
algorithms

Article

A Mixed-Integer and Asynchronous Level
Decomposition with Application to the Stochastic
Hydrothermal Unit-Commitment Problem

Bruno Colonetti 1,*, Erlon Cristian Finardi 1,2 and Welington de Oliveira 3,*
1 Department of Electrical and Electronic Engineering, Federal University of Santa Catarina,

Florianópolis 88040-900, Brazil; erlon.finardi@ufsc.br
2 INESC P&D Brasil, Bairro Gonzaga 11055-300, Brazil
3 MINES ParisTech, CMA—Centre de Mathématiques Appliquées, PSL—Research University,

Sophia Antipolis, 75006 Paris, France
* Correspondence: colonetti.bruno@posgrad.ufsc.br (B.C.); welington.oliveira@mines-paristech.fr (W.d.O.)

Received: 3 August 2020; Accepted: 14 September 2020; Published: 18 September 2020
����������
�������

Abstract: Independent System Operators (ISOs) worldwide face the ever-increasing challenge of
coping with uncertainties, which requires sophisticated algorithms for solving unit-commitment (UC)
problems of increasing complexity in less-and-less time. Hence, decomposition methods are appealing
options to produce easier-to-handle problems that can hopefully return good solutions at reasonable
times. When applied to two-stage stochastic models, decomposition often yields subproblems
that are embarrassingly parallel. Synchronous parallel-computing techniques are applied to the
decomposable subproblem and frequently result in considerable time savings. However, due to the
inherent run-time differences amongst the subproblem’s optimization models, unequal equipment,
and communication overheads, synchronous approaches may underuse the computing resources.
Consequently, asynchronous computing constitutes a natural enhancement to existing methods.
In this work, we propose a novel extension of the asynchronous level decomposition to solve
stochastic hydrothermal UC problems with mixed-integer variables in the first stage. In addition,
we combine this novel method with an efficient task allocation to yield an innovative algorithm that
far outperforms the current state-of-the-art. We provide convergence analysis of our proposal and
assess its computational performance on a testbed consisting of 54 problems from a 46-bus system.
Results show that our asynchronous algorithm outperforms its synchronous counterpart in terms of
wall-clock computing time in 40% of the problems, providing time savings averaging about 45%,
while also reducing the standard deviation of running times over the testbed in the order of 25%.

Keywords: stochastic programming; stochastic hydrothermal UC problem; parallel computing;
asynchronous computing; level decomposition

1. Introduction

The unit-commitment (UC) problem aims at determining the optimal scheduling of generating
units to minimize costs or maximize revenues while satisfying local and system-wide constraints [1].
In its deterministic form, UC still poses a challenge to operators and researchers due to the large
sizes of the systems and the increasing modeling details necessary to represent the system operation.
For instance, in the Brazilian case, the current practice is to set a limit of 2 h for the solution of the
deterministic UC [2], while the Midcontinent Independent System Operator (MISO) sets a time limit
of 20 min for its UC [3]. (Note that the Brazilian system and the MISO are different from a physical,
as well as from a market-based, viewpoint, but the problems being solved in these two cases share the
same classical concept of the UC.) Nonetheless, the growing presence of intermittent generation has

Algorithms 2020, 13, 235; doi:10.3390/a13090235 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-9181-0097
http://dx.doi.org/10.3390/a13090235
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/9/235?type=check_update&version=2

Algorithms 2020, 13, 235 2 of 16

added yet more difficulty to the problem, giving rise to what is called uncertain UC [4]. The latter
is considerably harder to solve than its deterministic counterpart, and one of the reasons for its lack
of adoption in the industry is precisely its computational burden: Large-scale uncertain UC takes a
prohibitively long time to be solved. In this context, efficient solution methods for the uncertain UC
that can take full advantage of the computational resources at hand are both desirable and necessary to
help system operators cope with uncertain resources.

In particular, to model the uncertainty arising from renewable sources, one of two approaches
is generally employed: robust optimization or stochastic programming [4]. The latter is by far the
most employed, both in its chance-constrained and recourse variants. In stochastic programs with
recourse, uncertainty is, in general, represented by finite-many scenarios, and the problem is formulated
either in a two-stage or multistage setting. In two-stage stochastic problems, the first-stage variables
must be decided before uncertainty is revealed. Once the uncertain information becomes known,
recourse actions are taken to best accommodate the first-stage decisions [5]. In stochastic hydrothermal
unit-commitment (SHTUC) problems, the sources of uncertainties are related to renewable resources,
spot prices, load, and equipment availability [1,4].

The commitment decisions are usually modeled as first-stage variables, while dispatch decisions are
the recourse actions (second-stage variables). Given the mixed-integer nature of commitment decisions,
SHTUC problems in a two-stage formulation give rise to large-scale mixed-integer optimization models
whose numerical solution by off-the-shelf solvers is often prohibitive due to time requirements or
limited computing resources. Consequently, decomposition techniques must come into play [1,4,6,7].
Benders decomposition (BD) and Lagrangian relaxation (LR) are the most used techniques to handle
SHTUC problems. While the BD deals with the primal problem [8], LR is a dual procedure employed to
compute the best lower bound for the SHTUC problem [7,9]. Primal-recovery heuristics are employed
to compute primal-feasible points, which are not, in general, optimal solutions. This is the main
shortcoming of LR-based techniques.

Decomposition techniques yield models that are amenable for parallelization [5]. A common
strategy for solving problems simultaneously is to use a master/worker framework with pre-specified
synchronization points [10], which we call synchronous computing (SYN). In this framework, the master
chooses new iterates and sends them to workers, who, in turn, are responsible for solving one or more
subproblems. Examples of SYN implementations for UC are given in [11–14]. An aspect of SYN is
that, at predetermined points of the algorithm, the master must wait for all workers to respond to
resume the iterative process: the synchronization points. However, the times for workers to finish their
respective tasks might vary significantly. This results in idle times, both for the master and for workers
who respond quickly [10]. One way to reduce idle times is to use asynchronous computing (ASYN).

In contrast to SYN, in ASYN, there are no synchronization points, so the master and workers do
not need to wait until all workers respond to continue their operations. Thus, in an iterative process,
e.g., in BD, the master would compute the next iterate based on information of possibly only a proper,
but nonempty, subset of the workers. Based on this possibly incomplete information, the master sends
a new iterate to available workers, while slower workers are still carrying their tasks on an outdated
iterate. Because in ASYN iterates might not be evaluated by all workers, the evaluation of the objective
function (yielding bounds on the optimal values) is precluded. Hence, a fundamental step in ASYN is
the (scarce) coordination of workers to produce valid bounds.

ASYN implementations have been proposed in the UC literature mainly to solve the dual
problems (issued by LRs) via either subgradient algorithms or cutting-plane-based methods [15–17].
In References [15,16], a queue of iterates is created and its elements are gradually sent to the workers.
Auxiliary lists keep track of the evaluation status of each worker with respect tothe elements in
the queue. Once an element has been evaluated by all workers, a valid bound to the original
problem is available. The authors of Reference [15] demonstrate that their algorithm converges to
a dual global solution regardless of the iterate-selection policy used to choose the iterates from the
queue—first-in-first-out or last-in-first-out. In References [17], the authors keep a list of all the iterates

Algorithms 2020, 13, 235 3 of 16

to compute valid bounds. In addition to solving the dual problem asynchronously, Reference [17] also
conducts the primal recovery asynchronously. While References [15,16] employ a convex trust-region
bundle method, Reference [17] implements an incremental subgradient method. Asynchronous
implementations of BD for convex problems can be found in References [18–20]. In Reference [18],
the dual dynamic-programming algorithm is handled asynchronously in a hydrothermal scheduling
problem. In Reference [19], the stochastic dual dynamic-programming algorithm is used for addressing
the long-term planning problem of a hydro-dominated system: The authors propose to compute
Benders cuts in an asynchronous fashion. This is also the case in Reference [20], where the authors
consider an asynchronous Benders decomposition for convex multistage stochastic programming.

Despite being successfully applied in a variety of fields, e.g., References [18,19] and the references
in References [21], the classical BD is well-known to suffer from slow convergence due to the oscillatory
nature of Kelley’s cutting-plane method [22,23]. Regularized BDs have been proven to outperform
the classical one in several problems: See Reference [24] for (convex) two-stage linear programming,
Reference [25] for (nonconvex) chance-constrained problems, and Reference [26] for robust designed
of stations in water distribution networks. Several types of regularization exist [25,27,28]: proximal,
trust-region, and level sets. Among the regularization methods, the level bundle method [29], also known
as level decomposition (LD) in two-stage programming [24], stands out for its flexibility in dealing
with convex or nonconvex feasible sets, stability functions and centers, and inexact oracles [25,26,30].
Recently, asymptotically level bundle methods for convex optimization were proposed in Reference [31].
The paper presents two algorithms. The first one does not employ coordination, but it makes use
of upper bounds on the Lipschitz constants of the involved functions to compute upper bounds for
the problem. The second algorithm does not make use of the latter assumption but requires scarce
coordination. The authors of Reference [31] focus on the convergence analysis of their proposals
(suitable only for the convex setting) and present limited numerical experiments. In this work, we build
on Reference [31] and extend its asynchronous algorithm with scarce coordination (Algorithm 3 of
Reference [31]) to the mixed-integer setting. Moreover, we consider a more general setting in which
tasks can be assigned to works in a dynamic fashion, as described in Section 3. We highlight that the
convergence analysis given in Reference [31] relies strongly on elements of convex analysis such as the
Smulian’s theorem and the Painlevé–Kuratowski set convergence. Such key theoretical results are
no longer valid in the setting of nonconvex sets, and hence the convergence analysis developed in
Reference [31] does not apply to our mixed-integer setting. For this reason, the convergence analysis of
our asynchronous LD must be done anew. We not only provide convergence analysis of our method
but also assess its numerical performance on a test set consisting of 54 instances of two-stage UC
problems with mixed-integer variables in the first stage.

We care to mention that other asynchronous bundle methods exist in the literature, but they are all
designed for convex optimization problems [15,16,32]. The latter reference proposes an asynchronous
proximal bundle method, whereas References [15,16] consider a trust-region variant for polyhedral
functions. Our approach, which follows the lines of the extended level bundle method of Reference [30],
does not require the involved functions to be polyhedral or the feasible set to be convex. As an
additional advantage, our algorithm is easily implementable.

This work is organized as follows. Section 2 presents a generic formulation of our two-stage
SHTUC problem. The extended asynchronous LD and its convergence analysis are presented in
Sections 2.1 and 2.2, respectively. Section 3 presents more details of the considered SHTUC problem
and states our case studies. Numerical experiments assessing the benefits of our proposal are given in
Section 4. Finally, in Section 5, we present our final remarks.

2. Materials and Methods

We address the problem of an Independent System Operator (ISO) in a hydro-dominated system
with a loose-pool market framework. The ISO decides the day-ahead commitment considering operation
costs, forecast errors in wind generation, and inflows; and the usual generation and system-wide

Algorithms 2020, 13, 235 4 of 16

constraints. The uncertainties in wind and inflows are represented by a finite set of scenarios, S,
and the decisions are made in two stages. At the first stage, the ISO decides on the commitment of units,
whereas, at the second stage, the operator determines the dispatch according to the random-variable
realization. Full details on the considered stochastic hydrothermal unit-commitment (SHTUC) are
given shortly. For presenting our approach, which is not limited to (stochastic) unit-commitment (UC)
problems, we adopt the following generic formulation.

f∗ := min
x,y

cTx +
∑
s∈S

qT
s ys

∣∣∣∣∣∣ x ∈ X, Tx + Wys ≤ hs,
ys ∈ Ys, s ∈ S

. (1)

In this formulation, the n-dimensional vector x represents the first-stage variables with associated
cost-vector, c. The second-stage variables, ys, and their associated costs, qs, depend on the scenario,
s ∈ S. The cost vector, qs, is assumed to incorporate the positive probability of scenario s. The first-
and second-stage variables are coupled by constraints Tx + Wys ≤ hs: T is the technology matrix; and
W and hs are, respectively, the recourse matrix and a vector of appropriate dimensions. While X , ∅
is a compact possibly nonconvex, the scenario-dependent setYs is a convex polyhedron.

As previously mentioned, depending on the UC problem and number of scenarios, the mixed-integer
linear programming (MILP) Problem (1) cannot be solved directly by an off-the-shelf solver. The problem
is thus decomposed by making use of the recourse functions.

Qs(x) := min
y∈Ys

qT
s y s.t. Wsy ≤ hs −Tsx. (2)

It is well-known that x 7→ Qs(x) is a non-smooth convex function of x. If the above subproblem
has a solution, then a subgradient of Qs at x can be computed by making use of a Lagrange multiplier,
πs, associated with a constraint, Wsys ≤ hs −Tsx: −TT

s πs ∈ ∂Qs(x). On the other hand, if the recourse
function Qs is infeasible, then the point x can be cutoff by adding a feasibility cut [5].

Let P be a partition of S into w subsets: P = {P1, . . . , Pw}, with Pj , ∅ for all j ∈ {1, . . . ,w},
and Pj ∩ Pi = ∅ for i , j. By defining f j(x) :=

∑
s∈Pj

Qs(x), Problem (1) can be rewritten as

f∗ = min
x∈X

cTx + f 1(x) + . . .+ f w(x). (3)

In our notation, w stands for the number of workers evaluating the recourse functions. The workers
j ∈ {1, . . . ,w} are processes running on a single machine or multiple machines. Likewise, we define
a master process—hereafter referred to only as master—to solve the master program (which is
defined shortly).

2.1. The Mixed-Integer and Asynchronous Level Decomposition

For every point xk, where k represents an iteration counter, worker j receives xk and provides us
with the first-order information on the component function f j: the value of the function f j(xk) and a
subgradient [23] gj

k ∈ ∂ f j(xk), in the two-stage setting, gj
k := −

∑
s∈P j

TT
sπs. Convexity of f j implies that

the linearization f j(xk) + 〈g
j
k, x− xk〉 approximates f j(x) from below for all x. By gathering iteration

indices into sets Jj
⊂ {1, 2, . . . , k} along with the iterations at which f j were evaluated, we can construct

individual cutting-plane models for functions f j, with j ∈ {1, . . . ,w}:mini∈Jj { f j(xk) + 〈g
j
k, x− xk〉} ≤ f j(x).

These models define—together with a stability center x̂k, a level parameter flev
k ∈ <, and a given norm

‖·‖2—the following master program (MP)

min
x,r

‖x− x̂k‖2

s.t. possible feasibility cuts
f j(xi) + 〈g

j
i, x− xi〉 ≤ rj, ∀i ∈ Jj

k,∀j = 1, . . . , w

cTx +
w∑

j=1
rj ≤ flev

k , x ∈ X.

(4)

Algorithms 2020, 13, 235 5 of 16

At iteration k, an MP solution is denoted by xk+1. If any Qs is infeasible at xk+1, then a feasibility
cut is added to the MP. We skip further details on this matter, since it is a well-known subject in the
literature of two-stage programming [5]. On the other hand, if xk+1 (sent to a work j) is feasible for all
recourse functions, Qs, the model f j in the MP is updated. The improvement in the model f j is possibly
based on outdated iterate xa(j), where a(j) < k is the iteration index of the anterior information provided
by worker j. We care to mention that the MP can be infeasible itself depending on the level parameter
flev
k . Due to the convexity of the involved functions, if the MP is infeasible, then flev

k is a valid lower
bound, f low

k , on f * [30].
Without coordination, there is no reason for all workers to be called upon the same iterate. This fact

precludes the computation of an upper bound, f up
k , of f *. Algorithm 2 in Reference [31] deals with

this situation without resorting to coordination techniques, but it requires more assumptions on the
functions f j: upper bounds on their Lipschitz constants should be known. Since we do not make this
assumption, we will need scarce coordination akin to Algorithm 3 of Reference [31] for computing
upper bounds on f *. As in Reference [31], the coordination iterates are denoted by xk. Assuming that
all workers eventually respond (after an unknown time), the coordination allows them to compute
the full value, f (xk), and a subgradient, g ∈ ∂ f (xk), at the coordination iterate. The function value is
used to update the upper bound, f up

k , as usual for level methods; the subgradient is used to update the
bound L on the Lipschitz constant of f.

In our algorithm below, the coordination is implemented by two vectors of Booleans: to-coordinate
and coordinating. The role of to-coordinate[j] is to indicate to the master that worker j will evaluate f j

on the new coordination point xk; (at that moment, to-coordinate[j] is set to false, and coordinating[j]
is set to true). Similarly, coordinating[j] indicates to the master that worker j is responding to a
coordination step, which is used to update the upper bound. When a worker j responds, it is included
in the set A of available workers. If all workers are busy, then A = ∅. Our algorithm mirrors as
much as possible Algorithm 3 of Reference [31], but contains some important specificities to handle (i)
mixed-integer feasible sets and (ii) extended real-valued objective functions (we do not assume that f (x)
is finite for all x ∈ X). To handle (ii), we furnish our algorithm with a feasibility check (and addition of
cuts), and for (i) we not only use a specialized solver for the MP but also change the rule for scarce
coordination. The reason is that the rule of Reference [31] is only valid in the convex setting. Under
nonconvexity, the coordination test ‖xk − xk−1‖ <

α
L ∆k−1(with α ∈ (0, 1) and L ≥ ‖gi‖, i = 1, . . . , k)

implies that the following inequality (important for the convergence analysis) is jeopardized:

‖xk − x̂k‖
2
≥ ‖xk−1 − x̂k‖

2 +
(
α∆k−1

L

)2
. (5)

In the algorithm below, coordination is triggered when (5) is not satisfied and all workers have
already responded on the last coordination iterate (i.e., rr = 0, where rr stands for “remaining
to respond”).

The assumption that the algorithm starts with a feasible point is made only for the sake of
simplicity. Indeed, the initial point can be infeasible, but, in this case, Step 3 must be changed to
ensure that the first computed feasible point is a coordination iterate. For the problem of interest,
the feasibility check performed at line 45 amounts to verifying if f (xk+1) < ∞. In our SHTUC,
the feasibility check comprises an auxiliary problem for verifying if ramp-rate constraints would be
violated by xk+1 and an additional auxiliary problem for checking if reservoir-volume bounds would
be violated. Both problems are easily reduced to small linear-programming problems that can be
solved to optimality in split seconds by off-the-shelf solvers.

Algorithms 2020, 13, 235 6 of 16

Algorithm 1: Asynchronous Level Decomposition.

1. Choose a gap tolerance tol∆, upper bound f up
1 > f * + tol∆, lower bound f low

1 < f *, α ∈ (0, 1), L > 0, and x0 a
feasible point. Set x1 = x̂1 = xbest = x0, ∆0← f up

1 − f low
1 , ∆̂←∞, rr← 0, A← {1, 2, . . . , w} , k← 0, Jj

← ∅ for
j ∈ A.
2. for k← 1 to k + 1 do
3. if (5) does not hold and rr = 0 then
4. xk ← xk, rr←w, f←cTxk and g← c
5. for all j ∈ A do
6. to_coordinate[j]← false and
7. coordinating[j]← true
8. end for
9. for all j ∈ {1, . . . , w}\A do
10. to_coordinate[j]← true and
11. coordinating[j]← false
12. end for
13. end if
14. Send xk to all available workers j ∈ A and setA = ∅
15. Update the setA of idle workers and receive (f j(xa(j)), g j

a(j)
) from workers j ∈ A

16. Update Jj
←Jj
∪

{
a(j)

}
for all j ∈ A and set R ← ∅

17. for all j ∈ A do
18. if coordinating[j] = true then
19. coordinating[j]← false and rr← rr − 1

20. f← f + f j(xa(j)) and g←g + gj
a(j)

21. if rr = 0 then
22. Set L← max

{
L,

∣∣∣∣∣∣g∣∣∣∣∣∣}
23. if f < f up

k then
24. f up

k ← f and xbest←xk

25. end if
26. end if
27. else
28. if to_coordinate[j] = true then
29. Send xk to worker j and set R ← R∪

{
j
}

30. Set to_coordinate[j]← false and
31. coordinating[j]← true
32. end if
33. end if
34. end for
35. Set A←A\R
36. Set ∆k ← f up

k − f low
k

37. if ∆k ≤ tol∆ then stop: return xbest and f up
k end if

38. if ∆k ≤ α∆̂ then Set x̂k ← xbest and ∆̂← ∆k end if
39. flev

k ← f up
k −α∆k

40. if (4) is feasible then
41. Get a new iterate xk+1 from the solution of (4)
42. else
43. Set f low

k ← f lev
k and go to Step 36

44. end if
45. if xk+1 leads to infeasible subproblems then
46. Add a feasibility cut to the MP (2) and go to Step 40
47. end if
48. Set f up

k+1 ← f up
k , f low

k+1 ← f low
k , x̂k+1 ← x̂k and xk+1 ← xk

49. end for

Algorithms 2020, 13, 235 7 of 16

2.2. Convergence Analysis

To analyze the convergence of the mixed-integer asynchronous computing (ASYN) level
decomposition (LD) described above, we rely as much as possible on Reference [31]. However,
to account for the mixed-integer nature of the feasible set, we need novel developments like the ones
in Theorem 3.1 below. Throughout this section, we assume tol∆ = 0, as well as the following:

Hypothesis 1 (H1). all the workers are responsive;

Hypothesis 2 (H2). algorithm generates only finitely many feasibility cuts;

Hypothesis 3 (H3). the workers provide bounded subgradients.

As for H1, the assumption H2 is a mild one: H2 holds, for instance, when f is a polyhedral function,
or when X has only finitely many points. The problem of interest satisfies both these properties, and,
therefore, H2 is verified. Due to convexity of f , assumption H3 holds, e.g., if X is contained in an open
convex set that is itself a subset of Dom(f) (in this case, no feasibility cut will be generated). H3 also
holds in our setting if subgradients are computed via basic optimal dual solutions of the second-stage
subproblems. Under H3, we can ensure that the parameter L in the algorithm is finite.

In our analysis, we use the fact that the sequences of the optimality gap, ∆k, and upper bound,
f up
k , are non-increasing by definition, and that the sequence of lower bound, f low

k , is non-decreasing.
More specifically, we update the lower bound only when the MP is infeasible. We count with ` the
number of times the gap significantly decreases, meaning that the test of line 38 is triggered, and denote
by k(`) the corresponding iteration. We have the following by construction:

∆k(`+1) ≤ α∆k(`) ≤ α2∆k(`−1) ≤ · · · ≤ α`∆1 ∀ ` = 1, 2, . . . (6)

As in Reference [31], k(`) denotes a critical iteration, and xk(`) denotes a critical iterate. We introduce
the set of iterates between two consecutive critical iterates by K` :=

{
k(`) + 1, . . . , k(`+ 1) − 1

}
.

The proof of convergence of the ASYN LD consists in showing that the algorithm performs infinitely
many critical iterations when tol∆ = 0. We start with the following lemma, which is a particular case of
Reference [31], Lemma 3, and does not depend on the structure of X.

Lemma 1. Fix an arbitrary ` and let K` be defined as above. Then, for all k ∈ K` , (a) the MP is feasible, and (b)
the stability center is fixed: x̂k = x̂k(`).

Item (a) above ensures that the MP is well-defined and f low
k is fixed for all k ∈ K`. Note that the

lower bound is updated only when the MP is found infeasible, and this fact immediately triggers the
test at line 38 of the algorithm. Similarly, Algorithm 1 guarantees that the stability center remains fixed
for all k ∈ K`, since an updated on the stability center would imply a new critical iteration.

Theorem 1. Assume that X is a compact set and that H1-H3 hold. Let tol∆ = 0 in the algorithm, and then
lim

k
∆k = 0.

Proof of Theorem 1. By (6), we only need to show that the counter ` increases indefinitely (i.e., that there
are infinitely many critical iterations). We obtain this by showing that, for any `, the set K` is finite;
for this, suppose that ∆k > ∆ > 0 for all k ∈ K`. We proceed in two steps, showing the following:
(i) The number of asynchronous iterations between two consecutive coordination steps is finite,
and (ii) the number of coordination steps in K` is finite, as well. If case (i) were not true, then (5)

and Lemma 3.1(b) would give ‖xk − x̂k(`)‖
2
≥ ‖xk−1 − x̂k(`)‖

2 +
(
α∆
L

)2
, for all k ∈ K` greater than the

iteration k of the last coordination iterate. Applying this inequality recursively up to k, we obtain

Diam(X)2
≥ ‖xk − x̂k(`)‖

2
≥ (k − k − 1)

(
α∆
L

)2
. However, this inequality, together with H1 and L < ∞

Algorithms 2020, 13, 235 8 of 16

(due to H3) contradicts the fact thatX is bounded. Therefore, item (i) holds. We now turn our attention
to the item (ii): Let s, s′ ∈ K` such that s < s′ be the iteration indices of any two coordination steps.
At the moment in which xs′ is computed, the information (f j(xs), gj

s) is available at the MP for all
j = 1, . . . , w. As a result of the MP definition, the following constraints are satisfied by xs:

f j(xs) + 〈g
j
s, xs′ − xs〉 ≤ rj and cTxs′ +

w∑
j=1

rj
≤ flev

s′−1. (7)

By assuming these inequalities and rearranging terms, we get f (xs)− flev
s′−1 ≤ 〈c +

w∑
j=1

gj
s, xs − xs′〉 ≤

Γ‖xs − xs′‖, where the constant ∞ > Γ ≥ L ≥ ‖c +
w∑

j=1
gj

s‖ is ensured by H3. The definition of

f lev
s′ = f up

s′ −α∆s′ and inequality f (xs) ≥ f up
s′ gives ‖xs − xs′‖ ≥ α

∆s′
Γ ≥ α∆

Γ > 0. If there was an infinite
number of coordination steps inside K`, the compactness of X would allow us to extract a converging
subsequence, and this would contradict the above inequality. The number of coordination steps inside
K` is thus finite. As a conclusion of (i) and (ii), the index-set K` is hence finite, and the chain (6)
concludes the proof. �

2.3. Dynamic Asynchronous Level Decomposition

In the asynchronous approach described in Algorithm 1, the component functions f j are statically
assigned to workers—worker j always evaluates the same component function j. Likewise, the usual
implementation of the synchronous LD strategy is to task workers with solving fixed sets of Qs. We call
these strategies static asynchronous LD and static synchronous LD. However, as previously mentioned,
such task-allocation policies might result in significant idle times—even for the asynchronous method
because we need the first-order information on all f j to compute valid bounds. To lessen the idle times,
we implement dynamic-task-allocation strategies, in which component functions are dynamically
assigned to workers as soon as they become available. Our dynamic allocation differs from Reference [15]
because we do not use a list of iterates. To ease the understanding of the LD methods applied in
this work—and to highlight their differences—we introduce a new figure: a coordinator process.
The coordinator is responsible for tasking workers with functions to be evaluated. Note, however,
that this additional figure is only strictly necessary in the dynamic asynchronous LD; in the other three
methods, this responsibility can be taken by the master. Nonetheless, in all methods, the master has
three roles: solving the MP, getting iterates, and requesting functions to be evaluated at the newly
obtained iterates. By construction, in the synchronous methods, the master requests the coordinator to
evaluate all functions f j at the same iterate, and it waits until the information of the all functions has
been received to continue the process. On the other hand, in the asynchronous variants, the master
computes a new iterate, requests the coordinator to evaluate it on possibly not all f j, and receives
information on outdate iterates from the coordinator. Given that the master has requested an iterate
x′ to be evaluated in some f j, the main difference between the static and the dynamic asynchronous
methods is that, in the static form, the coordinator always sends x′ to the same worker who has
been previously tasked with solving f j, while in the dynamic one, the coordinator sends x′ to any
available worker.

3. Modeling Details and Case Studies

The general formulation of our SHTUC is presented in (8)–(19).

f∗ = min
∑
g∈G

∑
t∈T

CSg·agt +
∑
s∈S

Cg·tggts

 +∑

b∈B

∑
t∈T

CL·(δ+bt + δ−bt) +
∑
s∈S

fωs (v) (8)

Algorithms 2020, 13, 235 9 of 16

s.t :
t∑

o=t−TUg+1

ago ≤ Igt,
t∑

o=t−TDg+1

bgo ≤ 1− Igt (9)

agt − bgt = Igt − Igt−1, zht − uht = wht −wht−1 (10)

zht, uht, wht, agt, bgt, Igt ∈ {0, 1} (11)

Igt·Pg ≤ tggts ≤ I·Pg (12)

tggts − tggt−1s ≤ Igt−1·Rg + (1− Igt−1)·SUg (13)

tggt−1s − tggts ≤ Igt·Rg + (1− Igt)·SDg (14)

vhts − vht−1s + f v
hts(q, s) + Ahts = 0 (15)

Vh ≤ vhts ≤ Vh, wht·Qh
≤ qhts ≤ wht·Qh, 0 ≤ shts ≤ Sh (16)

0 ≤ hghts ≤ f hg
hts(q, s) (17)

f p
bts

(
tg, hg, δ+, δ−

)
+ WGbts − Lbt = 0 (18)

TLl ≤ f l
lts

(
tg, hg, δ+, δ−

)
≤ TLl,∀l ∈ L (19)

In our model, the indices and respective sets containing them are g ∈ G for thermal generators,
h ∈ H for hydro plants, b ∈ B for buses, l ∈ L for transmission lines, and t and o ∈ T for periods.
In (5), thermal generators’ start-up costs are CS, and we assume that the shutdown cost is null.
The thermal-generation costs are C; CL is the per-unit cost of load shedding (δ+) and generation
surplus (δ−). Expected future-operation cost for scenario s is represented by the piecewise-affine
function, fωs (vs) : R|H| → R , where vs

∈ R|H| are the reservoir volumes in the last period of scenario s.
The first-stage decisions are thermal generators’ commitment, start-up, and shutdown, respectively, I,
a, and b, and their hydro counterparts (w, z, and u). Set X in (1) contains the feasible commitments
of thermal and hydro generators in our SHTUC, and it is defined by Constraints (9)–(11). In this
work, we model the statuses of hydro plants with associated binary variables only in the first 48 h,
to reduce the computational burden. For the remaining periods, the hydro plants are modeled only
with continuous variables. The minimum up-time Constraint (9) ensures that, once turned on, thermal
generator g remains on for at least TUg periods. Likewise, the minimum downtime in (9) requires
that once g has been turned off, it must remain off for at least TDg periods. Constraints (10) guarantee
the satisfaction of logical relations of status, start-up, and shutdown for thermal and hydro plants.
The sets Ys are defined by (12)–(19). Constraints (12) are the usual limits on thermal generation tg;
(13) and (14) are the up and down ramp-rate limits, and the start-up and shutdown requirements of
generators g. Equation (15) is the mass balance of the hydro plant h’s reservoir. The Ahts is the inflow
to reservoir h in period t of scenario s. Moreover, the affine function f v

hts(q, s) : R2·|H|·|T |·|S|
→ R maps

the inflow to h’s reservoir in period t of scenario s given the vectors of turbine discharge q and spillage
s. The constraints in (16) are the limits on reservoir volume, v, turbine discharge, q, and spillage, s.
In (17), the piecewise-affine function f hg

hts(q, s) : R2·|H|·|T |·|S|
→ R bounds the hydropower generation

hghts of plant h. We use the classical DC network model: Equation (18) is the bus power balance,
where the linear function f p

bts(tg, hg, δ+, δ−) : R|T |·|S|·(|G|+|H|+2·|B|)
→ R maps the controlled generation

at each bus into the power injection at bus b, WGbts is the wind generation at bus b, and Lbt is the
corresponding load at b. Lastly, (19) are the limits on the flow of transmission line l in period t and
scenario s, defined by the affine function f l

lst(tg, hg, δ+, δ−) : R|T |·|S|·(|G|+|H|+2·|B|)
→ R .

We assess our algorithm on a 46-bus system with 11 thermal plants, 16 hydro plants, 3 wind farms,
and 95 transmission lines. The system’s installed capacity is 18,600 MW, from which 18.9% is due
to thermal plants, hydro plants represent 68.1%, and wind farms have a share of 13%. We consider
a one-week-long planning horizon with hourly discretization. Thus, a one-scenario instance of our

Algorithms 2020, 13, 235 10 of 16

SHTUC would have 7848 binary variables and 5315 constraints at the first stage; and 36,457 continuous
variables and 100,949 constraints for each scenario in the second stage. Furthermore, the weekly peak
load in the baseline case is 11,204 MW—nearly 60.2% of the installed capacity. The hydro plants are
distributed over two basins and include both run-of-river ones and plants with reservoirs capable of
regularization. Further information about the system can be found in the multimedia files attached.

The uncertainty comes from wind generation and the inflows. In all tests, we use a scenario set
with 256 scenarios. To assess how our algorithm performs in distinct scenario sets, three sets (A, B,
and C) are considered. Moreover, we use three initial useful-reservoir-volume levels: 40%, 50%,
and 70%. The impact of different load levels on the performance of our algorithms is analyzed through
three load levels: low (L), moderate (M), and high (H). Level H is our baseline case regarding load.
Levels M and L have the same load profile as H’s, but with all loads multiplied by factors of 0.9 and 0.8,
respectively. Lastly, to investigate how our algorithm’s convergence rate is affected by different choices
of initial stability centers, we implement two strategies for obtaining the initial stability center. In both
strategies, we solve an expected-value problem, as defined in Reference [5]. In the first one, we use the
classical Benders decomposition (BD) with a coarse relative-optimality-gap tolerance of 10% to get a,
possibly, low-quality stability center (LQSC). To obtain the stability center of hopefully high quality,
which we refer to as high-quality stability center (HQSC), we solve the expected-value problem directly
with Gurobi 8.1.1 [33] with a relative-optimality-gap tolerance of 1%. The time limit for obtaining the
initial stability centers LQSC and HQSC is set to 5 min. Additionally, the computing setting consists of
seven machines of two types: 4 of them have 128 GB of RAM and two Xeon E5-2660 v3 processors with
10 cores clocking at 2.6 GHz; the other 3 machines have 32 GB of RAM and two Xeon X5690 processors
with cores cores clocking at 3.47 GHz. All machines are in a LAN with 1-Gbps network interfaces.
We test two machine combinations. In the first one, in Combination 1, there are four 20-core machines
and one with 12 cores. In Combination 2, we replace one machine with 20 cores by 2 with 12 cores.
Regardless of the combination, one 12-core machine is defined as the head node, where only the master
is launched. Except for the master—for which Gurobi can take up to 10 cores—for all other processes,
i.e., the workers, Gurobi is limited to computing on a single core.

Our computing setting is composed of machines with different configurations. Naturally, solving
the same component function in two distinct machines may result in different outputs—and different
runtimes. Consequently, the path taken by the MP across iterations might change significantly between
experiments on the same data. More specifically to asynchronous methods, the varying order of
information arrival to the MP may also yield different convergence rates. Hence, to reduce the effect of
these seemingly random behaviors, we conducted 5 experiments for each problem instance. Therefore,
our testbed E is defined as E = {40, 50, 70} × {A, B, C} × {L, M, H} × {LQ-SC, HQ-SC} × {Trial 1, . . . ,
Trial 5} × {Combination 1, Combination 2}—we have 54 problems and 540 experiments. In all instances
in E, we divide S into 16 subsets. Thus, following our previous definitions, w = 16 and any subset
Pj is such that |Pj| = 16. Additionally, we set a relative-optimality-gap tolerance of 1% and a time
limit of 30 min for all instances in E. Gurobi 8.1.1 is used to solve the MILP MP and the component
functions (linear-programming problems) that form the subproblem. The inter-process communication
is implemented with mpi4py and Microsoft MPI v10.0.

4. Results

In this section, the methods are analyzed based on their computing-time performances. We focus
on this metric because our results have not shown significant differences among the methods for other
metrics, e.g., optimality gap and upper bounds. In addition to analyzing averages of the metric, we use
the well-known performance profile [34]. Multimedia files containing the main results for the set E are
attached to this work.

Figure 1 presents the performance profiles of the methods considering the experiments E.
In Figure 1, ρ(τ) and τ are, respectively, the probability that the performance ratio of a given method is
within a factor τ of the best ratio, as in Reference [34]. Applying the classical Benders decomposition

Algorithms 2020, 13, 235 11 of 16

(BD) on the set {40, 50, 70} × {A} × {L, M, H} × {Combination 1} results in the convergence only of
the problem in {70} × {A} × {M} × {Combination 1}, for which BD converges to a 1%-optimal solution
in 1281.42 s. Thus, it is reasonable to expect that the classical BD would also perform poorly for the
remaining experiments E.

Algorithms 2020, 13, x FOR PEER REVIEW 11 of 16

Our computing setting is composed of machines with different configurations. Naturally,
solving the same component function in two distinct machines may result in different outputs—and
different runtimes. Consequently, the path taken by the MP across iterations might change
significantly between experiments on the same data. More specifically to asynchronous methods, the
varying order of information arrival to the MP may also yield different convergence rates. Hence, to
reduce the effect of these seemingly random behaviors, we conducted 5 experiments for each problem
instance. Therefore, our testbed is defined as = {40, 50, 70} × {A, B, C} × {L, M, H} × {LQ-
SC, HQ-SC} × {Trial 1, …, Trial 5} × {Combination 1, Combination 2}—we have 54 problems and
540 experiments. In all instances in , we divide into 16 subsets. Thus, following our previous
definitions, w = 16 and any subset j is such that | j | = 16. Additionally, we set a relative-
optimality-gap tolerance of 1% and a time limit of 30 min for all instances in . Gurobi 8.1.1 is used
to solve the MILP MP and the component functions (linear-programming problems) that form the
subproblem. The inter-process communication is implemented with mpi4py and Microsoft MPI
v10.0.

4. Results

In this section, the methods are analyzed based on their computing-time performances. We focus
on this metric because our results have not shown significant differences among the methods for
other metrics, e.g., optimality gap and upper bounds. In addition to analyzing averages of the metric,
we use the well-known performance profile [34]. Multimedia files containing the main results for the
set are attached to this work.

Figure 1 presents the performance profiles of the methods considering the experiments . In
Figure 1, ρ(τ) and τ are, respectively, the probability that the performance ratio of a given method is
within a factor τ of the best ratio, as in Reference [34]. Applying the classical Benders decomposition
(BD) on the set {40, 50, 70} × {A} × {L, M, H} × {Combination 1} results in the convergence only of
the problem in {70} × {A} × {M} × {Combination 1}, for which BD converges to a 1%-optimal
solution in 1281.42 s. Thus, it is reasonable to expect that the classical BD would also perform poorly
for the remaining experiments .

Figure 1. Performance profiles over the set .

In Figure 1, we see that the dynamic asynchronous LD outperforms all other methods for most
instances . Its performance ratio is within a factor of 2 from the best ratio for about 500 instances
(about 92% of the total). Moreover, the static asynchronous LD has a reasonable overall

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

ρ(
τ)

τ

Dynamic asynchronous
Static asynchronous
Dynamic synchronous
Static synchronous

Figure 1. Performance profiles over the set E.

In Figure 1, we see that the dynamic asynchronous LD outperforms all other methods for most
instances E. Its performance ratio is within a factor of 2 from the best ratio for about 500 instances
(about 92% of the total). Moreover, the static asynchronous LD has a reasonable overall performance—it
is within a factor of 2 from the best ratio for more than 400 instances. Moreover, we see that
the dynamic-allocation strategy provides significant improvements for both the asynchronous and
synchronous LD approaches. The dynamic synchronous LD converges faster than its static counterpart
for most of the experiments. Figures 2 and 3 show the performance profiles considering only instances
in Ewith machine Combinations 1 and 2, respectively.

Algorithms 2020, 13, x FOR PEER REVIEW 12 of 16

performance—it is within a factor of 2 from the best ratio for more than 400 instances. Moreover, we
see that the dynamic-allocation strategy provides significant improvements for both the
asynchronous and synchronous LD approaches. The dynamic synchronous LD converges faster than
its static counterpart for most of the experiments. Figures 2 and 3 show the performance profiles
considering only instances in with machine Combinations 1 and 2, respectively.

Figure 2. Performance profiles for the instances with machine Combination 1.

Figure 2 illustrates that, for a distributed setting in which workers are deployed on machines
with identical characteristics, the performances of the methods with dynamic allocation and those
with static allocation are similar. Nonetheless, we see that the asynchronous methods still outperform
the synchronous LD for most experiments.

Figure 3. Performance profiles for the instances with machine Combination 2.

In contrast to Figure 2, Figure 3 shows that the dynamic-allocation strategy provides significant
time savings for the instances in with Machine Combination 2. This is due to the great imbalance

Figure 2. Performance profiles for the instances with machine Combination 1.

Algorithms 2020, 13, 235 12 of 16

Algorithms 2020, 13, x FOR PEER REVIEW 12 of 16

performance—it is within a factor of 2 from the best ratio for more than 400 instances. Moreover, we
see that the dynamic-allocation strategy provides significant improvements for both the
asynchronous and synchronous LD approaches. The dynamic synchronous LD converges faster than
its static counterpart for most of the experiments. Figures 2 and 3 show the performance profiles
considering only instances in with machine Combinations 1 and 2, respectively.

Figure 2. Performance profiles for the instances with machine Combination 1.

Figure 2 illustrates that, for a distributed setting in which workers are deployed on machines
with identical characteristics, the performances of the methods with dynamic allocation and those
with static allocation are similar. Nonetheless, we see that the asynchronous methods still outperform
the synchronous LD for most experiments.

Figure 3. Performance profiles for the instances with machine Combination 2.

In contrast to Figure 2, Figure 3 shows that the dynamic-allocation strategy provides significant
time savings for the instances in with Machine Combination 2. This is due to the great imbalance

Figure 3. Performance profiles for the instances with machine Combination 2.

Figure 2 illustrates that, for a distributed setting in which workers are deployed on machines with
identical characteristics, the performances of the methods with dynamic allocation and those with
static allocation are similar. Nonetheless, we see that the asynchronous methods still outperform the
synchronous LD for most experiments.

In contrast to Figure 2, Figure 3 shows that the dynamic-allocation strategy provides significant
time savings for the instances in Ewith Machine Combination 2. This is due to the great imbalance
between the different machines in Combination 2—machines with processors Xeon E5-2660 v3 are
much faster than those with processors Xeon X5690.

Table 1 gives the average wall-clock computing times over subsets of E. From this table, we see
that the relative average speed-up of the dynamic and static asynchronous LD over the entire set Ew.r.t.
The static synchronous LD are 54% and 29%, respectively—considering the dynamic synchronous
LD, the speed-ups are 45% and 16%, respectively. Moreover, we see that the time savings are more
significant for harder-to-solve instances, e.g., instances with high load and/or low-quality initial
stability centers. Additionally, Table 1 shows that the dynamic asynchronous LD provides considerable
reductions in the standard deviations of the elapsed computing times, in comparison with the other
methods. For example, for the problems with high load level (H), the dynamic asynchronous LD has
a standard deviation of about 16%, 13%, and 27% smaller than that of the static asynchronous LD,
dynamic synchronous LD, and static synchronous LD, respectively.

Based on the data from Table 1, we can compute the speed-up provided by our proposed dynamic
ASYN LD w.r.t., and the other three variants are considered here. To better appreciate such speed-ups,
we show them in Table 2, where we see that the proposed ASYN LD provides consistent speed-ups
over the entire range of operating conditions considered here.

The advantages of the asynchronous methods are made clearer in Figure 4, where we see that not
only the asynchronous methods provide (on average) better running times but also present significantly
less variation among the problems in E. The latter is relevant in the day-to-day operations of ISOs,
since, if there are stochastic hydrothermal unit-commitment (SHTUC) cases that take significantly
more time to be solved than the expected, subsequent operation steps that depend on the results of the
SHTUC might be affected. Take, for instance, the case from the Midcontinent Independent System
Operator reported in Reference [3], where the (deterministic) UC is reported to have solution times
varying from just 50 to over 3600 s. Such variation can be problematic in the day-to-day operation of

Algorithms 2020, 13, 235 13 of 16

power systems since it may disrupt tightly scheduled operations. Naturally, methods that can reduce
such variance and still produce high-quality solutions in reasonable times are appealing.

Table 1. Average elapsed time and standard deviation in seconds.

Asynchronous Synchronous

Dynamic Static Dynamic Static

40 135 (340) 240 (497) 364 (569) 338 (490)
50 130 (279) 222 (414) 195 (293) 267 (404)
70 127 (249) 139 (242) 161 (157) 250 (300)
A 143 (280) 226 (418) 187 (270) 216 (303)
B 137 (340) 192 (406) 305 (515) 347 (530)
C 112 (247) 184 (377) 229 (335) 291 (340)
L 102 (195) 157 (317) 172 (398) 201 (396)
M 108 (179) 112 (111) 142 (126) 205 (210)
H 182 (425) 333 (585) 405 (492) 449 (506)

HQSC 105 (202) 129 (193) 156 (258) 159 (118)
LQSC 156 (357) 272 (523) 324 (473) 411 (534)

Combination 1 120 (282) 207 (447) 227 (387) 243 (416)
Combination 2 141 (301) 194 (348) 253 (393) 327 (393)

The rows indicate that the average elapsed times and standard deviation given in parentheses are computed
considering only the instances inEwith the parameter given in the column 1. For example, the averages and respective
standard deviations in row 3 are computed considering all experiments for which the initial useful-reservoir-volume
level is 40%. Likewise, rows 4 and 7 provide the averages over instances with scenario set A and load level L,
respectively. In rows 10 and 11, HQSC and LQSC stand for high-quality stability center and low-quality stability
center, respectively.

Table 2. Speed-ups in % provided by the asynchronous computing (ASYN) with respect to the level
decomposition (LD)

Static SYN LD Dynamic SYN LD Static ASYN LD

40 60 63 44
50 51 33 41
70 49 21 9
A 34 23 37
B 61 55 29
C 61 51 39
L 49 41 35
M 47 24 4
H 59 55 45

HQSC 34 33 19
LQSC 62 52 42

Combination 1 50 47 42
Combination 2 57 44 27

As in Table 1, the rows indicate that the average speed-up computed considering only the instances in E with
the parameter given in the column 1. Moreover, the columns indicate the method the speed-up is computed for.
For example, column Static SYN (synchronous computing) LD gives the speed-ups provided by the ASYN LD over
instances in the first column w.r.t. to the static synchronous level decomposition.

Algorithms 2020, 13, 235 14 of 16

Algorithms 2020, 13, x FOR PEER REVIEW 14 of 16

As in Table 1, the rows indicate that the average speed-up computed considering only the instances
in with the parameter given in the column 1. Moreover, the columns indicate the method the
speed-up is computed for. For example, column Static SYN (synchronous computing) LD gives the
speed-ups provided by the ASYN LD over instances in the first column w.r.t. to the static synchronous
level decomposition.

The advantages of the asynchronous methods are made clearer in Figure 4, where we see that
not only the asynchronous methods provide (on average) better running times but also present
significantly less variation among the problems in . The latter is relevant in the day-to-day
operations of ISOs, since, if there are stochastic hydrothermal unit-commitment (SHTUC) cases that
take significantly more time to be solved than the expected, subsequent operation steps that depend
on the results of the SHTUC might be affected. Take, for instance, the case from the Midcontinent
Independent System Operator reported in Reference [3], where the (deterministic) UC is reported to
have solution times varying from just 50 to over 3600 s. Such variation can be problematic in the day-
to-day operation of power systems since it may disrupt tightly scheduled operations. Naturally,
methods that can reduce such variance and still produce high-quality solutions in reasonable times
are appealing.

Figure 4. Boxplot of the methods over the set .

5. Conclusions

In this work, we present an extension of the asynchronous level decomposition of Reference [31]
in a Benders-decomposition framework. We show a convergence analysis of our algorithm, proving
that it converges to an optimal solution, if one exists, in finite-many iterations. Our experiments are
conducted on an extensive testbed from a real-life-size system. The results show that the proposed
asynchronous algorithm outperforms its synchronous counterpart in most of the problems and
provides significant time savings. Moreover, we show that the improvements provided by the
asynchronous methods over the synchronous ones are even more evident in a distributed-computing
setting with machines of different computational powers. Additionally, we show that the
asynchronous method is further enhanced by implementing a dynamic-task-allocation strategy.

Author Contributions: Conceptualization, B.C., E.C.F., and W.d.O.; methodology, B.C., E.C.F., and W.d.O.;
software, B.C.; validation, B.C.; formal analysis, E.C.F. and W.d.O.; investigation, B.C., E.C.F., and W.d.O.;
resources, B.C. and E.C.F.; data curation, B.C.; writing—original draft preparation, B.C., E.C.F., and W.d.O.;

Dynamic Asynchronous Static Asynchronous Dynamic Synchronous Static Synchronous

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 4. Boxplot of the methods over the set E.

5. Conclusions

In this work, we present an extension of the asynchronous level decomposition of Reference [31] in
a Benders-decomposition framework. We show a convergence analysis of our algorithm, proving that it
converges to an optimal solution, if one exists, in finite-many iterations. Our experiments are conducted
on an extensive testbed from a real-life-size system. The results show that the proposed asynchronous
algorithm outperforms its synchronous counterpart in most of the problems and provides significant
time savings. Moreover, we show that the improvements provided by the asynchronous methods
over the synchronous ones are even more evident in a distributed-computing setting with machines
of different computational powers. Additionally, we show that the asynchronous method is further
enhanced by implementing a dynamic-task-allocation strategy.

Author Contributions: Conceptualization, B.C., E.C.F., and W.d.O.; methodology, B.C., E.C.F., and W.d.O.;
software, B.C.; validation, B.C.; formal analysis, E.C.F. and W.d.O.; investigation, B.C., E.C.F., and W.d.O.;
resources, B.C. and E.C.F.; data curation, B.C.; writing—original draft preparation, B.C., E.C.F., and W.d.O.;
writing—review and editing, B.C., E.C.F., and W.d.O.; visualization, B.C., E.C.F., and W.d.O.; supervision, E.C.F.
and W.d.O. All authors have read and agreed to the published version of the manuscript.

Funding: The third author acknowledges financial support from the Gaspard-Monge program for Optimization
and Operations Research (PGMO) project “Models for planning energy investment under uncertainty”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zheng, Q.P.; Wang, J.; Liu, A.L. Stochastic Optimization for Unit Commitment—A Review. IEEE Trans.
Power Syst. 2015, 30, 1913–1924. [CrossRef]

2. Santos, T.N.; Diniz, A.L.; Saboia, C.H.; Cabral, R.N.; Cerqueira, L.F. Hourly Pricing and Day-Ahead Dispatch
Setting in Brazil: The Dessem Model. Electr. Power Syst. Res. 2020, 189, 106709. [CrossRef]

3. Chen, Y.; Pan, F.; Holzer, J.; Rothberg, E.; Ma, Y.; Veeramany, A. A High Performance Computing Based
Market Economics Driven Neighborhood Search and Polishing Algorithm for Security Constrained Unit
Commitment. IEEE Trans. Power Syst. 2020, 1. [CrossRef]

4. Tahanan, M.; Van Ackooij, W.; Frangioni, A.; Lacalandra, F. Large-Scale Unit Commitment under Uncertainty.
4OR 2015, 13, 115–171. [CrossRef]

5. Birge, J.R.; Louveaux, F. Introduction to Stochastic Programming; Springer Series in Operations Research and
Financial Engineering; Springer New York: New York, NY, USA, 2011. [CrossRef]

http://dx.doi.org/10.1109/TPWRS.2014.2355204
http://dx.doi.org/10.1016/j.epsr.2020.106709
http://dx.doi.org/10.1109/TPWRS.2020.3005407
http://dx.doi.org/10.1007/s10288-014-0279-y
http://dx.doi.org/10.1007/978-1-4614-0237-4

Algorithms 2020, 13, 235 15 of 16

6. Håberg, M. Fundamentals and Recent Developments in Stochastic Unit Commitment. Int. J. Electr. Power
Energy Syst. 2019, 109, 38–48. [CrossRef]

7. Sagastizábal, C. Divide to Conquer: Decomposition Methods for Energy Optimization. Math. Program. 2012,
134, 187–222. [CrossRef]

8. Benders, J.F. Partitioning Procedures for Solving Mixed-Variables Programming Problems. Numer. Math.
1962, 4, 238–252. [CrossRef]

9. Bagirov, A.M.; Ozturk, G.; Kasimbeyli, R. A Sharp Augmented Lagrangian-Based Method in Constrained
Non-Convex Optimization. Optim. Methods Softw. 2019, 34, 462–488. [CrossRef]

10. Bertsekas, D.P.; Tsitsiklis, J.N. Parallel and Distributed Computation: Numerical Methods; Athena Scientific:
Nashua, NH, USA, 2015.

11. Khanabadi, M.; Fu, Y.; Gong, L. A Fully Parallel Stochastic Multiarea Power System Operation Considering
Large-Scale Wind Power Integration. IEEE Trans. Sustain. Energy 2018, 9, 138–147. [CrossRef]

12. Papavasiliou, A.; Oren, S.S.; Rountree, B. Applying High Performance Computing to Transmission-Constrained
Stochastic Unit Commitment for Renewable Energy Integration. IEEE Trans. Power Syst. 2015, 30, 1109–1120.
[CrossRef]

13. Kargarian, A.; Fu, Y.; Li, Z. Distributed Security-Constrained Unit Commitment for Large-Scale Power
Systems. IEEE Trans. Power Syst. 2015, 30, 1925–1936. [CrossRef]

14. Kargarian, A.; Mehrtash, M.; Falahati, B. Decentralized Implementation of Unit Commitment With Analytical
Target Cascading: A Parallel Approach. IEEE Trans. Power Syst. 2018, 33, 3981–3993. [CrossRef]

15. Kim, K.; Petra, C.G.; Zavala, V.M. An Asynchronous Bundle-Trust-Region Method for Dual Decomposition
of Stochastic Mixed-Integer Programming. SIAM J. Optim. 2019, 29, 318–342. [CrossRef]

16. Kim, K.; Anitescu, M.; Zavala, V.M. An Asynchronous Decomposition Algorithm for Security Constrained
Unit Commitment Under Contingency Events. In Proceedings of the 2018 Power Systems Computation Conference
(PSCC); IEEE: Piscataway, NJ, USA, 2018; pp. 1–8. [CrossRef]

17. Aravena, I.; Papavasiliou, A. A Distributed Asynchronous Algorithm for the Two-Stage Stochastic Unit
Commitment Problem. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting; IEEE: Piscataway,
NJ, USA, 2015; pp. 1–5. [CrossRef]

18. Santos, T.N.; Diniz, A.L.; Borges, C.L.T. A New Nested Benders Decomposition Strategy for Parallel Processing
Applied to the Hydrothermal Scheduling Problem. IEEE Trans. Smart Grid 2017, 8, 1504–1512. [CrossRef]

19. Pinto, R.J.; Borges, C.T.; Maceira, M.E.P. An Efficient Parallel Algorithm for Large Scale Hydrothermal System
Operation Planning. IEEE Trans. Power Syst. 2013, 28, 4888–4896. [CrossRef]

20. Moritsch, H.W.; Pflug, G.C.; Siomak, M. Asynchronous Nested Optimization Algorithms and Their Parallel
Implementation. Wuhan Univ. J. Nat. Sci. 2001. [CrossRef]

21. Rahmaniani, R.; Crainic, T.G.; Gendreau, M.; Rei, W. The Benders Decomposition Algorithm: A Literature
Review. Eur. J. Oper. Res. 2017, 259, 801–817. [CrossRef]

22. Kelley, J.E., Jr. The Cutting-Plane Method for Solving Convex Programs. J. Soc. Ind. Appl. Math. 1960. [CrossRef]
23. Bagirov, A.; Karmitsa, N.; Mäkelä, M.M. Introduction to Nonsmooth Optimization; Springer International

Publishing: Cham, Switzerland, 2014. [CrossRef]
24. Wolf, C.; Fábián, C.I.; Koberstein, A.; Suhl, L. Applying Oracles of On-Demand Accuracy in Two-Stage

Stochastic Programming—A Computational Study. Eur. J. Oper. Res. 2014, 239, 437–448. [CrossRef]
25. Van Ackooij, W.; Frangioni, A.; de Oliveira, W. Inexact Stabilized Benders’ Decomposition Approaches with

Application to Chance-Constrained Problems with Finite Support. Comput. Optim. Appl. 2016. [CrossRef]
26. Bonvin, G.; Demassey, S.; de Oliveira, W. Robust Design of Pumping Stations in Water Distribution Networks.

In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2020; Volume 991,
pp. 957–967. [CrossRef]

27. Mäkelä, M.M.; Karmitsa, N.; Bagirov, A. Subgradient and Bundle Methods for Nonsmooth Optimization; Springer:
Dordrecht, The Netherlands, 2013; pp. 275–304. [CrossRef]

28. Bagirov, A.M.; Gaudioso, M.; Karmitsa, N.; Mäkelä, M.M.; Taheri, S. (Eds.) Numerical Nonsmooth Optimization;
Springer International Publishing: Cham, Switzerland, 2020. [CrossRef]

29. Lemaréchal, C.; Nemirovskii, A.; Nesterov, Y. New Variants of Bundle Methods. Math. Program. 1995. [CrossRef]
30. De Oliveira, W. Regularized Optimization Methods for Convex MINLP Problems. TOP 2016, 24, 665–692.

[CrossRef]
31. Iutzeler, F.; Malick, J.; de Oliveira, W. Asynchronous Level Bundle Methods. Math. Program. 2019. [CrossRef]

http://dx.doi.org/10.1016/j.ijepes.2019.01.037
http://dx.doi.org/10.1007/s10107-012-0570-7
http://dx.doi.org/10.1007/BF01386316
http://dx.doi.org/10.1080/10556788.2018.1496431
http://dx.doi.org/10.1109/TSTE.2017.2719659
http://dx.doi.org/10.1109/TPWRS.2014.2341354
http://dx.doi.org/10.1109/TPWRS.2014.2360063
http://dx.doi.org/10.1109/TPWRS.2017.2787645
http://dx.doi.org/10.1137/17M1148189
http://dx.doi.org/10.23919/PSCC.2018.8450937
http://dx.doi.org/10.1109/PESGM.2015.7285913
http://dx.doi.org/10.1109/TSG.2016.2593402
http://dx.doi.org/10.1109/TPWRS.2012.2236654
http://dx.doi.org/10.1007/BF03160302
http://dx.doi.org/10.1016/j.ejor.2016.12.005
http://dx.doi.org/10.1137/0108053
http://dx.doi.org/10.1007/978-3-319-08114-4
http://dx.doi.org/10.1016/j.ejor.2014.05.010
http://dx.doi.org/10.1007/s10589-016-9851-z
http://dx.doi.org/10.1007/978-3-030-21803-4_95
http://dx.doi.org/10.1007/978-94-007-5288-7_15
http://dx.doi.org/10.1007/978-3-030-34910-3
http://dx.doi.org/10.1007/BF01585555
http://dx.doi.org/10.1007/s11750-016-0413-4
http://dx.doi.org/10.1007/s10107-019-01414-y

Algorithms 2020, 13, 235 16 of 16

32. Fischer, F.; Helmberg, C. A Parallel Bundle Framework for Asynchronous Subspace Optimization of
Nonsmooth Convex Functions. SIAM J. Optim. 2014, 24, 795–822. [CrossRef]

33. Gurobi Optimization LLC. Gurobi Optimizer Reference Manual; Gurobi Optimization LLC: Beaverton, OR,
USA, 2018.

34. Dolan, E.D.; Moré, J.J. Benchmarking Optimization Software with Performance Profiles. Math. Program.
2002, 91, 201–213. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/120865987
http://dx.doi.org/10.1007/s101070100263
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	The Mixed-Integer and Asynchronous Level Decomposition
	Convergence Analysis
	Dynamic Asynchronous Level Decomposition

	Modeling Details and Case Studies
	Results
	Conclusions
	References

