below.
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2.4. Algorithm Used in Optimization

Currently in multi-objective optimization research, representative algorithms include MOGA
(Multi-Objective Genetic Algorithm), NSGA (Non dominated Sorting Genetic Algorithm), NSGA-II
(Non dominated Sorting Genetic Algorithm-II), PESA (Pareto Envelope-Based Selection Algorithm),
and SPEA-II (Strength Pareto Evolutionary Algorithm-II). The performance of multi-objective
algorithms mainly depends on three aspects, namely convergence, the distribution of solutions set
and robustness. NSGA-II, SPEA-II, and PESA all have good convergence and stability, but compared
with SPEA-II and PESA, NSGA-II has worse convergence. Because of the truncation characteristics in
NSGA-II algorithm, its distribution performance is obviously not as good as SPEA-II. Furthermore,
when the number of targets is more than one, PESA will have poor distribution. It can be seen that the
SPEA-II algorithm is superior to other algorithms in terms of convergence and solution set distribution.
Therefore, the SEPA-II algorithm is used in this study.

SEPA2 is an improved version of SPEA (Strength Pareto Evolutionary Algorithm) proposed by
Zitzler and Thiele in 2001 [22]. It is a Pareto algorithm for solving multi-objective problems. In this
algorithm, the fitness of an individual is also called Pareto strength. The fitness of individuals in
a non-dominated set is defined as the proportion of the total number of individuals dominating in
the group. The fitness of other individuals is defined as the total number of individuals dominating
it plus one, and individuals with low fitness are corresponding to a higher probability of selection.
In addition to the evolutionary population, an external population is also set up to save the current
non-dominated individuals. When the number of individuals in the external population exceeds
the predefined value, clustering techniques are used to delete them. Tournament is used to select
individuals from evolutionary groups and external populations to enter the mating pool for crossover
and mutation operations.

The SPEA-II algorithm flow chart is shown in Figures 8 and 9. Suppose the size of the group
P is N, the archive set Q is M, and the number of iterations is T, then the work flow of the SPEA-II
algorithm [23] is:

(1) Randomly generate an archive set and initial population Q0, P0, and iterator t = 0.
(2) Calculate fitness for individuals in PT and QT.
(3) Keep all non-dominated individuals in PT and QT into the next generation archive set QT+1.

If |QT+1| > M, then remove excess individuals. If |QT+1| < M, then select some individuals in PT

and QT, to join QT+1 to make |QT+1| = M.
(4) If t = T or other termination conditions are met, the non-dominated solution in QT+1 is output as

the algorithm result.
(5) If not satisfied, perform tournament selection, crossover and mutation on QT+1, keep the result in

PT+1, t = t + 1, and back to (2).
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The logic of fitness allocation and environment selection is as follows:

(1) Fitness allocation

In order to make each individual have a different fitness value, while considering the situation of
all individuals in the iterative group and the external group. The crowding situation is determined by
calculating the distance between an individual and its neighbors, that is, calculating the fitness of each
individual in the population PT (initial set) and QT (archive set). The total fitness F(i) is determined by
R(i) and D(i) (as in Equation (5)).

F(i) = R(i) + D(i) (5)

where R(i) is the integer part, and R(i) is calculated as Equation (6).

R(i) =
∑

j∈Pt∪Qt,j≺i

S(j) (6)
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where S(j) is the number of individuals dominated by j in the population Pt and QT. The lower the
R(i), the better the quality of the solution. D(i) is the decimal part, and its calculation is as shown in
Equation (7).

D(i) =
1

σk
i + 2

(7)

where σi
k is the distance from individual i to its k-th nearest individual, and 2 is added to the

denominator is so that the distance is not 0 and D(i) < 1. K =
√

|Pt| + |Qt|, which select the non-dominated
solution set of the current iteration population and the external population. When the number of
the external population is greater than the preset value, delete the poorer individuals in the external
population. Otherwise, the better individuals in the iteration population are selected to supplement.
Repeat this process until the size of the external population reaches the preset value.

(2) Environment selection

Select suitable individuals from the population Pt and QT and store them in the next-generation
archive set QT+1. If |QT+1| ≤M, choose the smallest remaining F(i) from Pt and QT to join them until
|QT+1| = M. If |QT+1| > M, then use archive pruning to continuously delete individuals in QT+1 until
|QT+1| = M. Meanwhile, σi

k is used to evaluate distance among different individuals, and delete the
individual with the smallest distance from the selected one, as shown in Figure 10.
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3. Multi-Objective Optimization Platform Set-Up

3.1. Definition of Objective Functions

Building climate responsive design aims to ensure the comfort of the building’s thermal
environment while reducing building energy consumption and life cycle costs as much as possible.
Therefore, the thermal environment comfort model, building energy demand model and building life
cycle cost model are the three important aspects of climate responsive design. To some extent, these
objective functions are both interrelated and conflicting. The basic parameter settings of these three
objective functions for building climate responsive design are defined as follows:

(1) Thermal environment comfort

The international standard ASHRAE 55 [24] defines “thermal comfort” as: a state of consciousness
in which a person expresses satisfaction with the thermal environment, which is affected by differences
in personal emotions, individual physiological structures, climate, culture, and society, etc. Thermal
comfort is a relative concept. There is no absolute thermal comfort. Comfort is a subjective psychological
state. It cannot be determined because it cannot be measured objectively and changes constantly
according to various factors. Based on a series of parameter settings, the study uses the PMV model
to calculate the annual Discomfort Hours percentage (DH) as an indicator for thermal environment
comfort assessment.
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According to the typical activity levels and clothing thermal resistance values listed in
ANSI/ASHRAE STANDARD 55-2013, the research roughly determined the input parameters of
clothing thermal resistance values for simulation. The step value changes according to the change of
the monthly external average temperature. The metabolic rate is fixed at 1.2 met in the case, which
corresponds to the sedentary behavior in residential buildings. In addition, the air speed is set to a very
low speed of 0.05 m/s, which is more common in most enclosed indoor environments. The specific
input parameters for PMV calculation vary with monthly steps, as shown in Table 2. Table 2 lists
only a few fixed values that do not need to be changed in EnergyPlus calculations, namely indoor air
speed, clothing thermal resistance, and human metabolic rate. The indoor air temperature, relative
humidity and average radiant temperature vary with parametric simulation which needs to be read
after calculation by EnergyPlus and cannot be set in advance.

Table 2. Input parameters for thermal comfort calculation.

Month Outdoor
Temperature Indoor Air Speed Clothing Thermal

Resistance Metabolic Rate

(◦C) (m/s) (CLO) (met)

1 2.15 0.05 1.1 1.2
2 1.66 0.05 1.1 1.2
3 6.51 0.05 0.9 1.2
4 13.21 0.05 0.8 1.2
5 16.32 0.05 0.6 1.2
6 20.87 0.05 0.5 1.2
7 24.81 0.05 0.4 1.2
8 23.26 0.05 0.5 1.2
9 19.02 0.05 0.6 1.2
10 14.72 0.05 0.7 1.2
11 8.49 0.05 0.9 1.2
12 3.09 0.05 1.1 1.2

(2) Building energy demand

The climate responsive design optimization in this paper only focuses on passive design strategies.
Passive design strategies can be controlled by the architect during the design phase, or adjusted by the
user during the operational phase. Other mechanical system parameter setting are beyond the scope
of this research. Therefore, the annual building energy demand is defined as the sum of the cooling
and heating loads of all apartments, [25–28] domestic hot water, electrical equipment and other energy
needs are not included in the calculation. The cooling period in summer and the heating period in
winter are set according to the requirements of different climate zones. In this study, in order to avoid
the influence of HVAC system parameters, its performance coefficient is assumed to be 1, so the energy
demand can be directly extracted from the EnergyPlus simulation results. It is assumed that no heat
recovery device is implemented in the HVAC system. Therefore, the objective function of the annual
building energy demand can be calculated as Equation (8):

BED =
1
A
∗

n∑
i=1

(E ci + Ehi) (8)

where BED represents the annual building energy demand per unit building area (kWh/m2),
the calculation of building energy demand only considers heating and cooling demand, and does not
consider other aspects, such as lighting, domestic hot water, etc. Eci is the cooling demand of the i-th
floor, Ehi is the heating demand of the i-th floor, n is the total number of floors in the building, and A is
the total area of each floor in the air-conditioning area of the building.
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(3) Building life cycle cost

In order to assess the total cost associated with a given building, a life cycle cost analysis (LCCA)
was performed using a 30-year time scale [29,30]. The full life cycle cost of a building includes initial
construction costs, annual energy use costs, and ongoing maintenance costs. However, according
to the concept of global cost, in the current research for the schematic design stage, only building
materials and annual energy costs are considered because they have the greatest impact on life cycle
costs. Equations (9)–(11) shows the method used to calculate the life cycle cost in this study.

GC =

CI +
30∑

i=1
[Ce,i ∗Rd(i)]

A
(9)

Rd(i) = [1 − (1 + Rr) − i]/Rr (10)

Rr = (Ri − Re)/(1 + Re) (11)

where GC represents building life cycle global cost, in $. CI represents initial investment cost, in $.
Ce,i is the energy cost of the ith year, in $. Rd(i) is the discount rate of the ith year. A is the total area of
each floor, in m2. Rr is the effective interest rate, Re is the rate of increase in energy prices, which is
assumed as 1.2%. Ri is the market interest rate, which is 4.25% [31]. The calculation period is 30 years
because the accuracy of economic calculation results beyond 30 years will be affected. During the
calculation period, it is assumed that the energy demand of the building remains unchanged.

3.2. Design Parameter Settings of Typical Buildings

The typical model established by the research is an ordinary two-story residential building (see
Figure 11). The specific parameters are shown in Table 3. The design parameters of the building
envelope are shown in Table 4.

Table 3. Parameters of typical model.

Type Sub-Category Parameter Category Unit Data Range

Location Climate Climatic parameters of
typical cities - According to meteorological

parameters of typical cities

Building geometry

Building type

Number of floors - 2.00
Net height of each floor m 2.70

Gross height of each floor m 3.10
Length (S/N direction) m 7.9

Aspect ratio - 2
Window to wall ratio (WWR) - 0.15

orientation deg 0

Geometric
parameters

Volume m3 774
Total surface area m2 544

Total floor area m2 250
Surface to volume ratio - 0.7

Envelope design
parameters

Envelope

U value external walls W/(m2K)

According to Table 9
U value ground floor W/(m2K)

U value roof W/(m2K)
U value transparent components W/(m2K)

SHGC factor glass -

Building operation
parameters

Activities
Internal gains (lighting,

appliances and occupancy,
daily average)

W/m2 5

Control and
operation setting

Heating set-point temperature ◦C 20
Cooling set-point temperature ◦C 26

Air-change rate (infiltration and
natural ventilation) vol/h 0.8

Schedule N. Adjustment according to
different cities requirements
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Table 4. Material parameters of building envelope.

Ground Floor

Layers Material Thickness Thermal
Conductivity Density Specific Heat

(◦C)
Thermal

Resistance
Heat

Absorption Rate
Solar

Absorptivity
Visible

Absorbance

(m) (W/mK) (kg/m3) (J/kgK) (m2K/W) (-) (-) (-)

1 Ceramic
mortar 0.030 1.16 2000 880 0.026 0.900 0.700 0.700

2 Polyurethane
board 0.04 0.025 70 1464 1.600 0.900 0.700 0.700

3 Concrete
floor slab 0.06 1.30 2200 880 0.046 0.900 0.700 0.700

4 Pebble 0.150 0.70 1700 840 0.214 0.900 0.700 0.700

Internal floor and ceiling
1 Ceramic tile 0.01 1.00 2300 800 0.010 0.900 0.700 0.700

2 Ceramic
mortar 0.03 0.80 2000 880 0.038 0.900 0.700 0.700

3

Lightweight
expansive

clay
aggregate

0.05 0.12 500 880 0.417 0.900 0.700 0.700

4
Mortar for

hollow
bricks

0.04 1.30 2200 880 0.031 0.900 0.700 0.700

5 Hollow
brick slab 0.16 0.48 250 880 0.330 0.900 0.700 0.700

6 plaster 0.01 0.60 1400 1010 0.017 0.900 0.300 0.300

External wall
1 plaster 0.015 0.60 1400 1010 0.025 0.900 0.300 0.300

2 Hollow
brick 0.08 0.400 1800 840 0.200 0.900 0.800 0.800

3 Polyurethane
board 0.04 0.025 70 1464 1.600 0.900 0.700 0.700

4 lime 0.010 0.600 1400 880 0.017 0.900 0.700 0.700

5 Hollow
brick 0.120 0.400 1800 840 0.300 0.900 0.800 0.800

6 plaster 0.015 0.900 1800 910 0.017 0.900 0.300 0.300
roof

1 Brick board 0.160 0.80 250 880 0.200 0.850 0.650 0.650

2 Polyurethane
board 0.04 0.025 70 1464 1.600 0.900 0.700 0.700
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Based on the typical model, the optimization mainly focuses on the design parameters of the
building envelope. The HVAC system, primary energy, and renewable energy system under the
optimization framework are fixed (i.e., not included in the optimization process). The design parameters
of the envelope are shown in Tables 5 and 6, and the initial investment cost calculation is shown in
Table 7.
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Table 5. Design parameters for reference buildings in each climate zone.

N Design Variable Parameter

1 Building orientation (◦) −45; 0; 45
2 Solar absorbance of external wall (-) 0.1; 0.25; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9
3 Solar absorbance of roof (-) 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.75; 0.9
4 Insulation thickness of external wall (m) 0; 0.03; 0.04; 0.05; 0.06; 0.08; 0.10; 0.12
5 Insulation thickness of roof (m) 0; 0.03; 0.04; 0.05; 0.06; 0.08; 0.10; 0.12
6 Insulation thickness of ground floor (m) 0; 0.03; 0.04; 0.05; 0.06; 0.08; 0.10; 0.12
7 Block thickness for external wall (m) 0.25; 0.30; 0.35; 0.40

8
Block thermal conductivity for the external wall (W/mK) * 0.25; 0.30; 0.36; 0.43; 0.50; 0.59; 0.72; 0.90

Block density for the external wall (Kg/m3) * 600; 800; 1000; 1200; 1400; 1600; 1800; 2000
9 Block thickness for roof (m) 0.25; 0.30; 0.35; 0.40

10
Block thermal conductivity for the roof (W/mK) * 0.25; 0.30; 0.36; 0.43; 0.50; 0.59; 0.72; 0.90

Block density for the roof (Kg/m3) * 600; 800; 1000; 1200; 1400; 1600; 1800; 2000
11 Block thickness for ground floor (m) 0.25; 0.30; 0.35; 0.40

12
Block thermal conductivity for the ground floor (W/mK) * 0.25; 0.30; 0.36; 0.43; 0.50; 0.59; 0.72; 0.90

Block density for the ground floor (Kg/m3) * 600; 800; 1000; 1200; 1400; 1600; 1800; 2000
13 Types of window (see Table 6) 1; 2; 3; 4; 5; 6; 7 (see Table 6)

(*) To each value of thermal conductivity corresponds the respective value of density (e.g., to the first value of
conductivity corresponds the first value of density, and so on).

Table 6. Different types of windows and their parameters and investment costs.

N Type U (W/m2K) SHGC (-) Investment Cost ($/m2)

1 Double-glazed with air-filling, low-e
coating, aluminum frame 3.09 0.69 269.37

2 Tinted double-glazed with air-filling,
low-e coating, PVC frame 1.95 0.38 280.14

3 Selective double-glazed with air-filling,
low-e coating, PVC frame 1.84 0.43 280.14

4 Double-glazed with argon-filling, low-e
coating, PVC frame 1.90 0.69 280.14

5 Tinted double-glazed with argon-filling,
low-e coating, PVC frame 1.72 0.37 290.92

6 Selective double-glazed with
argon-filling, low-e coating, PVC frame 1.59 0.43 290.92

7 Triple-glazed with argon-filling, low-e
coating, PVC frame 1.35 0.58 312.46

Table 7. Calculation method of initial investment cost.

N Design Variables Investment Cost (IC) [$]

1 Building orientation (◦) -

2 Solar absorbance of the external wall (-) The plaster cost is taken into account in the cost of the related
vertical walls or roof3 Solar absorbance of the roof (-)

4 Insulation thickness of the external wall (m) Insulation cost: IC = [(500− 2000 ∗ t) ∗ t + 15] ∗A
“A” indicates the frontal area of the building envelope component,

“t” denotes the thickness of the insulation layer[32]
5 Insulation thickness of the roof (m)
6 Insulation thickness of the ground floor (m)

7 Block thickness for the external wall (m)

Block cost
IC = [224.65 + (329.9−224.65)(p−600)

(2000−600) ] ∗A ∗ tb
“r” stands for the density of the block material

“A” indicates the frontal area of the building envelope component
“tb” denotes the thickness of the block material [33]

8
Block thermal conductivity for the external wall (W/mK) *

Block density for the external wall (Kg/m3) *
9 Block thickness for the roof (m)

10
Block thermal conductivity for the roof (W/mK) *

Block density for the roof (Kg/m3) *
11 Block thickness for the ground floor (m)

12
Block thermal conductivity for the ground floor (W/mK) *

Block density for the ground floor (Kg/m3) *

13 Type of windows (see Table 6) see Table 6

14 Energy cost (annual heating and cooling demand) 0.15 $/kWh

The * refers to the unified change of block thermal conductivity and block density in parametric simulation.
For example, the block thermal conductivity of roof are consistently change with block density of roof. Same as
external wall and ground floor control.
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With the help of integrated parametric software, various parameters used for building energy
modeling can be collected and analyzed on the same platform. The research uses the plug-in Octopus
of Grasshopper to search the target function value. Octopus applies the evolutionary principle of
SPEA-2 to the process of parametric design, and produces a series of trade-off solutions between the
extreme values of multiple targets. The operation flow of Grasshopper is shown in Figure 12.
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3.3. Design Parameter Settings of Typical Cities in the United States

According to the U.S. climate zone, six different typical cities are selected, as shown in Table 8.
Refer to the international energy conservation regulations IECC formulated by the International Code
Committee [21], Table 9 lists the design parameters of the reference buildings envelope in each typical
city according to the design code in the climate zone where the typical city is located, for comparison
with the optimal design parameters of each city. According to the settings in Table 9, Table 10 calculated
the design parameters of the reference buildings in each city by typical model, and obtained the
performance indicators shown in Table 11.

Table 8. Typical cities selected according to American climate zones.

City Heating Degree Days (18 ◦C) Climate Zone

Houston 620 Climate zone 2
Los Angeles 810 Climate zone 3

Chicago 3611 Climate zone 5
Helena 4395 Climate zone 6
Duluth 5642 Climate zone 7

Fairbanks 7215 Climate zone 8

Table 9. U value of reference building envelopes in different typical cities of the United States.

U Value of Reference
Building (W/m2K)

Climate
Zone 2

Climate
Zone 3

Climate
Zone 5

Climate
Zone 6

Climate
Zone 7

Climate
Zone 8

External wall 0.698 0.591 0.443 0.403 0.346 0.346
Roof 0.273 0.273 0.221 0.182 0.159 0.159

Ground floor 0.494 0.432 0.363 0.324 0.290 0.290
Window 2.3 2.3 1.8 1.8 1.8 1.8
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Table 10. Design parameters of reference buildings in various cities of the United States.

N
Design Variable Climate

Zone 2
Climate
Zone 3

Climate
Zone 5

Climate
Zone 6

Climate
Zone 7

Climate
Zone 8

Houston Los Angeles Chicago Helena Duluth Fairbanks

1 Building orientation (◦) 0 0 0 0 0 0
2 Solar absorbance of external wall (-) 0.1 0.4 0.5 0.4 0.8 0.8
3 Solar absorbance of roof (-) 0.1 0.3 0.5 0.6 0.75 0.75
4 Insulation thickness of external wall (m) 0 0 0.03 0.03 0.04 0.05
5 Insulation thickness of roof (m) 0.08 0.05 0.08 0.12 0.12 0.12
6 Insulation thickness of ground floor (m) 0.03 0.03 0.03 0.05 0.06 0.06
7 Block thickness for external wall (m) 0.25 0.35 0.3 0.3 0.3 0.4

8
Block thermal conductivity for the

external wall (W/mK) * 0.25 0.25 0.5 0.36 0.36 0.9

Block density for the external wall
(Kg/m3) * 600 600 1400 800 1000 2000

9 Block thickness for roof (m) 0.3 0.4 0.4 0.25 0.35 0.3

10
Block thermal conductivity for the roof

(W/mK) * 0.9 0.25 0.36 0.43 0.25 0.25

Block density for the roof (Kg/m3) * 2000 600 1000 1200 600 600
11 Block thickness for ground floor (m) 0.3 0.4 0.35 0.25 0.4 0.35

12
Block thermal conductivity for the

ground floor (W/mK) * 0.72 0.59 0.3 0.36 0.59 0.59

Block density for the ground floor
(Kg/m3) * 1800 1600 800 1000 1600 1600

13 Types of window (see Table 6) 1 1 4 4 4 4

The * refers to the unified change of block thermal conductivity and block density in parametric simulation.
For example, the block thermal conductivity of roof are consistently change with block density of roof. Same as
external wall and ground floor control.

Table 11. Performance indicators for residential building design in typical cities of the United States.

Reference Building
Performance Indicator

Climate
Zone 2

Climate
Zone 3

Climate
Zone 5

Climate
Zone 6

Climate
Zone 7

Climate
Zone 8

Houston Los Angeles Chicago Helena Duluth Fairbanks

BED (kWh/m2): Building
Energy Demand

56.75 7.28 73.78 72.03 93.78 169.77

GC ($/m2): Global Cost 323.52 322.63 378.58 335.89 389.09 475.73
DH (%): Discomfort Hours

percentage 58.33 8.33 59.17 41.67 61.25 62.30

IC ($/m2): Investment Cost 292.32 318.63 338.08 297.90 337.62 382.54

4. Discussion of Optimization Results

Based on the above multi-objective optimization logic, this section conducts climate responsive
optimization analysis for typical cities in six different climate regions in the United States. As above
mentioned, the objective functions are discomfort hours percentage (DH) for thermal environment
evaluation, building energy demand (BED), and building life cycle global cost (GC). The optimized
parameter results and performance indicators of residential buildings in various U.S climate zones are
compared and discussed.

4.1. Optimization Results of Residential Buildings in Typical American Cities

Figure 13 shows the optimization process with Duluth as an example. From the figure, it can be
seen that the Pareto frontier of multi-objective optimization is more and more dense before the 9th
generation, and then gradually begins to converge until the 30th generation. After 30 generations,
the Pareto front has hardly changed.

Figure 14 shows the optimization results of different climatic zones. In the three-dimensional
space, all of Pareto non-dominated solutions with BED (building energy demand), GC (global cost),
and DH (discomfort hour percentage) as objective functions are generated. These solutions represent
trade-offs in design, because no other solution can improve (i.e., reduce) these three objectives at the
same time. In order to better describe the optimization parameters, the three-dimensional solution is
projected on the two-dimensional plane BED (horizontal axis)-GC (vertical axis) in Figure 15.
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The study provides two optimal solutions, namely the energy-saving optimal solution (nZEB
optimal) that minimizes building energy demand and the cost optimal solution (C-O optimal solution)
that minimizes global costs. These two optimal solutions correspond to two different goals of public
demand and private demand. In general, the main goal of the public social sector is to vigorously
reduce energy consumption and pollution emissions, while the goal of private households is mainly
to save costs and achieve indoor thermal comfort. Therefore, in Figure 14. BED-GC non-dominated
solutions focus on analyzing the minimization of BED and GC. These solutions are part of the 3D
non-dominated solution because there is no other solution to improve (i.e., reduce) BED and GC at the
same time. Through the BED-GC Pareto Frontier, it is easy to know:

- “Energy-saving optimal (nZEB) solution,” that is, BED is minimized in all non-dominated
solutions, located at the right end of the 2D Pareto frontier of Figure 15. Although this solution is
expressed as nZEB, it does not mean it meets the specific nZEB standard, but because this solution
is a non-dominant solution with the lowest energy demand, and its performance is closest to the
nZEB standard.

- “Cost optimal (C-O) solution,” that is, the GC is minimized among all non-dominated solutions,
located at the left end of the 2D Pareto frontier of Figure 15.

- ”nZEB’ solution,” when neither “energy-saving optimal (nZEB) solution” and “cost optimal (CO)
solution” can meet the requirements of comprehensive indicators, in order to obtain a compromise
result, it is necessary to introduce “nZEB’ Solution,” compared to the reference design, “nZEB’
solution” has lower GC and BED values (see Figure 16).
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When the Pareto front in Figure 15 moves from left to right, the cost-effectiveness of the
non-dominated solution gradually deteriorates, but the energy-saving effect gradually improves.
Tables 12–14 list the optimized values of the design parameters and corresponding performance
indicators, specifically, Table 12 lists the optimized values of the design parameters for each city in
different climate zones, and Table 13 lists the corresponding building envelope heating transmittance
(U value), Table 14 lists the performance indicator of the objective function under the optimized
parameters and the investment cost.

Table 12. Optimal design parameters for typical cities in each U.S climate zone.

N Design Variable
Houston Los Angeles Chicago Helena Duluth Fairbanks

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

nZEB’
(*)

C-O
(*)

1 Building orientation (◦) 0 0 0 0 0 0 0 0 0 0 0 0 0

2 Solar absorbance of
external wall (-) 0.1 0.1 0.1 0.1 0.9 0.5 0.9 0.4 0.9 0.8 0.9 0.9 0.9

3 Solar absorbance of roof (-) 0.1 0.2 0.3 0.3 0.75 0.5 0.4 0.6 0.9 0.9 0.9 0.9 0.75

4 Insulation thickness of
external wall (m) 0 0 0 0 0.12 0.03 0.12 0.12 0.12 0.08 0.12 0.12 0.04

5 Insulation thickness of
roof (m) 0 0 0 0 0.12 0.04 0.12 0.12 0.12 0.1 0.12 0.12 0.12

6 Insulation thickness of
ground floor (m) 0 0 0.03 0 0.12 0.03 0.12 0.12 0.12 0.12 0.12 0.12 0.12

7 Block thickness for
external wall (m) 0.3 0.25 0.25 0.25 0.4 0.25 0.4 0.25 0.4 0.3 0.4 0.25 0.25

8

Block thermal
conductivity for the

external wall (W/mK) *
0.3 0.25 0.9 0.25 0.25 0.25 0.36 0.25 0.3 0.3 0.25 0.25 0.25

Block density for the
external wall (Kg/m3) * 800 600 2000 600 600 600 1000 600 800 800 600 600 600

9 Block thickness for roof
(m) 0.25 0.25 0.25 0.25 0.4 0.25 0.4 0.25 0.4 0.25 0.4 0.25 0.25

10

Block thermal
conductivity for the roof

(W/mK) *
0.72 0.25 0.72 0.25 0.25 0.25 0.3 0.25 0.3 0.25 0.25 0.3 0.25

Block density for the roof
(Kg/m3) * 1800 600 1800 600 600 600 800 600 800 600 600 800 600

11 Block thickness for ground
floor (m) 0.25 0.25 0.4 0.25 0.25 0.25 0.25 0.25 0.3 0.25 0.3 0.25 0.25

12

Block thermal
conductivity for the

ground floor (W/mK) *
0.9 0.25 0.9 0.25 0.9 0.25 0.43 0.25 0.9 0.25 0.25 0.25 0.25

Block density for the
ground floor (Kg/m3) * 2000 600 2000 600 2000 600 1200 600 2000 600 600 600 600

13 Types of window
(see Table 6) 5 2 1 1 7 4 7 4 7 7 7 7 4

(*) nZEB: near zero energy building solution; nZEB’: constrained nearly zero energy building solution; C-O: cost
optimal solution.
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Table 13. Optimal U value of building envelope.

U Value
(W/m2K)

Houston Los Angeles Chicago Helena Duluth Fairbanks

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

nZEB’
(*)

C-O
(*)

External wall 0.61 0.70 1.41 0.70 0.15 0.38 0.16 0.16 0.15 0.22 0.15 0.16 0.33
Roof 2.04 0.87 2.04 0.87 0.15 0.36 0.16 0.17 0.16 0.19 0.15 0.17 0.17

Ground floor 1.45 0.71 1.16 0.71 0.18 0.38 0.17 0.16 0.18 0.16 0.16 0.16 0.16
Window 1.72 1.95 1.95 1.95 1.35 1.9 1.35 1.90 1.35 1.35 1.35 1.35 1.90

(*) nZEB: near zero energy building solution; nZEB’: constrained nearly zero energy building solution; C-O: cost
optimal solution.

Table 14. Performance indicator of optimal solution.

Performance Indicator

Houston Los Angeles Chicago Helena Duluth Fairbanks

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

nZEB’
(*)

C-O
(*)

BED (kWh/m2): Building
Energy Demand

36.20 53.45 2.04 4.96 53.33 78.99 49.71 58.23 65.46 73.35 114.54 117.40 162.55

GC ($/m2): Global Cost 286.97 256.26 306.06 229.65 393.29 298.90 397.88 322.08 417.80 350.41 418.76 364.07 347.76
DH [%]: Discomfort Hours

percentage 29.17 41.67 54.17 16.67 46 59.17 29.17 33.33 52.5 55 53.33 48.25 61.67

IC [$/m2]: Investment Cost 267.10 226.92 304.93 226.92 364.02 255.54 372.54 291.63 381.86 310.15 355.89 299.63 276.42

(*) nZEB: near zero energy building solution; nZEB’: constrained nearly zero energy building solution; C-O: cost
optimal solution.

From the analysis of the optimal objective function value in Table 14, it can be seen that except
Los Angeles, from warm climate zone to cold climate zone, the BED value gradually increases, because
in the calculation of energy demand, heating demand is higher than cooling demand. Specifically,
in nZEB optimal solution, BED in Houston is 36.20 kWh/m2, GC is 286.97 $/m2, DH is 29.17%, whereas
in Fairbanks, BED is 114.54 kWh/m2, GC is 418.76 $/m2, DH is 53.33%. In C-O optimal solution,
BED in Houston is 53.45 kWh/m2, GC is 256.26 $/m2, DH is 41.67%, whereas in Fairbanks, BED is
162.55 kWh/m2, GC is 347.76 $/m2, DH is 61.67%. Whereas in Los Angeles, because of its climate
characteristic, the energy demand is relatively lower than other cities.

According to nZEB and C-O optimal solutions, Table 12 lists the design parameters of residential
buildings in different climate zones. In all optimization schemes, the best building orientation is the
east–west orientation (0◦), in order to facilitate the building to make maximum use of solar radiation
in the colder season. As far as the optimization of the envelope parameters is concerned, the solar
absorbance of the roof and external wall gradually increases from the warmer climate zone to the
colder climate zone to maximize the utilization of solar radiation. For example, the solar absorbance of
the roof and external wall in Houston residential building that is located in the south of the United
States, is between 0.1 and 0.2, while that in Duluth and Fairbanks which are in the north of the United
States are between 0.75 and 0.9.

The change in the thickness of envelope insulation is also related to the latitude of the city.
The optimal solution for the US climatic zone 2 and climatic zone 3 represented by Houston and
Los Angeles respectively does not recommend the use of insulation layers on roofs, external walls,
and ground floors because these cities are in the southern United States. Compared with thermal
insulation, it pays more attention to heat dissipation in summer. Therefore, the nZEB optimal solution
in Houston and Los Angeles recommends the use of bricks with larger heat capacity on the building
envelope. The thermal conductivity and density of the roof and ground floor bricks are 0.72 W/mK
and 1800 Kg/m3, 0.9 W/mK, and 2000 Kg/m3 in Houston. The thermal conductivity and density of the
external wall and ground floor bricks are 0.9 W/mK and 2000 Kg/m3, while for roof are 0.72 W/mK
and 1800 Kg/m3 in Los Angeles. This helps the building absorb solar radiation during the day and
delay solar energy entering the room, then at night when these heat-capacity materials release the solar
energy absorbed during the day, heat is taken out of the room through night ventilation. With the
exception of Houston and Los Angeles, the recommended values for the insulation thickness of external
walls, roofs, and ground floors of the nZEB optimal for residential buildings in almost all cities are
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0.12 m. The C-O optimal is quite different. Specifically, the thickness of the insulation layer on the
external wall, roof and ground floor of the residential building in Chicago is 0.03 m, 0.04 m, and 0.03 m,
respectively, making the U value of envelope slightly higher than that in the nZEB optimal, and the
uncomfortable hours throughout the year is higher. In the Duluth C-O optimal solution, the thickness
of the insulation layer of the external wall and roof is slightly lower than that of the nZEB optimal
solution, which is 0.08 m and 0.1 m, respectively. But the block thermal conductivity and density of the
roof and the ground floor in the C-O optimal solution are lower than the values in the nZEB optimal
solution, which compensates for the lower thickness of the external wall and roof insulation layer,
making the C-O optimal solution’s building energy demand value (BED) and the annual discomfort
hours (DH) is not much different from that in the nZEB optimal solution, and reduces the global cost
(GC) to some extent. In the Fairbanks C-O optimal solution, the recommended value of the insulation
layer thickness of the external wall is 0.04 m, but the block thermal conductivity and density of the roof,
external wall, and the ground floor of the C-O optimal solution and the nZEB optimal solution are the
same, making the BED and DH values of the C-O optimal solution much higher than that in the nZEB
optimal solution. Thus, a compromised nZEB’ solution is proposed, which uses the same insulation
thickness of the roof, external wall, and ground floor, while only reducing the block thickness of roof
and ground floor. The results show that the nZEB’ solution is able to achieve lower BED and DH values
while reducing the global cost (GC), therefore, from the perspective of comprehensive indicators, it has
better benefits. In general, when a thick insulation layer is installed in the envelope, the U value
of it generally remains at a low value, between 0.15–0.18 W/m2K, when the insulation is not used,
the U value of envelope is related to block thickness, thermal conductivity, and density. For example,
the nZEB optimal solution and the C-O optimal solution in Houston are not recommended to install
insulation on the external walls, roofs, and ground floors, however, the thermal conductivity and
density of the roof and ground floor recommended by the C-O optimal solution are much lower than
the nZEB optimal solution, leading to the U value of roof and ground floor in C-O optimal solution
(0.87 W/m2K and 0.71 W/m2K) much lower than that in nZEB optimal solution (2.04 W/m2K and
1.45 W/m2K).

It can also be seen from the nZEB optimal solution that the block thickness of the external walls,
roofs and ground floors gradually increases from the warmer climate zone to the colder climate
zone. For example, the block thickness of the external wall and roof of residential buildings in
Houston is 0.3 m and 0.25 m. In Los Angeles, the block thickness of that are 0.25 m, and ground
floor is 0.4 m. The remaining cities are 0.4 m, while the block thickness of ground floor in Houston,
Chicago, and Helena is 0.25 m, and that in Duluth and Fairbanks is 0.3 m. In addition, except
Houston, Los Angeles, and Helena, the block thermal conductivity and density of the external wall
and roof of residential buildings in various cities are always maintained between 0.25~0.3 W/mK and
600~800 kg/m3. For example, the block thermal conductivity and density for the roof of residential
buildings in Houston and Helena are 0.72 W/mK, 1800 kg/m3, and 0.36 W/mK, 1000 kg/m3 respectively.
In Los Angeles, the block thermal conductivity and density for the roof are 0.72 W/mK, 1800 kg/m3,
and for external wall and ground floor are 0.9 W/mK, 2000 kg/m3. It is clear to see that the block thermal
conductivity and density are gradually decreasing from south to north. For example, the thermal
conductivity and density of ground floor in Houston and Chicago residential buildings are both
0.9 W/mK and 2000 kg/m3, while the corresponding values of Helena and Fairbanks residential
buildings are 0.43 W/mK, 1200 kg/m3 and 0.25 W/mK, 600 kg/m3 respectively. It can be seen from the
C-O optimal solution that the envelope block thermal conductivity and density in most typical cities’
residential buildings remained between 0.25 ~ 0.3 W/mK and 600 ~ 800 kg/m3.

For the transparent component of the envelope (i.e., windows), the triple-glazed with argon-filling,
low-e coating, PVC frame window types are more common (i.e., type 7), for example, Chicago,
Helena, Duluth, and Fairbanks nZEB optimal solution, Duluth C-O optimal solution, and Fairbanks
nZEB’ optimal solution, although the price of this type of window is slightly high, but it has the best
insulation performance. Houston’s nZEB optimal solution recommends the use of tinted double-glazed
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with argon-filling, low-e coating, PVC frame window (i.e., type 5), and the C-O optimal solution
recommends the use of tinted double-glazed with air-filling, low-e coating, PVC frame window (i.e.,
type 2), this type of window has a low SHGC value of 0.38, which can effectively reduce excessive solar
radiation entering the room. In Los Angeles, double-glazed with air-filling, low-e coating, aluminum
frame window (type 1) is recommended in both nZEB optimal solution and C-O optimal solution,
probably because it has the lowest price and will not increase the energy demand too much. Chicago,
Helena, and Fairbanks C-O optimal solutions recommend double-glazed with argon-filling, low-e
coating, PVC frame window (i.e., type 4). This type of window is cheaper and has a higher U value
than other alternatives, which is 1.90 W/m2K, and the window SHGC is also high, which is 0.69, thus it
can make better use of solar radiation, thereby greatly reducing the space heating energy.

4.2. Comparison of Optimization Results with Reference Buildings

Finally, the proposed optimal solution is compared with the climate-related reference design
defined in the previous Tables 11 and 15 shows the differences between BED, GC, IC, and DH.

Table 15. Comparison between the proposed optimal solutions and the related reference designs.

Performance Indicator

Houston Los Angeles Chicago Helena Duluth Fairbanks

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

C-O
(*)

nZEB
(*)

nZEB’
(*)

C-O
(*)

BED reduction (kWh/m2) (**) 20.55 3.3 −5.24 −2.32 20.45 −5.21 22.32 18.8 28.32 20.43 55.23 52.37 7.22
GC reduction ($/m2) (**) 36.55 67.26 −16.57 −92.98 −14.71 79.68 −61.99 13.81 −28.71 38.68 56.97 111.66 127.97

DH reduction (%) (**) 29.16 16.66 45.84 8.34 13.17 0 12.5 8.34 8.75 6.25 8.97 14.05 0.63
IC reduction ($/m2) (**) 25.22 65.4 13.7 −91.71 −25.94 82.54 −74.64 6.27 −44.24 27.47 26.65 82.91 106.12

(*) nZEB: near zero energy building solution; nZEB’: constrained nearly zero energy building solution; C-O: cost
optimal solution. (**) Positive values denote that the proposed solutions induce a reduction (and thus an advantage)
of the performance indicator, while negative values denote an increase (and thus a disadvantage).

In Houston, compared to the reference design, the BED of the nZEB optimal solution is reduced
by approximately 20.55 kWh/m2, the global cost GC is reduced by approximately 36.55 $/m2, the initial
investment cost is reduced by 25.22 $/m2, and the DH is reduced by 29.16%. In the CO optimal solution,
although the value of GC decreased significantly, it was 67.26 $/m2, which was due to the low initial
investment, which reduced to 65.4 $/m2; but the reduction in BED was very small, only 3.3 kWh/ m2,
and the reduction of DH is not as effective as the nZEB program, which is 16.66% less than the reference
building, making the uncomfortable hours of the year still 41.67%, so the applicability of this program
in actual practice is not as good as nZEB optimal solution.

In Los Angeles, the energy demand of the reference building is very low, which is only 7.28 kWh/m2,
thus the nZEB optimal solution cannot improve it a lot. From the Table 15, it can be seen that the BED
in nZEB optimal solution is only improved by 5.24 kWh/m2, but DH is increased by 45.84%, meanwhile
the IC is also increased by 13.7 $/m2. Compared with nZEB optimal solution, the C-O optimal solution
decreases the GC by 92.98 $/m2 and IC by 91.71 $/m2, while only increasing DH by 8.34%. Therefore,
in this climate zone, C-O optimal solution is more practical than nZEB optimal solution.

Compared with the reference design, the climate zone 5 represented by Chicago has reduced the
BED in the nZEB optimal solution by approximately 20.45 kWh/m2 and DH by 13.17%, but increased
the global cost by a small amount, the GC increased by approximately 14.71 $/m2, which is due to
an increase in IC of approximately 25.94 $/m2. Compared with nZEB optimal, CO optimal greatly
reduced the GC about 79.68 $/m2 and the IC about 82.54 $/m2, but at the expense of building energy
demand and thermal environment comfort. Specifically, BED increased by 5.21 kWh/m2, DH remains
the same as the reference building in 59.17%, thus compared to the C-O optimal solution, the nZEB
optimal solution is more suitable for facilitating the actual design.

In the climate zone 6 represented by Helena, although the nZEB optimal solution has reduced BED
by 22.32 kWh/m2 and DH by 12.5%, the cost has increased by 61.99 $/m2, which is due to the increase in
IC (74.64 $/m2). The CO optimal solution reduces the building energy demand and improves the indoor
thermal environment comfort, meanwhile, it also reduces the global investment cost. Specifically,
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BED is reduced by 18.8 kWh/m2, DH is reduced by 8.34%, GC and IC are reduced by 13.81 $/m2 and
6.27 $/m2, respectively. Therefore, the design parameters of the C-O optimal solution can be used
as reference values for energy-saving design of residential buildings in climate zone 5 cities such
as Chicago.

In Duluth, compared to the reference building, the BED in the nZEB optimal solution decreased by
approximately 28.32 kWh/m2, and the DH decreased by 8.75%, but the GC and IC increased 28.71 $/m2

and 44.24 $/m2 respectively. Compared with the nZEB optimal solution, the GC and IC optimization of
the C-O optimal solution did not come at the expense of the degradation of BED and DH. In the C-O
optimal solution, BED decreased by approximately 20.43 kWh/m2, DH decreased by 6.25%, GC and IC
decreased by 38.68 $/m2 and 27.47 $/m2, respectively. Therefore, from the perspective of comprehensive
indicators, the design parameters of the C-O optimal solution can be used as the reference value for
energy-saving design of residential buildings in Duluth.

In the climate zone 8 represented by Fairbanks, the BED of the nZEB optimal solution decreased
by approximately 55.23 kWh/m2, the GC decreased by 56.97 $/m2, the IC decreased by 26.65 $/m2,
and the DH decreased by 8.97%. Whereas in the C-O optimal solution, BED only decreased by about
7.22 kWh/m2, GC decreased by 127.97 $/m2, IC decreased by 106.12 $/m2, and DH decreased by 0.63%.
From the aspects of building energy demand and global cost, the improvement of these two optimal
solutions are not large, so a compromise nZEB’ optimal solution is proposed. In the nZEB’ optimal
solution, BED is reduced by 52.37 kWh/m2, GC is reduced by 111.66 $/m2, IC is reduced by 82.91 $/m2,
DH is reduced by 14.05%, the comprehensive indicator is better than nZEB optimal solution and CO
optimal solution, thus it can be used as a reference value for residential buildings energy efficiency
design in Fairbanks.

As can be seen from the comparison of different optimal solutions with reference buildings,
the optimal design reference value of some typical cities in the United States can take the recommended
value of the nZEB optimal solution, such as Houston and Chicago, because the nZEB optimal solution
of these cities is superior to the CO optimal solution. While the optimal design parameters of Los
Angeles, Helena and Duluth should take the recommended value of the C-O optimal solution, because
in the C-O optimal solution, the best GC are able to be achieved without increasing BED, from an
economic point of view, it is more suitable as an actual project reference value. Unlike the above cities,
the optimal design parameters of Fairbanks should refer to the recommended value of nZEB’, because
the comprehensive index of the nZEB’ solution is better than the nZEB optimal solution and the C-O
optimal solution.

It can be seen from the comparison between the optimized design results and the reference
building design that the best solution provides different guidelines for the energy-saving design of
residential buildings in typical cities in the United States. Mainly as follows:

1. The best building orientation is 0◦, i.e., from east to west;
2. In terms of external wall energy-saving design parameters, the solar absorbance of the external

wall of residential buildings in the warm climate zone (Houston) can be lower (0.1), while cities in
the colder climate zone require a higher solar absorbance. Besides, if the wall uses insulation in a
typical city other than Houston and Los Angeles, the optimal thickness should be 0.10–0.12 m,
much higher than that in the reference building (the reference building insulation thickness is
0.03–0.05 m). Moreover, the external wall is recommended to use low density and low thermal
conductivity materials.

3. Similar to the external wall, the solar absorbance of the roof of residential buildings in the
warm climate zone (Houston) can be lower (0.1), and that in the cold climate zone should be
higher, the best roof insulation thickness should be 0.10–0.12 m which are similar to the reference
buildings. It is recommended to use high thermal mass materials for roofs in warm climate zones,
and low thermal mass materials for roofs in cold climate zones.

4. The ground floor is different from the external walls and roofs, as there is no direct solar radiation,
the solar absorbance ranges are not predefined. However, the optimal insulation thickness of the
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ground floor in colder areas (except Houston and Los Angeles) should be 0.10–0.12 m, which is
higher than that of the reference buildings (0.03–0.06 m), while residential buildings in Houston
and other warmer areas are not recommended to use insulation, but it is recommended to use
high thermal mass materials.

5. For windows, some cities (such as Chicago, Duluth, and Fairbanks) reference buildings that
are filled with double-glazed argon-filling, low-e coating, PVC frame windows (type 4) can be
replaced with triple-glazed with argon-filling, low-e coating, PVC frame windows (type 7).

5. Conclusions

The study selected six typical cities based on the climate zoning in the United States, established
an optimization process using Octopus based on the Grasshopper parametric platform, and made
multi-objective optimization decisions on the residential building model, including building energy
demand, annual discomfort hours, and global cost. Through the Pareto front, the design parameters
suitable for typical urban residential buildings are obtained. The study compares the optimal design
parameters of each typical city with the reference building parameters recommended by the local
energy conservation codes to quantify to what extent the optimal design improves the performance of
typical urban residential buildings under various climatic conditions.

In addition, this research also draws the following conclusions:

(1) For low energy demand and high thermal comfort passive buildings, it is possible to create
good environmental benefits while meeting economic requirements. Therefore, it is necessary
to optimize different objectives in the schematic stage and control the building design from the
initial stage.

(2) The optimal solution set obtained through the passive energy-saving technology screening can be
divided into two types of selection templates: energy-saving optimal (nZEB optimal) and global
cost optimal (C-O optimal) according to different priorities. Meanwhile, the design parameter
interval of the trade-off optimal solution (nZEB’) can be searched according to the existing
performance of the reference building.

(3) The multi-objective optimization framework based on the typical residential building model, using
the meteorological data of typical cities in different climatic regions, can derive the optimal design
parameters for residential buildings in different climatic zones. Comparing the performance
of the optimal design with the reference models of residential buildings in different climatic
regions, climate responsive design strategy can be proposed for local residential buildings from the
perspective of two stakeholders, the public sector and private residents, to achieve energy-efficient
development of residential buildings.

Author Contributions: In this paper, Z.L. performed the experiment, including conceptualization, simulation,
calculation and data visualization, P.V.G. supervised and reviewed the paper. Y.Z., data handling and reviewed
the paper. All the authors (Z.L., P.V.G., and Y.Z.) organized the paper structure. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Givoni, B. Man, Climate and Architecture; Applied Science Publishers Ltd.: London, UK, 1969.
2. Alsousi, M. User Response to Energy Conservation and Thermal Comfort of High-Rise Residential Buildings

in Hot Humid Region with Referring to Gaza. Ph.D. Thesis, University of Nottingham, Nottingham,
UK, 2005.

3. Ghisi, E.; Massignani, R.F. Thermal performance of bedrooms in a multi-storey residential building in
southern Brazil. Build. Environ. 2007, 42, 730–742. [CrossRef]

http://dx.doi.org/10.1016/j.buildenv.2005.10.026


Algorithms 2020, 13, 238 25 of 26

4. Lartigue, B.; Lasternas, B.; Loftness, V. Multi-objective optimization of building envelope for energy
consumption and daylight. Indoor Built Environ. 2014, 23, 70–80. [CrossRef]

5. Wright, J.; Loosemore, H.; Farmani, R. Optimization of building thermal design and control by multi-criterion
genetic algorithm. Energy Build. 2002, 34, 959–972. [CrossRef]

6. Ciancio, V.; Salata, F.; Falasca, S.; Curci, G.; Golasi, I.; de Wilde, P. Energy demands of buildings in the
framework of climate change: An investigation across Europe. Sustain. Cities Soc. 2020, 60, 102213. [CrossRef]

7. Harkouss, F.; Fardoun, F.; Biwole, P.H. Passive design optimization of low energy buildings in different
climates. Energy 2018, 165, 591–613. [CrossRef]

8. Diakaki, C.; Grigoroudis, E.; Kabelis, N.; Kolokotsa, D.; Kalaitzakis, K.; Stavrakakis, G. A multi-objective
decision model for the improvement of energy efficiency in buildings. Energy 2010, 35, 5483–5496. [CrossRef]

9. Wang, W.; Zmeureanu, R.; Rivard, H. Applying multi-objective genetic algorithms in green building design
optimization. Build. Environ. 2005, 40, 1512–1525. [CrossRef]

10. Bakar, N.N.A.; Hassan, M.Y.; Abdullah, H.; Rahman, H.A.; Abdullah, M.P.; Hussin, F.; Bandi, M. Energy
efficiency index as an indicator for measuring building energy performance: A review. Renew. Sustain.
Energy Rev. 2015, 44, 1–11. [CrossRef]

11. Lam, J.C.; Wan, K.K.W.; Liu, D.; Tsang, C.L. Multiple regression models for energy use in air-conditioned
office buildings in different climates. Energy Convers. Manag. 2010, 51, 2692–2697. [CrossRef]

12. Asadi, E.; da Silva, M.G.; Antunes, C.H.; Dias, L. A multi-objective optimization model for building retrofit
strategies using TRNSYS simulations, GenOpt and MATLAB. Build. Environ. 2012, 56, 370–378. [CrossRef]

13. Asl, M.R.; Zarrinmehr, S.; Bergin, M.; Yan, W. BpOp: A framework for BIM-based performance optimization.
Energy Build. 2015, 108, 401–412.

14. Pernigotto, G.; Penna, P.; Cappelletti, F.; Gasparella, A. Extensive utilization of dynamic simulation for
sensitivity analysis and optimization design of refurbishment measures. In Proceedings of the II International
High Performance Buildings Conference, Purdue, IN, USA, 16–19 July 2012.

15. Echenagucia, T.M.; Capozzoli, A.; Cascone, Y.; Sassone, M. The early design stage of a building envelope:
Multi-objective search through heating, cooling and lighting energy performance analysis. Appl. Energy
2015, 154, 577–591. [CrossRef]

16. Prada, A.; Pernigotto, G.; Cappelletti, F.; Gasparella, A.; Jan, L.M. HENSEN. Robustness of multi-objective
optimization of building refurbishment to suboptimal weather data. In Proceedings of the International
High Performance Building Conference, Purdue, IN, USA, 14–17 July 2014.

17. Pernigotto, G.; Prada, A.; Cappelletti, F.; Gasparella, A. Impact of reference years on the outcome of
multi-objective optimization for building energy refurbishment. Energies 2017, 10, 1925. [CrossRef]

18. Penna, P.; Prada, A.; Cappelletti, F.; Gasparella, A. Multi-objectives optimization of energy efficiency measures
in existing buildings. Energy Build. 2015, 95, 57–69. [CrossRef]

19. Chen, J.; Augenbroe, G.; Song, X. Evaluating the potential of hybrid ventilation for small to medium sized
office buildings with different intelligent controls and uncertainties in USA climates. Energy Build. 2018, 158,
1648–1661. [CrossRef]

20. Yong, S.; Kim, J.H.; Gim, Y.; Kim, J.; Cho, J.; Hong, H.; Baik, Y.; Koo, J. Impacts of building envelope design
factors upon energy loads and their optimization in USA standard climate zones using experimental design.
Energy Build. 2017, 141, 1–15. [CrossRef]

21. IECC. International Code Council. 2018. Available online: https://www.iccsafe.org/wp-content/uploads/01-
Prelims1.pdf (accessed on 15 August 2020).

22. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength pareto evolutionary algorithm for
multiobjective optimization[C]. In Evolutionary Methods for Design, Optimization and Control with Applications
to Industrial Problems; EUROGEN: Athens, Greece, 2001.

23. Corne, D.W.; Jerram, N.R.; Knowles, J.D.; Oates, M.J. PESA-II: Region-based selection in evolutionary
multi-objective optimization[C]. In Proceedings of the Genetic and Evolutionary Computation Conference GECCO;
Sbedtor, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Eds.; Morgan Kaufmann Publishers:
San Francisco, CA, USA, 2001; pp. 283–290.

24. ANSI/ASHRAE. Standard 55: Thermal Environmental Conditions for Human Occupancy. 2013.
Available online: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-
conditions-for-human-occupancy (accessed on 15 August 2020).

http://dx.doi.org/10.1177/1420326X13480224
http://dx.doi.org/10.1016/S0378-7788(02)00071-3
http://dx.doi.org/10.1016/j.scs.2020.102213
http://dx.doi.org/10.1016/j.energy.2018.09.019
http://dx.doi.org/10.1016/j.energy.2010.05.012
http://dx.doi.org/10.1016/j.buildenv.2004.11.017
http://dx.doi.org/10.1016/j.rser.2014.12.018
http://dx.doi.org/10.1016/j.enconman.2010.06.004
http://dx.doi.org/10.1016/j.buildenv.2012.04.005
http://dx.doi.org/10.1016/j.apenergy.2015.04.090
http://dx.doi.org/10.3390/en10111925
http://dx.doi.org/10.1016/j.enbuild.2014.11.003
http://dx.doi.org/10.1016/j.enbuild.2017.12.004
http://dx.doi.org/10.1016/j.enbuild.2017.02.032
https://www.iccsafe.org/wp-content/uploads/01-Prelims1.pdf
https://www.iccsafe.org/wp-content/uploads/01-Prelims1.pdf
https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy
https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy


Algorithms 2020, 13, 238 26 of 26

25. ASHRAE. Handbook Fundamentals; American Society of Heating Refrigerating and Air-Conditioning Engineers:
Atlanta, GA, USA, 2009.

26. Pedersen, C.O.; Fisher, D.E.; Liesen, R.J. Development of a heat balance procedure for calculating cooling
loads. ASHRAE Trans. 1997, 103, 459–468.

27. Walton, G.N. Thermal Analysis Research Program Reference Manual; National Bureau of Standards: Gaithersburg,
MD, USA, 1983.

28. O’Neill, Z.; Eisenhower, B. Leveraging the analysis of parametric uncertainty for building energy model
calibration. Build. Simulat. 2013, 6, 365–377. [CrossRef]

29. European Committee for Standardization CEN/TR 15615: Explanation of the General Relationship between Various
European Standards and the Energy Performance of Building Directive (EBPD); Umbrella Document; European
Committee for Standardization (CEN): Tallinn, Estonia, 2008. Available online: https://standards.iteh.ai/catalog/

standards/cen/d7208116-9623-4117-8d99-4c81230c6f5e/cen-tr-15615-2008 (accessed on 15 August 2020).
30. EN 15459: Energy Performance of Buildings. Economic Evaluation Procedure for Energy Systems in

Buildings. 2007. Available online: https://standards.iteh.ai/catalog/standards/cen/ff0c5a0e-d363-40ab-80b3-
7d7cc28b19a5/en-15459-1-2017 (accessed on 15 August 2020).

31. Ferrara, M.; Monetti, V.; Fabrizio, E. Cost-optimal analysis for nearly zero energy buildings design and
optimization: A critical review. Energies 2018, 11, 1478. [CrossRef]

32. Ascione, F.; Bianco, N.; De Masi, R.F.; Mauro, G.M.; Vanoli, G.P. Resilience of robust cost-optimal energy
retrofit of buildings to global warming: A multi-stage, multi-objective approach. Energy Build 2017, 153,
150–167. [CrossRef]

33. Ascione, F.; Bianco, N.; Mauro, G.M.; Napolitano, D.F. Building envelope design: Multi-objective optimization
to minimize energy consumption, global cost and thermal discomfort. Application different Italian climatic
zones. Energy 2019, 174, 359–374. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s12273-013-0125-8
https://standards.iteh.ai/catalog/standards/cen/d7208116-9623-4117-8d99-4c81230c6f5e/cen-tr-15615-2008
https://standards.iteh.ai/catalog/standards/cen/d7208116-9623-4117-8d99-4c81230c6f5e/cen-tr-15615-2008
https://standards.iteh.ai/catalog/standards/cen/ff0c5a0e-d363-40ab-80b3-7d7cc28b19a5/en-15459-1-2017
https://standards.iteh.ai/catalog/standards/cen/ff0c5a0e-d363-40ab-80b3-7d7cc28b19a5/en-15459-1-2017
http://dx.doi.org/10.3390/en11061478
http://dx.doi.org/10.1016/j.enbuild.2017.08.004
http://dx.doi.org/10.1016/j.energy.2019.02.182
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background and Literature 
	The Logic of Building Climate Responsive Optimization Design 
	State-of-the-Art 
	Research Objects and Optimization Process 
	Algorithm Used in Optimization 

	Multi-Objective Optimization Platform Set-Up 
	Definition of Objective Functions 
	Design Parameter Settings of Typical Buildings 
	Design Parameter Settings of Typical Cities in the United States 

	Discussion of Optimization Results 
	Optimization Results of Residential Buildings in Typical American Cities 
	Comparison of Optimization Results with Reference Buildings 

	Conclusions 
	References

