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Abstract: Advances in information and communication technologies have made possible the
emergence of new shopping channels. The so-called ‘omnichannel’ retailing mode allows customers
to shop for products online and receive them at home. This paper focuses on the omnichannel delivery
concept for the retailing industry, which addresses the replenishment of a set of retail stores and the
direct shipment of the products to customers within an integrated vehicle routing formulation. Due to
its NP-Hardness, a constructive heuristic, which is extended into a biased-randomized heuristic and
which is embedded into a multi-start procedure, is introduced for solving the large-sized instances
of the problem. Next, the problem is enriched by considering a more realistic scenario in which
travel times are modeled as random variables. For dealing with the stochastic version of the problem,
a simheuristic algorithm is proposed. A series of computational experiments contribute to illustrate
how our simheuristic can provide reliable and low-cost solutions under uncertain conditions.

Keywords: omnichannel retail stores; vehicle routing problem; pick-up and delivery; biased-randomized
heuristics; simheuristics

1. Introduction

Today, people are changing their shopping behavior. Recent advances in information and
communication technologies have introduced new shopping channels and models, which make
possible the expansion of e-commerce and, consequently, the emergence of new challenges in
operational research, transportation, and logistics areas. Specifically, regarding modern e-commerce
business models, new decision variables and constraints have been incorporated in them, leading to
emerging variants of distribution problems in supply chain management.

Unlike brick-and-mortar stores, where salespeople are available to support and help customers to
make their purchases, the popularization of mobile devices with access to the Internet has promoted the
use of different shopping channels. The online channel is an example that has emerged as a competitive
marketing channel to that of traditional retail centers, transforming e-commerce into a global trend
and an important tool for every business worldwide [1]. With e-commerce, customers are immersed in
an environment of a plethora of information, opinions, and access to a vast combined supply of stock,
which together allows them to browse through different stores in an online environment. According
to some experts, the online shopping channels were predicted to kill off the physical ones. However,
they co-exist and have completely transformed the way customers shop nowadays [2]. The use of a
variety of shopping channels is referred to as ’omnichannel retailing,‘ where, instead of having only
the single option of physically visiting a store to buy products, consumers can also buy them via online
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shopping to be delivered at their homes. Hence, the company also becomes responsible for delivering
goods ordered online to consumers. Therefore, this new retailing environment has introduced the
need to design integrated distribution systems for both serving online customers and for replenishing
the stocks of retailer stores [3].

This paper focuses on the emerging omnichannel vehicle routing problem (OM-VRP) concept,
which is an extension of the classical vehicle routing problem (VRP) in which a two-echelon
distribution network is considered. The VRP aims to design cargo vehicle routes with minimum
transportation costs, and sometimes the problem also considers facility location costs [4]. The generated
routes are designed to distribute goods between depots and a set of final customers during a
planning period [5]. Since the OM-VRP tackles simultaneously the replenishment of a set of
retailer stores and the direct shipment of the products from those retailer stores to customers in
an omnichannel retailing environment, the OM-VRP can be seen as an integrated problem that
combines both the VRP and the pick-up and delivery problem (PDP). In the OM-VRP, which was first
introduced by Abdulkader et al. [1], a single distribution center supplies a group of retailer stores–i.e.,
the first-echelon. In turn, this set of retail centers serve a set of online customers–the second-echelon–by
using a single fleet of vehicles in both delivery levels in order to reduce transportation costs. Apart
from reducing operating costs and improving supply chain competitiveness, the optimization of
this two-echelon problem holds the potential to improve customer service levels and to enhance the
on-time delivery of customer orders [6]. VRPs and PDPs are frequently considered in the literature as
deterministic problems, where customers’ demands and travel times are constant values. In real-life,
however, it is frequent that both demands and travel times are exposed to some degree of uncertainty.
In these scenarios, it is more accurate to model these constant variables as random variables. In this
paper, we extend the previous OM-VRP formulation by replacing the deterministic travel times by
stochastic ones. To the best of our knowledge, it is the first time that a stochastic version of the OM-VRP
has been considered.

Since the VRP and the PDP are both NP-hard problems [7,8], the OM-VRP is, consequently,
NP-hard as well. Therefore, we propose a multi-start procedure, which employs a savings-based [9]
biased-randomization heuristic technique [10]. The multi-start approach is able to generate a variety
of good and feasible solutions in short computing times. Finally, in order to deal with the stochastic
OM-VRP, the multi-start approach is combined with Monte Carlo simulation and extended into a
simheuristic algorithm [11]. Simulation-optimization methods, and simheuristics in particular, allow us
to properly deal with stochastic versions of combinatorial optimization problems [12,13], such as the
one proposed in this work, where travel times are modeled as random variables. The simheuristic
approach is also employed to measure the ‘reliability’ level of the proposed distribution plan,
i.e., to measure the probability that the plan can be deployed, without any route failure, in a realistic
scenario under uncertain travel times. To the best of our knowledge, this is the first time that a
stochastic version of the OM-VRP has been considered in the scientific literature.

The remainder of the paper is arranged as follows: Section 2 presents a brief literature review
on related topics; Section 3 describes, in more detail, the addressed problem; Section 4 introduces
the proposed solving methodologies; Section 5 presents an analysis of the results and a comparison
between the proposed heuristic and another solution methodology; finally, Section 6 highlights the
main conclusions of this work and proposes some future lines of research.

2. Literature Review

With recent advances in information and communication technologies, different shopping
channels have emerged which have attracted the attention of customers. Nowadays, customers use
different channels to shop, giving them a multichannel shopping environment [14]. The transition from
multichannel to omnichannel retailing has been discussed by Verhoef et al. [15] and Hübner et al. [16].
On the one hand, in multichannel retailing, the online and offline channels are treated as separate
businesses. On the other hand, the use of both channels in an omnichannel environment is completely
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integrated, providing consumers with a seamless experience [17]. Therefore, the customer experience
is different although multichannel and omnichannel retailing environments are often considered the
same. Beck and Rygl [18] presented a complete categorization and definition of retailer channels:
multi, cross, and omnichannel are clearly defined. According to Hübner et al. [3], there are several
operations within the omnichannel distribution system which are responsible for its excellence, such as
expanding delivery modes, increasing delivery speed, and service levels.

As mentioned, the OM-VRP combines the VRP and a PDP. The classical VRP, originally proposed
by Dantzig and Ramser [19], has been extensively studied by practitioners and academics due to its
wide applications in several areas. The VRP belongs to a set of NP-hard combinatorial optimization
problems (COPs) [7]. Therefore, the use of exact algorithms is efficient only for solving small-sized VRP
instances. Mostly, these exact approaches are based on the combination of column and cut generation
algorithms [20,21]. On the other hand, approximate algorithms, such as metaheuristics, are frequently
very efficient for solving large-sized instances of COPs. Several metaheuristics have been proposed
to solve the VRP, which include tabu search (TS), genetic algorithms (GA), ant colony optimization
(ACO), and some hybrid methodologies [22–25]. Pick-up and delivery problems have also been
studied for more than 30 years. These problems incorporate some route order dependencies in which
some nodes should be visited before others in order to transfer inventory between them. Similar to the
VRP, the PDP is also an NP-hard problem [8], and some exact methodologies, based on branch-and-cut
and branch-and-cut-and-price algorithms, have been developed to optimally solve small-sized PDP
instances [26,27]. Moreover, several heuristics and metaheuristics algorithms have been developed to
solve the PDP and some of its variants. We highlight the use of TS [28], GA [29], large neighborhood
search heuristics (LNS) [30], adaptive LNS (ALNS) [31,32], particle swarm optimization (PSO) [33],
and greedy clustering methods (GCM) [34]. A literature review and classification of PDPs is presented
by Berbeglia et al. [35].

To the best of our knowledge, Abdulkader et al. [1] were the first authors to address the
omnichannel VRP as a combination of the VRP and the PDP in an omnichannel retailing context.
For solving this novel integrated problem, the authors proposed a two-phase heuristic, based on:
(i) inserting consumers into retailers routes and on correcting infeasible solutions, and (ii) on joining the
routes through the maximum-savings criterion, i.e., the Clarke & Write Savings heuristic (CWS) [36].
Apart from this two-phase heuristic, a multi-ant colony algorithm (MAC) was proposed. A complete
set of instances have been generated to test their methodologies, and the MAC outperformed the
heuristic’s performance. Martins et al. [9] proposed a simple and deterministic heuristic for solving
the OM-VRP. Although no best-known solutions were found, the heuristic showed to be promising
since feasible solutions were provided in short computational time and no repair operations were
needed. Recently, the same problem have been also solved by Bayliss et al. [37] and Martins et al. [38].
In contrast to Bayliss et al. [37], Martins et al. [38] have framed the problem in the humanitarian logistics
field, providing an agile optimization solving methodology–which combines parallel computing with
biased-randomized heuristics–which was proposed for solving it in real-time. Competitive results were
found in milliseconds, enabling the agile optimization technique able to outperform other heuristics
from the literature. On the other hand, Bayliss et al. [37] formulated the OM-VRP as a mixed-integer
program (MIP) and proposed a two-phase local search with a discrete-event heuristic for solving the
problem. In contrast to Abdulkader et al. [1]’s model, their formulation avoids the need to directly
assign retailers to vehicles, since the pick-up and delivery constraints are modeled through routing
variables. The first phase of the approach employs a discrete-event constructive heuristic, while the
second phase aims to refine the most promising solutions obtained in stage one, by applying a sequence
of local search neighborhoods. The authors have found new best-known solutions for the vast majority
of problem instances, and improved lower bounds for a set of small instances were obtained.

Constructive heuristics are simple deterministic procedures that follow a logical sequence
of decisions and which always generate the same solution when starting from the same point.
Biased-randomized algorithms incorporate non-symmetric random sampling in order to diversify the
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behavior of a base constructive heuristic [39]. At each stage of the base constructive heuristic, a list
of candidate decisions is considered. The list is sorted in decreasing order of the benefit concerning
an objective function, and a candidate is then randomly selected. In this random selection process,
the higher-ranked candidates receive a higher probability of being selected. Biased-randomized
algorithms have been employed for solving different COPs in transportation [40–42], scheduling [43,44],
and facility location problems [39,45].

Simheuristic algorithms combine the use of approximate methods, such as heuristics or
metaheuristics, with simulation techniques, in order to cope with stochastic combinatorial optimization
problems. They have proven to be an efficient approach to solve stochastic problems [46]. The extension
of traditional metaheuristics into simheuristics is gaining popularity, and they have already been
applied to solve a wide set of stochastic optimization problems, in different fields such as permutation
flow-shop [47], facility location problems [48], inventory routing problems [48–50], telecommunication
networks [51] and finances [52].

Other examples of simheuristics include Lam et al. [53], Lopes et al. [54], and Santos et al. [55].
Lam et al. [53] employs a simheuristic approach for evolving agent behavior in the exploration of novel
combat tactics. They use a genetic algorithm to find the states, during a flight maneuver, at which an
aircraft should transit into the next phase of the maneuver. Lopes et al. [54] tackles a stochastic assembly
line problem using a simheuristic approach. Demands for different product types are stochastic and
occur in real-time. The optimization task lies in assigning tasks to stations in such a way that task
precedence constraints are respected and the expected throughput is maximized. Santos et al. [55]
develops a simheuristic based decision support tool for an iron ore crusher circuit. They propose and
validate a simulation model of throughput efficiency depending on the amount of equipment active in
each phase of the crusher circuit. The simheuristic integrates the simulation model with an iterated
local search (ILS) metaheuristic. Their solutions improve throughput and reduce energy consumption
compared to the all active equipment solution.

Despite the fact that travel times are stochastic in most real-life transportation activities, in the
past only deterministic versions of the OM-VRP have been considered. Hence, our work goes one
step further by considering random travel times and proposing a simheuristic algorithm to solve the
stochastic version of the OM-VRP.

3. Details on the Stochastic OM-VRP

Usually, retail stores must be supplied from the depot with a large number of products, which are
packed and frequently measured in terms of the number of pallets. In turn, and in contrast to retail
stores’ demand, online customer orders are of negligible size but require processing at a physical
retail store before their delivery. Since orders must be processed at retail stores before delivery,
products ordered online cannot be shipped directly from the central warehouse to online customers.

In the OM-VRP, a single fleet of vehicles is employed to simultaneously perform three different
operations: (i) bulk deliveries to retail stores from a main central depot; (ii) the pick-up of online
customer orders from these retail stores; and finally, (iii) the deliver of online customers’ orders.
Different product types are available at each retail store. Likewise, each retail store has a limited
inventory of processed products that can be delivered to online customers. Therefore, the vehicle
responsible for a particular online order must first visit a retail store with that product in stock.
The available processed inventory and bulk demand for each retail store are known in advance.
It is assumed that bulk inventory does not contribute to a retailer’s available inventory since bulk
deliveries cannot be processed within the drop time of delivery. As a simplifying assumption, each
online customer orders a single product. When more than one item is ordered, the consumer is
replicated in the same location as a ‘virtual’ consumer, and each product is delivered separately.
According to Abdulkader et al. [1], this strategy of considering single-item orders by consumers
guarantees the solution feasibility and also minimizes the distribution cost.
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Figure 1 depicts how the processes of visiting retail centers and online customers are performed by
the same fleet of vehicles. A route starts from the single and central depot, and the same cargo vehicle
visits a set of retail centers and customers. Deliveries to customers cannot be directly performed from
the depot. Hence, drivers must meet precedence constraints in order to pick-up customer orders from
the retail centers before they can be delivered. Since retailers are supplied by the depot, these nodes are
both delivery and pick-up points. On the other hand, customers require only the delivery of items from
these retail centers, making them, delivery nodes. Apart from precedence and inventory constraints,
the service of each route is limited by a maximum tour length and vehicle capacity limit.

Figure 1. A general schema of the OM-VRP.

We can define the distribution network of the OM-VRP as directed graph G = (V, A). The set of
vertices V = {0, 1, 2, . . . , r+ c} is composed of a single depot (0), r retail centers, and c online customers.
In other words, the problem is represented by a set R of retail stores, which are supplied by the depot 0,
and a set C of online customers, which are posteriorly supplied by the retail centers. The set N = R∪C
comprises both sets R and C, in which R = {1, 2, . . . , r} and C = {r + 1, r + 2, . . . , r + c}. The same
fleet of capacitated vehicles, initially stationed at the central depot at the start time t0, is employed
for serving both the retail centers and consumers. For the complete mathematical formulation of this
problem, readers are referred to Abdulkader et al. [1]. In this work, we extend previous work on
this topic by considering the case in which edge-traversal times are stochastic. We define the time to
traverse edge (i, j) as Tij = tij + Dij where tij is the deterministic edge-traversal time (which represents
the edge-traversal time under ‘ideal’ traffic conditions), Dij is a log-normally distributed delay term,
and Tij denotes the distribution of edge-traversal times. The objective of this extended problem is
to minimize the total travel cost of the vehicle routes such that: (i) every route starts and ends at the
depot; (ii) the routes do not violate the maximum tour length; (iii) every node i ∈ N is visited by only
one vehicle and only once; (iv) the total load of the vehicle does not exceed the vehicle capacity; (v) the
total consumer demand to be fulfilled by a vehicle for a specific product does not exceed the inventory
picked up by the vehicle; (vi) the retail store determined to satisfy the consumer’s demand must
be visited before the consumer and by the same vehicle; and (vii) the routes must have a reliability
level greater than a user-set parameter, Rmin. The reliability level of a set of routes is defined as the
probability that all routes are completed within the maximum time limit of Tmax.

Two alternative mathematical formulations of the deterministic OM-VRP can be found
in Abdulkader et al. [1], Bayliss et al. [37]. The differences in this case are a stochastic objective
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function and probabilistic constraint regarding route completion reliability. Let x f kij be a binary
decision variable indicating whether or not vehicle f in the fleet F traverses edge ij in the kth node
visit in its route. The stochastic objective function is given in Equation (1), where Dij is the stochastic
delay associated with traversing edge ij.

min E

(
∑
f∈F

∑
k∈K

∑
i∈V

∑
j∈V

x f kij
(
tij + Dij

))
. (1)

The probabilistic route completion reliability constraint is given in Equation (2).

Rmin ≤ P

(
∑
i∈V

∑
j∈N

∑
k∈K

(
tij + τ + Dij

)
x f kij + ∑

i∈V
∑
k∈K

(ti0 + Di0) x f ki0 ≤ Tmax, ∀ f ∈ F

)
. (2)

Equation (2) also accounts for the drop times (τ) that are required when performing deliveries
and pickups. In this work we employ a simheuristic approach for addressing the stochastic aspects
of the OM-VRP. The main novelty of the OM-VRP, in comparison to other VRPs, is the precedence
constraints regarding the collection of customer orders from retailers and subsequent delivery to
customers. The vehicle capacity constraint regarding the retailer demands that can be satisfied are
expressed by Equation (3), where OPj denotes the number of ordered product units of node j (which is
zero for customer nodes) and H denotes the vehicle capacity.

∑
i∈N

∑
j∈V

k

∑
l=1

x f lijOPj ≤ H, ∀ f ∈ F, ∀k ∈ K. (3)

The customer order precedence constraints are expressed by Equation (4), where ODjq denotes
the number of items of type q ∈ Q ordered by node j (which is zero for retailer nodes) and Pjq denotes
the number of items picked up of type q ∈ Q at node j (which is zero for customer nodes).

∑
i∈V

∑
j∈V

k

∑
l=1

x f lij
(

Pjq −ODjq
)
≥ 0, ∀ f ∈ F, ∀k ∈ K, ∀q ∈ Q. (4)

Table 1 provides the details for a small-sized instance, which is composed of one central warehouse,
four retail stores, and nine online customers. For this instance, Table 1 provides: the geographic
coordinates (X and Y) of each node, the demand required from the depot by each retail center i ∈ R,
the demands for each customer j for each product type q (ODjq), and the inventory of each available
product Piq, q ∈ {1, 2, 3} at the retail centers. Since the products are negligible in terms of capacity,
they do not affect the vehicle load capacity. Accordingly, Figure 2 presents the optimal solution for
the provided example. The routes are performed with a total cost of 455.91 distance units, and a fleet
of vehicles each with a capacity of 100 weight units is employed for performing the routes. In the
first route, customers 8, 5, and 9 are served by retail center 1, while customers 12 and 13 are served
by retail 3. The route requires 272.37 distance units, and the vehicle starts with 93 loaded demand
units. Note that the retail centers are first visited by the vehicle in order to deliver the required demand
from the depot and to pick-up the products ordered by the customers. Similarly, in the second route,
customers 11 and 10 are supplied by retail center 4 while customers 6 and 7 are served by retail store 2.
The route requires 183.53 distance units, starting with 79 loaded demand units.
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Table 1. Problem instance data.

Node X Y OPi OD1 OD2 OD3
Inventory

P1 P2 P3

0 48 23 0 0 0 0 0 0 0
1 91 20 44 0 0 0 1 0 2
2 25 9 36 0 0 0 1 0 1
3 56 68 49 0 0 0 1 2 0
4 71 1 43 0 0 0 1 2 1
5 26 94 0 0 0 1 0 0 0
6 30 15 0 1 0 0 0 0 0
7 4 51 0 0 0 1 0 0 0
8 35 78 0 1 0 0 0 0 0
9 79 72 0 0 0 1 0 0 0

10 16 33 0 0 1 0 0 0 0
11 61 6 0 1 0 0 0 0 0
12 78 89 0 0 1 0 0 0 0
13 77 61 0 0 1 0 0 0 0
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Figure 2. The optimal solution routes for Table 1.

4. Methodology

The multi-start framework belongs to a family of metaheuristics algorithms [56] which includes
approaches such as Evolutionary Algorithms [57,58] and Swarm Intelligence Algorithms [59–62],
among others. Metaheuristics were introduced in order to provide high-quality solutions using a
reasonable amount of computation time and memory. Typically, they require a time-consuming
parameter tuning process. Although, there are approaches that provide self-adaptive parameter
control [58], our methodology has been devised to work with a reduced number of parameters,
providing an excellent trade-off between simplicity, computational time, and solution quality.

In order to solve the stochastic OM-VRP, a simheuristic approach is proposed. Our methodology
combines a biased-randomized savings-based heuristic with simulation techniques to deal with the
stochastic aspects of the problem. Biased-randomized heuristics can be extended into simheuristics in
a natural way. Starting from a savings-based heuristic, which is completely deterministic, this solution
method is then extended into a biased-randomized multi-start algorithm. Also, a local search procedure
is applied to search for locally optimal solutions. Finally, the multi-start framework is extended into a
simheuristic approach in order to deal with stochastic travel times.
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4.1. Savings-Based Heuristic

As introduced, the savings-based heuristic (LH) [9] is based on greedy decisions and designed to
solve the deterministic OM-VRP. The LH is composed of the following three stages:

1. In the first stage, a dummy solution is created, where each route in this dummy solution serves
one node i ∈ N, which can be either a consumer or a retail store. Routes depart from the depot,
travel to the node, and then return to the depot.

2. The second stage of LH, named as CWS1, is presented in the Figure 3, where the dummy routes
from stage 1 are merged using a maximum-savings criterion [36]. Each box from Figure 3 is
numbered to aid the following explanations.

Initially, a savings list (SL) is constructed (step 1). This list considers all possible pairs of
nodes–i.e., edges–from the problem. For each edge {i, j}, the corresponding savings value
is calculated as sij = t0i + tj0 − tij, where tij represents the deterministic travel time between
nodes i and j. That is, candidate solutions are generated using ‘ideal’ traffic conditions for the
edge-traversal times.

Initially, all edges from SL are eligible. The list is sorted in descending order of the savings value
(step 2), and the edge with the highest saving is selected (step 3). At this stage, the selection of
edges is restricted to guarantee the assignment of a retail center to each consumer in the problem
(step 5). In other words: a route containing one single customer can only be merged with a route
containing a retail center, i.e., the selection is restricted to eligible edges {i, j}, where node j is a
consumer in a dummy route and i is a node in a route with a retailer that can supply consumer
j. According to Martins et al. [9], these attempts at only merging routes containing at least one
retail center, which can supply a single consumer, are made first in order to avoid infeasible
solutions–i.e., solutions in which some customers are not assigned to any retailer. This approach
of addressing solution feasibility first is based on the observation that the availability of feasibility
restoring merges will only decrease as the algorithm progresses.

Based on CWS route-merging conditions (step 6), the two corresponding routes, i and j, of an
edge {i, j} (obtained in steps 4.1 and 4.2) can be merged only if: (i) nodes i and j are exterior
in their respective routes (a node is exterior if it is adjacent to the depot); (ii) i and j belong to
different routes; (iii) the maximum tour length is not violated; and (iv) the vehicle capacity is
not violated.

The selected edge is deleted from SL (step 9) only if: (a) the corresponding merge is performed
(step 7); or (b) at least one of the CWS constraints ((i)–(iv)) are violated (in step 6). Otherwise,
the edge becomes temporarily ineligible (step 10), but it is not removed from the list since
subsequent merges might restore eligibility. This can occur when a different retail center is
merged into a route, increasing the available processed inventory for subsequent consumers.
For example, when selecting an edge (i, j), the evolving route of i may have insufficient processed
inventory for customer j at this time. However, if in subsequent iterations route i is merged with
another route containing retailers, the evolving route of i may then be able to serve customer j.

When a merge is successfully performed (step 7), the entire SL becomes eligible (step 8), since a
new inventory scenario is generated.

At the end of this stage, all the consumers are supplied by the retail centers, guaranteeing a
feasible final solution. Notice that this is achieved without solving separate assignment and
routing problems, as done in Abdulkader et al. [1].
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3. Finally, the third stage (CWS2) tries to improve the solution generated in the previous step.
To do that, the algorithm cycles through the SL list, which includes the remaining saving edges
that were discarded in the previous step, with the aim of identifying more beneficial merges.
Unlike the procedure used in the CWS1 stage, in this phase all the customers are already assigned
to a retail center, so step 5 of Figure 3 is not required. Hence, all edges are eligible. The process
attempts all the available merging possibilities which may improve the solution. Each time a
new edge is selected from the SL list, it is removed from the list, whether the corresponding
merge is performed or not–due to it violating any of the constraints (i)–(iv). In each new iteration,
the highest saving edge is selected to restart the merge process. This process is repeated until SL
is empty. At the end of the procedure, a feasible solution is generated, without the necessity of
repair operations.

START

END

Create SL from the
dummy solution sol

Sort SL

Select the 1st
eligible edge from SL

as e

Return sol

Are there any 
eligible nodes in SL?

Get origin and
end nodes from e as 

iNode and jNode, 
respectively

Is jNode a non-served 
customer AND has 

iRoute a retailer that 
can serve jNode?

Are all the CWS route-
merging conditions 

are satisfied?

Edge e becomes
not eligible

Merge iRoute with 
jRoute using edge e 

as sol

Get evolving routes
of iNode and jNode as 

iRoute and jRoute, 
respectively

SL becomes entirely
eligible

Delete e from SL

Y

N

Y

N

Y

N

2

3

1

4.24.1

56

7

89

11 10

12

4

Figure 3. The flowchart of CWS1.

4.2. Introducing a Local Search

Once an initial and feasible solution is constructed, a fast local search is applied to improve its
quality. This local search mechanism is based on a 2-opt movement. Since this problem has some
precedence particularities, the 2-opt movement, which consists of the reversal of sub-sequence of nodes,
is restricted to movements that do not violate the precedence order between customers and their
suppliers–hence, the feasibility of the solution is preserved.
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4.3. Extending to a Biased-Randomized Algorithm

To modify the original greedy and deterministic behavior of our heuristic, the selection of
candidates from the SL is randomized by introducing a skewed probability distribution into the
selection process. For the biased-randomized component, we employ a geometric distribution,
which is controlled by a single parameter, β ∈ (0, 1). β values closer to 1 increase the probability
that the highest saving merges are selected. On the contrary, as β approaches 0, a near-uniform
randomization is obtained. In this way, β controls the level at which the selection probabilities decrease
along the sorted SL. Hence, unlike deterministic heuristics, which always generate the same solution
when starting from the same initial solution, different decisions are taken at each selection iteration,
consequently generating different solutions. Algorithm 1 represents the selection process of LH with
biased-randomization, which replaces the greedy selection of edges from the SL.

Algorithm 1: brSelection.
Data: savings list SL, parameter β ∈ [0, 1]

1 l ← getNumberOfEligibleEdgesFromList (SL);
2 Randomly select position x ∈ {1, ..., l} according to distribution Geom (β);
3 e← selectTheXthEligibleEdgeFromList (x, SL);
4 return e;

Considering all of the stages which have been introduced, Algorithm 2 represents the overall
structure of our biased-randomized algorithm with local search (BRLH). This algorithm is then
embedded into a multi-start procedure in order to obtain a variety of solutions (MSBRLH).

Algorithm 2: BRLH.
Data: set of nodes V, geometric distribution parameter β

1 sol ← createDummySolution (V);
2 sol ← CWS1 (sol, β);
3 sol ← CWS2 (sol, β);
4 sol ← localSearch (sol);
5 return sol

4.4. Extending to a Simheuristic Approach

Deterministic travel times are widely assumed in transportation problems. However,
when dealing with real-life problems, which are often fraught with uncertainty, travel times are
usually stochastic in nature. As introduced in Section 3, the deterministic travel time employed to
traverse edge (i, j), tij, can be seen as the travel time required under ideal traffic conditions. In the
proposed extension, the stochastic time to traverse (i, j) is computed as Tij = tij + Dij, where Dij
follows a logNormal(µ, σ) probability distribution, and represents a random delay resulting from
uncertain conditions. Since the logNormal probability distribution can only take positive values,
it follows that Tij > tij, ∀(i, j) in the set of connecting edges.

Algorithm 3 describes our simheuristic approach (SimBRLH). Initially, a solution is generated by
our BRLH in line 1 (Algorithm 2), by employing the greedy approach (i.e., β ≈ 1). A short simulation is
then performed on this initial solution (line 2), in order to estimate its average stochastic cost. This initial
solution is set as the best-found stochastic solution cost (line 4). While the termination criterion is not
met (line 6), different solutions are generated by BRLH (line 7). The deterministic cost of the initial
solution is considered for guiding the search. Therefore, a solution is accepted for being submitted to
the simulation module (line 10) only if its deterministic cost is smaller than the best-found deterministic
solution cost plus m% of its value (line 9). This solution filtering approach reduces the amount of
time spent on testing unpromising solutions in computationally expensive simulations. Moreover,
by allowing the acceptance of moderately worse solutions, controlled by the parameter m, a better
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exploration of the solution space can be achieved [63]. At this stage, qshort Monte Carlo simulation runs
are used to test the accepted solution. Each simulation run replaces the deterministic travel times of a
solution with randomly sampled ones–according to the assumed probability distribution. From this
complete simulation process, the average stochastic cost of each solution is computed. Every time a
new best stochastic cost is found (line 15), this solution is introduced into a pool of ‘elite’ solutions E
(line 17). This process is repeated while the termination criterion is not met. On this reduced set of
solutions, qlong Monte Carlo simulation runs are performed (line 23) in order to generate more accurate
results for solutions in stochastic environments. During the simulation process we also obtain an
estimate of the reliability rate of a solution [64]. This estimate is computed as the rate at which all
routes show completion times lower than the maximum allowed travel time. At the end, the set of elite
solutions is sorted in descending order of their expected cost (line 25), and the best-found stochastic
solution is provided to the manager.

Algorithm 3: SimBRLH.
Data: set of nodes V, geometric distribution parameter β, acceptance margin m, number of short

simulations qshort, number of long simulations qlong, log normal distribution parameters µ and σ,
maximum number of iterations maxiter

1 baseSol ← BRLH (V, 1.0);
2 simulation (baseSol, qshort, µ, σ);
3 bestCostd ← baseSol.getDeterministicCost();
4 bestCosts ← baseSol.getStochasticCost();
5 niter ← 0;
6 while niter < maxiter do
7 sol ← BRLH (V, β);
8 costd ← sol.getDeterministicCost();
9 if costd < bestCostd + bestCostd ×m then

10 simulation (sol, qshort, µ, σ);
11 costs ← sol.getStochasticCost();
12 if costd < bestCostd then
13 bestCostd ← costd;
14 end
15 if costs < bestCosts then
16 bestCosts ← costs;
17 E← E ∪ {sol};
18 end

19 end
20 niter ← niter + 1;

21 end
22 foreach sol ∈ E do
23 simulation (sol, qlong, µ, σ);
24 end
25 E← sort (E);
26 bestStochSol ← E.get(0);
27 return bestStochSol
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5. Results and Discussion

To test the proposed methodologies, we have used the 60 problem instances introduced
in Abdulkader et al. [1]. These instances differ in the number of retail centers (r ∈ {10, 15, 20, 25}),
online customers (c ∈ {20, 50, 75, 100, 150}), and also in the inventory scenarios of the retail centers
(tight, relaxed, and abundant). Therefore, for each inventory scenario, 20 different problem
combinations are generated. The maximum tour length of the routes and the vehicle capacity are
set to 8 h and 100 weight units, respectively. While the BRLH is guided by a single parameter,
β, the simheuristic approach is also controlled by the maximum running time timemax, the acceptance
margin of worst solutions m, and the number, qshort and qlong, of simulation repeats in short and long
simulation runs, respectively. The stochastic travel times for each edge are set by the log-normal
distribution parameters, µ and σ.

Table 2 summarizes the setup of the parameters employed during the computational experiments.
For calibrating these parameters, we have used the methodology proposed in Calvet et al. [65], which is
based on a general and automated statistical learning procedure. Regarding the maximum run time
timemax, the value was set depending on the size of the instance (c + r) × 0.342, which leads to a
maximum execution time of 60 s in the case of the largest instance. This stopping criterion is employed
in both the multi-start and simheuristic strategies.

The algorithms were coded in Java and all tests were performed on an Intel Core i7-8550U
processor with 16 GB of RAM.

Table 2. Parameter setup.

β m µ σ qshort qlong timemax

[0.45, 0.75] 20% 0 {1.55, 1.9, 2.5} 100 1000 (r + c)× 0.342

Note that three different values have been considered for the σ parameter, which is used to modify
the deterministic travel times. Since the maximum tour length is fixed independently of the size
of the instances, small-sized instances are more likely to generate short routes. Therefore, a larger
value for σ introduces more variability in the travel times, which increases route failure rates. On the
other hand, large-sized instances are often composed of larger routes, then a small value for σ is
introduced. In particular we have, σ = 2.5 for small instances (composed of 25 customers), σ = 1.55
for large instances (composed of 150 customers), and σ = 1.9 for the remaining medium-sized ones.
This approach ensures that small, medium, and large instances each have similar levels of difficulty
with respect to the risk of route failure.

The initial analysis aims to compare the solutions generated by our greedy heuristic (LH) and by
our MSBRLH–in which β is (uniformly) randomly selected in the interval [0.45, 0.75]–with the solutions
obtained by the two-phase heuristic (AH) and multi-ant colony metaheuristic (MAC) proposed
by Abdulkader et al. [1]. Their methodologies were performed on four 2.1 GHz processors with 16-cores
each and a total of 256 GB RAM. That is, we initially focus on comparing each algorithm in terms
of deterministic travel cost. Tables 3–5 present the results obtained for tight, relaxed, and abundant
inventory scenarios, respectively. For each problem instance (I), we present results for: the cost of the
best-found solution obtained by the different methodologies; the average cost of our MSBRLH; the CPU
time (in seconds) required by each methodology; and their percentage gaps. The best results returned
by the solution methodologies are highlighted in bold. Figures 4 and 5 present how both the gap and
the cost of the solutions, i.e., the objective function (OF) value, behave according to the employed
solution approach and inventory scenario, respectively.
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Table 3. Comparison of the results obtained by our methodologies (LH and MSBRLH) with those
obtained by Abdulkader et al. [1]’s methods (AH and MAC) in the tight inventory scenario.

I |R| |C| 1 2 3 4 Avg. Cost Time (sec.) Gap

LH MSBRLH AH MAC (2) (1) (2) (3) (4) (1)–(2) (3)–(2) (4)–(2)

b1 10 25 1277.5 1110.9 1631.6 1002.5 1119.6 0 7 0 7 −13% −32% 11%
b2 10 50 1641.1 1378.2 2057.5 1192.0 1392.0 0 8 0 47 −16% −33% 16%
b3 10 75 2663.7 2437.2 3006.2 1815.4 2450.7 0 25 0 79 −9% −19% 34%
b4 10 100 2415.1 1930.3 2830.2 1529.0 1980.7 0 15 0 286 −20% −32% 26%
b5 10 150 2678.2 2395.3 3478.7 1905.2 2408.9 0 38 0 576 −11% −31% 26%
b6 15 25 1540.5 1389.4 1774.4 1313.7 1400.6 0 4 0 7 −10% −22% 6%
b7 15 50 2059.0 1769.3 2461.8 1522.3 1803.7 0 0 0 44 −14% −28% 16%
b8 15 75 3105.3 2620.5 3545.1 2101.8 2630.3 0 6 0 131 −16% −26% 25%
b9 15 100 3121.5 2836.9 3529.0 2329.5 2860.5 0 1 0 209 −9% −20% 22%

b10 15 150 4292.4 3787.2 4916.8 3012.2 3797.4 0 45 0 430 −12% −23% 26%
b11 20 25 2035.2 1817.1 2432.6 1611.3 1838.4 0 10 0 11 −11% −25% 13%
b12 20 50 2335.4 2109.1 2695.3 1800.9 2112.8 0 1 0 50 −10% −22% 17%
b13 20 75 3212.7 2765.1 3936.7 2406.0 2796.2 0 12 0 127 −14% −30% 15%
b14 20 100 3025.2 2842.7 3826.1 2483.8 2881.4 0 20 0 327 −6% −26% 14%
b15 20 150 3934.3 3308.0 4496.1 2679.2 3332.1 0 50 0 708 −16% −26% 23%
b16 25 25 2019.4 1847.2 2254.9 1669.6 1858.0 0 8 0 13 −9% −18% 11%
b17 25 50 2665.9 2434.8 3020.8 1965.6 2442.8 0 17 0 46 −9% −19% 24%
b18 25 75 3207.6 2853.4 3963.5 2449.8 2885.8 0 18 0 136 −11% −28% 16%
b19 25 100 4064.0 3551.0 4933.9 2788.5 3588.7 0 42 0 257 −13% −28% 27%
b20 25 150 3782.7 3512.8 4721.3 2890.3 3525.5 0 17 0 712 −7% −26% 22%

Average 0 17 0 210 −12% −26% 19%

Table 4. Comparison of the results obtained by our methodologies (LH and MSBRLH) with those
obtained by Abdulkader et al. [1]’s methods (AH and MAC) in the relaxed inventory scenario.

I |R| |C| 1 2 3 4 Avg. Cost Time (sec.) Gap

LH MSBRLH AH MAC (2) (1) (2) (3) (4) (1)–(2) (3)–(2) (4)–(2)

b21 10 25 1233.0 1030.0 1571.6 879.2 1048.9 0 5 0 10 −16% −34% 17%
b22 10 50 1490.8 1275.7 1920.6 1083.7 1293.9 0 4 0 85 −14% −34% 18%
b23 10 75 2468.0 2021.9 2699.2 1591.5 2049.5 0 18 0 167 −18% −25% 27%
b24 10 100 1885.0 1632.2 2305.1 1437.7 1645.3 0 7 0 528 −13% −29% 14%
b25 10 150 1998.6 1980.4 2700.4 1520.5 1981.8 0 39 0 1836 −1% −27% 30%
b26 15 25 1591.4 1268.0 1665.2 1180.8 1308.9 0 4 0 11 −20% −24% 7%
b27 15 50 1940.7 1652.1 2320.7 1329.3 1660.9 0 9 0 73 −15% −29% 24%
b28 15 75 2436.3 2101.7 3016.5 1692.4 2160.4 0 3 0 279 −14% −30% 24%
b29 15 100 2648.3 2395.4 3302.4 2016.4 2412.5 0 25 0 567 −10% −27% 19%
b30 15 150 3373.2 2819.0 3919.0 2399.6 2847.6 0 18 0 1407 −16% −28% 17%
b31 20 25 1835.5 1679.1 1993.5 1495.8 1682.7 0 11 0 16 −9% −16% 12%
b32 20 50 2320.5 1960.7 2713.0 1656.9 1965.7 0 6 0 76 −16% −28% 18%
b33 20 75 2404.6 2267.2 3393.3 1799.6 2269.8 0 28 0 262 −6% −33% 26%
b34 20 100 2751.9 2469.3 3127.5 2018.5 2490.6 0 34 0 740 −10% −21% 22%
b35 20 150 3157.4 2818.0 3742.2 2291.0 2824.5 0 32 0 2141 −11% −25% 23%
b36 25 25 1844.0 1683.7 2032.1 1550.0 1700.9 0 13 0 15 −9% −17% 9%
b37 25 50 2663.9 2322.3 3130.5 1939.5 2357.5 0 22 0 73 −13% −26% 20%
b38 25 75 2790.7 2559.7 3433.2 2088.6 2569.7 0 30 0 283 −8% −25% 23%
b39 25 100 3352.9 3038.1 3824.5 2244.1 3053.6 0 27 0 656 −9% −21% 35%
b40 25 150 2971.1 2830.6 3447.9 2229.4 2837.7 0 37 0 2077 −5% −18% 27%

Average 0 19 0 565 −12% −26% 21%
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Table 5. Comparison of the results obtained by our methodologies (LH and MSBRLH) with those
obtained by Abdulkader et al. [1]’s methods (AH and MAC) in the abundant inventory scenario.

I |R| |C| 1 2 3 4 Avg. Cost Time (sec.) Gap

LH MSBRLH AH MAC (2) (1) (2) (3) (4) (1)–(2) (3)–(2) (4)–(2)

b41 10 25 805.4 760.5 897.6 711.3 760.5 0 1 0 16 −6% −15% 7%
b42 10 50 1014.2 870.4 1287.8 875.2 871.2 0 8 0 143 −14% −32% −1%
b43 10 75 1463.5 1259.6 1531.1 1132.1 1266.4 0 9 0 358 −14% −18% 11%
b44 10 100 1379.4 1284.9 1636.5 1224.1 1294.1 0 30 0 978 −7% −21% 5%
b45 10 150 1499.3 1364.3 1551.8 1273.9 1385.3 0 43 0 2085 −9% −12% 7%
b46 15 25 1137.5 1024.3 1264.3 996.9 1028.8 0 6 0 22 −10% −19% 3%
b47 15 50 1247.6 1135.1 1488.1 1080.3 1141.0 0 17 0 159 −9% −24% 5%
b48 15 75 1595.3 1355.2 1815.2 1252.4 1361.2 0 17 0 559 −15% −25% 8%
b49 15 100 2021.3 1777.8 2242.4 1594.0 1798.9 0 24 0 1167 −12% −21% 12%
b50 15 150 2059.6 1869.2 2459.5 1691.4 1873.6 0 26 0 4126 −9% −24% 11%
b51 20 25 1507.2 1414.7 1660.9 1302.9 1418.2 0 11 0 33 −6% −15% 9%
b52 20 50 1464.7 1366.8 1740.7 1301.0 1368.4 0 7 0 156 −7% −21% 5%
b53 20 75 1797.7 1591.5 2096.8 1421.8 1599.7 0 18 0 605 −11% −24% 12%
b54 20 100 2066.2 1881.8 2226.4 1640.6 1883.9 0 23 0 1370 −9% −15% 15%
b55 20 150 2214.0 2025.1 2518.2 1763.3 2030.0 0 52 0 5321 −9% −20% 15%
b56 25 25 1423.2 1368.1 1550.7 1311.6 1372.3 0 7 0 36 −4% −12% 4%
b57 25 50 1670.8 1559.7 1835.4 1468.1 1570.2 0 11 0 203 −7% −15% 6%
b58 25 75 2047.5 1845.3 2276.9 1654.9 1847.5 0 7 0 791 −10% −19% 12%
b59 25 100 1856.4 1797.8 2061.9 1575.7 1801.0 0 15 0 1262 −3% −13% 14%
b60 25 150 1968.1 1837.3 2347.8 1653.3 1849.1 0 60 0 4549 −7% −22% 11%

Average 0 19 0 1197 −9% −19% 9%
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Figure 4. Gap between our best-found solutions (from MSBRLH) and the MAC’s results, for each
inventory scenario.
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Figure 5. Comparison of the solutions cost (OF value) from each solving approach, for each
inventory scenario.

By analyzing Tables 3–5, we can observe that our MSBRLH algorithm is able to improve previous
results (from LH) by 9–12%, on average (column gap (2)–(1)). When comparing the MSBRLH with
the AH heuristic (column gap (3)–(2)), our approach is able to reduce solution costs by up to 26%
in short computational times (about 18 s on average). On the other hand, when comparing our
results with those generated by the MAC approach (column gap (4)–(2)), our solutions are between
9% and 21% worse, on average. Particularly, in the abundant inventory scenario, MSBRLH’s results are
only 9% worse than MAC. Notice, however, that the processing time required by MAC is substantially
larger in all inventory scenarios. By analyzing Figure 4, it is evident that MSBRLH performs better
in the abundant inventory scenario, being able to find one better solution and several others with
a maximum gap of 8%. Moreover, we can observe a variability of around 10% in the gap between
MSBRLH and MAC on average. This variability is reduced to around 8% for the relaxed and abundant
scenarios. These results demonstrate the robustness of our solution approach for the deterministic case.
When analyzing Figure 5, which presents the overall performance of each solution approach for each
inventory scenario, we can observe that our multi-start strategy is more efficient than both LH and AH
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heuristics, by generating solutions with a lower cost. To complement these box-plots, an ANOVA test
was run for each inventory scenario. The p-values associated with the tight, relaxed, and abundant
inventory scenarios were, respectively, of 0.001, 0.000, and 0.000. Also, the Fisher’s LSD test suggests
significant differences in all tree scenarios between MAC and AH, between MS-BRLH and AH, as well
as between MAC and LH. However, cost differences between MAC and MS-BRLH were not significant
in any scenario, despite the fact that MAC employed a noticeably higher amount of computing time
than MS-BRLH.

Next, in Figure 6, we present the convergence of three problem instances’ solutions, including one
from each different inventory scenario (instances b6, b26, and b46), by comparing the MSBRLH with the
best-known solutions, in terms of gap. As introduced, these instances require approximately 15 s of
processing time, given their magnitude.

Figure 6. Comparison between MSBRLH and MAC on solving large-sized instances.

As we can see in Figure 6, the instances demonstrate the same convergence behavior as solution
time increases. It is noticeable that the convergence rate is abrupt during the first few seconds. However,
contrary to the tight and relaxed inventory scenarios, where the solutions continue improving over
time, the search demonstrates more stable convergence during the remaining execution time in the
abundant scenario. Being more efficient in the more flexible inventory case, our multi-start approach
quickly achieves its best solutions.

Next, we want to compare the quality of the solutions generated for the deterministic scenario
(MSBRLH) against the solutions generated for the stochastic scenario (SimBRLH). Since the only
difference between the deterministic and stochastic scenarios is that stochastic delays are added
to edge traversal times, we can consider the deterministic cost of the best solutions generated by
MSBRLH as a lower bound (LB) of the stochastic travel times of the best SimBRLH solution. Moreover,
since MSBRLH does not account for stochastic travel times, we can consider the stochastic travel time of
the best MSBRLH solution as an upper bound (UB) for the stochastic travel time of the best SimBRLH

solutions. Table 6 provides both LBs and UBs values and the best-found stochastic travel times
obtained by our SimBRLH. The solutions reported in the SimBRLH column are the best-found stochastic
travel times.
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Table 6. Analysis of the results obtained by our SimBRLH on scenarios of tight, relaxed and
abundant inventory.

I Tight Inventory I Relaxed Inventory I Abundant Inventory

LB SimBRLH UB LB SimBRLH UB LB SimBRLH UB

b1 1110.9 2164.5 2167.0 b21 1030.0 2096.3 2154.6 b41 760.5 1731.0 1858.7
b2 1378.2 2084.7 2084.7 b22 1275.7 1996.6 1996.6 b42 870.4 1574.1 1636.8
b3 2437.2 3465.3 3465.3 b23 2021.9 3043.9 3043.9 b43 1259.6 2239.4 2239.4
b4 1930.3 3184.3 3184.3 b24 1632.2 2891.1 2989.5 b44 1284.9 2553.4 2553.4
b5 2395.3 3790.2 3790.2 b25 1980.4 3363.6 3363.6 b45 1364.3 2753.9 2753.9
b6 1389.4 2628.3 2775.6 b26 1268.0 2487.9 2487.9 b46 1024.3 2269.2 2269.2
b7 1769.3 2544.9 2544.9 b27 1652.1 2446.5 2446.5 b47 1135.1 1919.3 1944.4
b8 2620.5 3715.6 3715.6 b28 2101.7 3178.6 3178.6 b48 1355.2 2420.6 2442.4
b9 2836.9 4209.9 4209.9 b29 2395.4 3725.6 3725.6 b49 1777.8 3138.7 3146.9
b10 3787.2 5258.7 5258.7 b30 2819.0 4269.7 4269.7 b50 1869.2 3308.8 3312.6
b11 1817.1 3261.5 3401.5 b31 1679.1 3099.3 3099.3 b51 1414.7 2814.0 3095.4
b12 2109.1 2978.8 2983.5 b32 1960.7 2819.4 2832.9 b52 1366.8 2233.4 2250.7
b13 2765.1 3917.1 3917.1 b33 2267.2 3412.4 3412.4 b53 1591.5 2732.9 2732.9
b14 2842.7 4312.3 4312.3 b34 2469.3 3891.5 3914.8 b54 1881.8 3289.1 3304.1
b15 3308.0 4813.7 4813.7 b35 2818.0 4311.4 4311.4 b55 2025.1 3510.5 3510.5
b16 1847.2 3460.4 3591.2 b36 1683.7 3267.0 3273.6 b56 1368.1 2944.6 3180.0
b17 2434.8 3377.2 3393.7 b37 2322.3 3266.1 3268.6 b57 1559.7 2497.4 2497.4
b18 2853.4 4082.6 4082.6 b38 2559.7 3782.0 3788.0 b58 1845.3 3065.6 3065.6
b19 3551.0 5039.2 5039.2 b39 3038.1 4548.9 4548.9 b59 1797.8 3287.3 3287.3
b20 3512.8 5088.2 5088.2 b40 2830.6 4384.5 4385.9 b60 1837.3 3380.0 3380.0

As we can see in Table 6, all the SimBRLH solution costs are between the LB and the UB, as expected.
For 24 problem instances, the solution returned by our simheuristic is better than the best deterministic
solution when it is tested in the stochastic scenario (the UB column). From this, we can assert that
our SimBRLH is able to generate competitive results for the stochastic scenario. The reliability value is
calculated by simulation for each solution and represents the probability that all routes are completed
within maximum tour duration. For visualizing this trade-off between the deterministic cost of the
solutions and their reliability rate, which are conflicting objectives, a Pareto frontier of non-dominated
is presented. Accordingly, Figure 7a–c present the non-dominated solutions for three different instances
(b17, b37, and b57), each one belonging to a different inventory scenario. A solution is non-dominated
if, no other solution has a greater reliability and a lower or equal travel cost, or if no other solution
has a lower travel cost and a greater or equal reliability level. The b17 solution was randomly chosen,
while the b37 and b57 solutions are for the same problem but set in the two other inventory scenarios.
The square orange dot represents the best deterministic solution found by our MSBRLH, while the
remaining ones, round and blue, represent different solutions with a higher reliability rate, but with
higher operating costs.

As we can see in Figure 7, despite being the solutions with the lowest cost, the best deterministic
solutions (square dots) are the least reliable ones for stochastic scenarios. Particularly in Figure 7a,
the best deterministic solution is approximately only 21% reliable under stochasticity. By selecting
higher-cost solutions, the reliability rate reaches more than 70%. The same behavior is noticed in
Figure 7b,c, however, the deterministic b57 solution is reasonably reliable. Usually, low-cost solutions
are made up of a small number of large vehicle routes, in terms of travel distance and time. Therefore,
when increasing the travel time variability in those scenarios, the risk of exceeding the time constraint
is higher. On the other hand, higher cost solutions are built from a larger number of smaller routes,
and smaller routes exhibit a lower risk of violating the maximum tour duration constraint in stochastic
scenarios. In this way, decision-makers should consider that low-cost solutions under deterministic
scenarios might not necessarily be the best option when stochasticity is taken into account.
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Figure 7. Set of non-dominated solutions of problem instances b17 (a), b37 (b) and b57 (c).
(a) Non-dominated solutions for problem instance b17 (tight inventory). (b) Non-dominated solutions
for problem instance b37 (relaxed inventory). (c) Non-dominated solutions for problem instance b57
(abundant inventory).

6. Conclusions and Future Work

With the emergence of online retail channels and the popularization of mobile devices,
new retailing modes have become popular. Some of these retailing practices allow customers to
browse through different online stores and, then, to get the items bought directly delivered to their
homes. Hence, new versions of the vehicle routing problem (VRP) considering additional decision
variables and constraints have emerged. Omnichannel retailing leads to an integrated problem
combining the VRP and the pick-up and delivery problem. In omnichannel distribution systems, a set
of retail stores need to be replenished and, at the same time, products have to be sent from these stores
to final customers. The resulting omnichannel VRP consists in two stages: (i) a group of retail stores
that must be served from a distribution center; and (ii) a set of online consumers who must be served,
by the same fleet of cargo vehicles, from these retail stores.

For solving the deterministic OM-VRP, a simple heuristic was initially introduced. This heuristic
was then extended into a multi-start biased-randomized algorithm, which is tested against the
state-of-the-art methodologies. Our biased-randomized algorithm performs reasonably well in a
set of 60 instances of the deterministic OM-VRP, which allows us to extend it into a full simheuristic
for solving the stochastic version of the problem. This is a more realistic version of the OM-VRP where
travel times are modeled as random variables following a log-normal distribution. Our simheuristic
approach is also capable of measuring the reliability of any proposed solution when it is employed in a
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stochastic scenario. To the best of our knowledge, this is the first time that such a stochastic variant of
the problem has been solved in the literature. Regarding the simheuristic results, we conclude that the
best deterministic solutions may perform badly when used in a stochastic scenario. Those solutions
are often not reliable in terms of completing all routes within a time limit. On the other hand,
our simheuristic approach was able to generate reliable and competitive results for these stochastic
scenarios. Therefore, our methodology enables decision makers to choose the solution that better fits
his or her utility function in terms of cost and reliability level.

Two-echelon distribution systems, as the one considered here, are typically characterized by the
use of different fleets of vehicles at each distribution level. Apart from considering a single fleet of
vehicles for serving both delivery levels, the products ordered by customers were assumed to not
affect the vehicles’ capacity. Therefore, future directions of research include the consideration of
non-negligible sized online customer orders, heterogeneous vehicle fleets, and the incorporation of
positive demands for multiple product types for each customer. Regarding the solution approach,
different perturbation stages and local search operators could be tested in order to speed up the
convergence process towards near-optimal solutions. This might be particularly relevant when
considering large-sized instances.
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