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Abstract: The recent advancements in cancer genomics have put under the spotlight DNA methylation,
a genetic modification that regulates the functioning of the genome and whose modifications have an
important role in tumorigenesis and tumor-suppression. Because of the high dimensionality and the
enormous amount of genomic data that are produced through the last advancements in Next Generation
Sequencing, it is very challenging to effectively make use of DNA methylation data in diagnostics
applications, e.g., in the identification of healthy vs diseased samples. Additionally, state-of-the-art
techniques are not fast enough to rapidly produce reliable results or efficient in managing those
massive amounts of data. For this reason, we propose HD-classifier, an in-memory cognitive-based
hyperdimensional (HD) supervised machine learning algorithm for the classification of tumor vs non
tumor samples through the analysis of their DNA Methylation data. The approach takes inspiration from
how the human brain is able to remember and distinguish simple and complex concepts by adopting
hypervectors and no single numerical values. Exactly as the brain works, this allows for encoding
complex patterns, which makes the whole architecture robust to failures and mistakes also with noisy
data. We design and develop an algorithm and a software tool that is able to perform supervised
classification with the HD approach. We conduct experiments on three DNA methylation datasets of
different types of cancer in order to prove the validity of our algorithm, i.e., Breast Invasive Carcinoma
(BRCA), Kidney renal papillary cell carcinoma (KIRP), and Thyroid carcinoma (THCA). We obtain
outstanding results in terms of accuracy and computational time with a low amount of computational
resources. Furthermore, we validate our approach by comparing it (i) to BIGBIOCL, a software based on
Random Forest for classifying big omics datasets in distributed computing environments, (ii) to Support
Vector Machine (SVM), and (iii) to Decision Tree state-of-the-art classification methods. Finally, we freely
release both the datasets and the software on GitHub.

Keywords: algorithms in biology; bioinformatics; machine learning; classification; hyperdimensional
computing; cancer; DNA methylation

1. Introduction

In the last decade, the field of genomics has undergone great evolutions thanks to Next Generation
Sequencing (NGS), a high-throughput technology for efficiently detecting the location, the structure,
and the functionalities of the composing element (DNA) with low cost and high speed. NGS is
adopted in cancer research with the aim to find novel biomarkers, factors of prediction, and targets for
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achieving advancements in prognosis and treatments [1–4]. In particular, the NGS technique of DNA
methylation [5,6] has been proven to play an important role in knowledge discovery of cancer [7–10].
Indeed, DNA methylation data are actually used in early diagnosis of tumors [11,12], because they
enable finding potential biomarkers, i.e., specific patterns and characteristics that are common in
tumor samples. DNA methylation is a biochemical modification that involves the addition of a methyl
group in correspondence of carbon-5 in cytosine. This happens almost only in the dinucleotide CpG,
which is the cytosine followed by a guanine [6]. This phenomenon is so common in DNA that it
can be assessed that, among all of the CpG islands, 80% of them are methylated in mammals [13].
We can speak of hypo- or hyper-methylation, which regulate the turning on or off of genes that,
for example, act as tumor-suppressors. Therefore, it becomes increasingly important to understand
epigenetics modification, like DNA methylation, in human cells. In this work, we consider the
data of DNA methylation experiments performed on cancer patients by focusing on three different
types of cancer, i.e., Breast Invasive Carcinoma (BRCA), Kidney Renal Papillary Cell Carcinoma
(KIRP), and Thyroid Carcinoma (THCA). These data are provided by the Genomic Data Commons
(https://gdc.cancer.gov/) [14], a repository of cancer data, shared by several projects, such as The
Cancer Genome Atlas (TCGA) [15], which we have considered. Indeed, it contains genomic and clinical
data of more than 30 tumor types of over 20,000 patients derived from different NGS experiments,
e.g., DNA methylation.

We design, develop, and apply a new machine learning algorithm, called HD-classifier,
which relies on an in-memory cognitive-based hyperdimensional approach to distinguish tumor
from non-tumor samples through the processing of their DNA methylation data in order to analyze
those data. Machine learning techniques are very promising and wide adopted for the classification
of cancer patients. Indeed machine learning (ML) has been used for cancer diagnosis and detection
and also applied towards cancer prediction and prognosis [16]. ML is widely applied for case control
studies, i.e., specific studies that aim to identify subjects by outcome status at the outset of the
investigation, e.g., whether the subject is diagnosed with a disease. Subjects with such an outcome
are categorized as cases. Once an outcome status is identified, controls (i.e., subjects without the
outcome, but from the same source population) are selected. In supervised learning, a classification
model is defined starting from labeled training data, with which the classifier tries to make predictions
about unavailable or future data. Therefore, supervision means that, in the set of samples or datasets,
the desired output signals (e.g., presence of a disease or not) are already known as previously labeled.
In this type of learning, which relies on labels of discrete classes and on a training set, we will therefore
have a task based on supervised techniques [10,12,17,18]. Classification problems are intended to
identify the characteristics that indicate the group to which each sample belongs [19]. Previous studies
that consider methylation data [10,20] have achieved good performance using state-of-the-art machine
learning methods, e.g., rule based classifier [21] and decision trees [22,23], applied in order to produce
classification models that are able to predict which class a new sample belongs. The final aim is to
distinguish healthy and diseased samples in an effective way.

In this work, we propose HD-classifier, a brain-inspired Hyperdimensional (HD) computing
algorithm that simulates the human brain by adopting (pseudo)random hypervectors, whose dimension
is typically in the order of the thousands (usually D = 10,000). According to the HD paradigm [24,25],
every atomic element is encoded into a HD vector that must be dissimilar to all the other vectors encoded
in the same hyperspace. The fundamental idea of this computing paradigm is based on trying to emulate
how the human brain works. In general, the methodology is able to remember and distinguish people,
objects, and elements by working with patterns. With this logic, the HD computing is quite versatile
and it can be applied to a wide range of scientific areas. For more details, we point the reader to [26],
where the authors perform a comprehensive review of classification techniques based on HD computing.
Indeed, HD computing was successfully applied in previous works on a limited set of research areas,
like speech recognition [27,28], the internet of things [29–32], and two life-science related applications.
These last attempts concern the detection of epileptogenic regions of the human brain from Intracranial
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Electroencephalography (iEEG) recordings [33] and pattern matching problems on DNA sequences for
diagnostic purposes [34,35]. Both of them produced highly promising results that led our research to
extend the set of life-science applications to omics data. To our knowledge, our work constitutes the
first application of a classification algorithm that is based on a brain inspired HD computing approach
to DNA methylation data of cancer. Additionally, our software and algorithm can be easily used by
the bioinformatics community also for other types of omics data, e.g., RNA sequencing [36].

2. Materials and Methods

Our experimental analysis is focused on public available data of The Cancer Genome Atlas (TCGA) [15]
program hosted on the Genomic Data Commons (GDC) portal https://portal.gdc.cancer.gov/ [14].
This project aims to catalog the genetic mutations responsible for cancer, applying NGS techniques to
improve the ability to diagnose, treat, and prevent cancer through a better understanding of the genetic
basis of this disease. TCGA contains the genomic characterization and analysis of 33 types of tumors,
and patient samples are processed through different types of NGS techniques, such as DNA sequencing,
gene expression profiling, and DNA methylation. Additionally, TCGA collects and analyzes high quality
cancer samples and makes the following data available to the research community: (i) clinical information
on the patients participating in the program; (ii) samples metadata (for example, the weight of the sample,
etc.); and, (iii) histopathological images of portions of the sample.

In this work, we focus on DNA methylation (DM) experiments, which describe the amount
of methylated molecules for each of the known CpG regions on bisulfite-treated DNA sequences.
If a methylation occurs on a DNA region, this causes the interruption of the transcriptional
process of the promoter gene, where the involved region falls in. The amount of methylated
molecules detected by the sequencing machine are represented by the beta value, [37]. Which is
computed according to the Formula (1), where Methn and Unmethn are both intensities of the
n-th methylated and unmethylated allele, respectively. The ε parameter acts as a modulator
which is required when both the Methn and Unmethn are very low. The beta value is therefore
a continuous variable in the (0, 1) range, where 1 represents full methylation and 0 no methylation at all.

βn =
max(Methn, 0)

max(Methn, 0) + max(Unmethn, 0) + ε
(1)

The relevance of DNA methylation data has been widely discussed in the literature, and it has been
proven that their processing can discriminate the diseased (tumor) from the healthy (also called normal)
samples in case of cancer. For more details, we point the reader to Section 1.

The analysis of DNA methlyation data is challenging, because of the huge amount of CpG sites
processed by the sequencing machines, i.e., up to 485,577 CpG sites, which represent the features
in a supervised machine learning problem. Canonical classification approaches are not designed to
manage hundred of thousands of features and most of the time fail in producing results, because of the
required amount of computational resources. For this reason, we redesigned a classification procedure
previously applied mainly on language detection and speech recognition problems. This method
exploits high-dimensional numerical vectors (thus, hyperdimensional—HD) to represent information
in the considered dataset. In particular, the atomic numerical values (or properly encoded categorical
values) are represented as HD vectors, and the observations are also HD vectors built by combining
their values—vector representations. In the context of DNA methylation data of cancer, we create
two HD vectors representing the tumor and normal classes by collapsing all of the HD vector
representations of the experiments considered during a first training phase. Thus, the class prediction
of every sample is performed by computing the inner product between their HD representations and
the classes HD vectors.

From a theoretical perspective, the whole procedure is as simple as powerful, and it can be summarised
in Figure 1, and thoroughly explained with the steps that are described in the next subsections.

https://portal.gdc.cancer.gov/
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Figure 1. Flow chart of the whole procedure for building and testing the HD classification model.
First, the definition of the set of HD-levels is required (1). It is a mandatory step toward the encoding of
all the observations in the training subset (2) and the definition of the classes HD vector representations
by combining the observations which belong to the same class (3). The same encoding procedure is
then applied to the observations in the test subset (4). Every HD representation of the test observations
is finally compared with the set of class HD vectors by computing the inner product (5). The class of
the most closest vector is finally assigned to the observation. If a wrong class is assigned during the
test phase, a retraining of the HD classification model must be performed multiple times (6) until the
accuracy achieved in an iteration will not change as compared to the previous one.

2.1. Identifying HD-Levels

This is the first step that has to be performed before representing the data in the hyperdimensional
space. The number of HD-levels is extremely relevant for maintaining the same precision of the
numerical data as they are represented into the original dataset. In particular, consider a dataset that
contains observations represented by numerical values ranging from 0.0 to 1.0 with a precision up to
the third decimal number. As previously mentioned, the HD computing paradigm imposes that every
atomic element in a dataset must be represented by a HD vector in the HD space. When considering
our simple scenario with numerical values ranging from 0.0 up to 1.0 with a step of 0.001, a total
number of 1,000 different randomly generated hypervectors are required in order to uniquely represent
every numerical element in the hyperspace. These hypervectors are used to start encoding the dataset
and build the classification model.

2.2. Encoding Data and Building the Classification Model

Encoding the features in a dataset is as important as choosing the amount of HD-levels.
Additionally, for the numerical values representation of the observations, every feature must be
encoded in the HD space by randomly generating unique hypervectors. Both the HD-levels and the
feature hypervectors are essential to build the classification model, which is composed of a single
hypervector for each class in a dataset and is built by collapsing all the HD representation of the classes
observations. These last hypervectors are created by iterating over the values, one-by-one for each
feature, and rotating the HD-level vector related to the current value by n positions, where n is the
position of the feature among the whole list of features. Thus, the rotated HD-level vector must be
summed element-wise to the HD representation of the feature. This procedure has been previously
described in [27,28] with the name Ngram-based encoder. It consists of differentiating the feature
positions through the assignment of unique hypervectors that result from the permutation of the
feature HD representations, as described by Equation (2).

Oi
n = v1 + ρ1(v2) + ... + ρm−1(vm) (2)
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Equation (2) describes how a observation n, which belongs to the class i, is encoded in the HD space.
The ρ operator represents the rotation that must be applied k times, with k equaling to the position of
the feature, while v is the HD-level vector associated to a particular value. Finally, all of the resulting
HD vector representations of the observations are summed together composing the HD representation
of the class, as described with Equation (3).

Ci = Oi
1 + Oi

2 + ... + Oi
n (3)

In this equation, Ci is the HD representation of the class i, which is composed by applying the
element-wise sum of all HD vector representations of the observations assigned to the class i. The same
procedure is applied by grouping the observations assigned to different classes and can be generalised
with the pseudocode in Algorithm 1.

Algorithm 1 Encoding observations to class hypervectors

1: define iter as the maximum number of retraining iterations
2: Dataset is the input dataset
3: initialise Classes with the list of classes in Dataset
4: for Class in Classes do
5: vector ← [0 . . . 0]
6: for Obs in Class do
7: for i = 0, 1, . . . , m− 1 in Obs do
8: l ← get the level vector according to the Obs value in the i-th position
9: Rotate l by i positions

10: Element-wise sum l and vector
11: end for
12: end for
13: yield vector as the HD representation of Class
14: end for
15: for i = 0, ..., iter do
16: retrain the classes vectors until the accuracy will not change
17: end for

By performing the element wise sum of the vectors, the final HD representation of a class will
be very different from the single HD representation of the observations of that class. As described
below, the classification process works on computing the distance between the vectors. For this reason,
building the class hypervectors in this way could produce some wrong classification assignments
and decrease the accuracy. Thus, the final class HD vectors must be fixed by performing a simple
procedure, called retraining. After a HD representation of an observation is summed to the class HD
vector, the distance between the observation and all the classes vectors is computed. If it results to
be closest to the wrong class HD vector, then it must be element wise subtracted from all the classes
vectors, except from the correct one. It must be finally summed again to the correct class HD vector.
This procedure is repeated multiple times for all the observations until the ratio, which is defined as
the number of wrongly classified observations on the total amount of observation, will remain stable
between two consecutive iterations or will converge to zero.

2.3. Class Prediction

At this point, the classification model is ready to be tested. It is composed of the list of HD-levels
and one hyperdimensional vector for each of the classes in the original dataset. A simple inner
product between a testing observation and all the HD classes vectors must be performed in order
to test the effective classification power of this model. The closest class according to this distance
metric will be assigned to the observation vector. It is worth noting that the observation must be first
encoded exploiting the same encoding procedure and the same set of HD-levels used for building the
classification model.
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3. Results

In order to prove the validity of our algorithm, we relied on the third party FTP repository,
OpenGDC, which is a mirror of the GDC open accessible experimental and clinical data,
all standardised in BED (Browser Extensible Data format) and extended with the integration of
additional information retrieved from multiple data sources. The data in BED format are composed of
18 fields concerning information like the genomic coordinates of the CpG island, the name of the genes
whose region overlap with the involved CpG island, etc. Two fields of the BED experimental data are
relevant for our analysis, i.e., the composite_element_ref and beta_value, which contain the name/location
of the CpG island and the measure of the amount of methylated molecules on the specific CpG island
computed as previously described in Section 2.

We retrieved all of the DM experiments that were conducted on both normal and tumor tissues
for Breast Invasive Carcinoma (BRCA), Kidney Renal Papillary Cell Carcinoma (KIRP), and Thyroid
Carcinoma (THCA) tumors. Table 1 shows the number of samples and features for each of the datasets
involved in our study.

Table 1. Compact overview of the datasets.

Dataset Tumor Samples Normal Samples Features

BRCA 799 98 485,512
KIRP 276 45 485,512

THCA 515 56 485,512

We created a matrix, where every row represents a sample, every column a CpG island
(feature), and every element encodes the beta value (bv) of a particular region in a specific sample.
Finally, we added an additional column that represents the class of the samples (i.e., tumor or
normal) . An example of the final data matrix is illustrated in Table 2, where the number of columns
(i.e., the features m) is equal to 485,577.

Table 2. Data matrix of DNA methylation data.

Sample CpG Site1 CpG Site2 · · · CpG Sitem Class Label

S1 bv11 bv12 · · · bv1m normal
S2 bv21 bv22 · · · bv2m tumor
· · · · · · · · · · · · · · · · · ·
Sn bvn1 bvn2 · · · bvnm normal

For performing the supervised analysis, we randomly split the datasets by creating both the training
and the test sub-matrices following the 80–20% proportion. We analysed the content of the matrices
searching for the numerical precision used to represent the beta values. We found that these values are
represented up to the 14th decimal number, which should result in defining 1014 HD levels in order
to reflect the same precision in the hyperdimensional space. For obvious reason, maintaining 1014

hypervectors in memory requires a considerable amount of resources. Consequently, according to our
analysis, we decided to use 1000 HD levels to made the whole process more efficient in terms of space and
time by still maintaining a high precision, as demonstrated with the results that are highlighted below.
We built a HD model for each of the datasets using 10,000 as the dimension of the hyperspace, and we
finally test them with 100 retraining iterations. The results in terms of accuracy and both training and test
running time are exposed in Table 3. Our experimentation with the HD classifier was performed on a
consumer laptop with 8 GB of RAM and 1.2 GHz (Intel Core M) CPU using a single thread. To exclude
any doubt concerning overfitting, we validated our experiments by applying the same procedure ten
times on ten different randomly generated 80–20% training and test sets that were generated by random
sampling the original datasets considered in our analyses. In Table 3, we depict the achieved benchmarks
in terms of average training time, average classification time, and average accuracy.
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Table 3. Performance of the HD classification algorithm.

Dataset Retraining Avg. Training Time Avg. Classification Time Avg. Accuracy
Iterations ± Std.Dev (h) ± Std.Dev (s) ± Std.Dev (%)

BRCA 4 5.44 ± 0.37 3 ± 0.68 97.7 ± 0.54
KIRP 1 2.97 ± 0.12 1 ± 0.32 98.4 ± 1.36

THCA 7 3.68 ± 0.47 2 ± 0.53 100 ± 0.002

Moreover, we also tried to reduce the amount of HD levels to check whether we were able
to obtain comparable results by impacting on the memory required to store the levels dictionary.
We noticed that by dynamically reducing the hyperdimensional space by 1000 up to 1000 we were
able to still obtain great classification results in terms of accuracy for all three datasets. In particular,
we also tried to cut the amount of HD-levels by varying them up to 600 with a step of 100. With the
minimal amount of HD-levels and the lowest dimensionality of the HD space, we reached the 88.89%,
85.94%, and 90.35%, respectively, for BRCA, KIRP, and THCA, with a very high throughput in terms of
speed and memory usage by still maintaining a high accuracy rate. We suggest the reader to refer to
the Table 4 for a complete overview of our experimentation concerning the HD levels.

Table 4 shows that a low dimension of the HD vectors (1000) can produce an accuracy greater than
85% in all three datasets that are involved in our trials. For this reason, we further investigated how the
accuracy of our HD classifier can be affected by fixing the size of the HD vectors to 1000 and varying
the amount of HD-levels from 500 up to 1000 when considering a step of 100. It results in outstanding
performances in terms of computational time and good performance in terms of accuracy with all the
HD-levels configurations except for the lowest one of 500 that lowers the accuracy achievement for
both the BRCA and KIRP datasets, as exposed in Table 5.

To validate the proposed approach, we compare our results with other supervised machine learning
algorithms, one specifically designed for DNA methylation data and two other state-of-the-art ones.

The first experimentation is performed by applying BIGBIOCL [20] on the same datasets of this
study. It is worth noting that BIGBIOCL is a supervised classification algorithm based of Random
Forest, which has been designed to work specifically on omics data in distributed environments.
Indeed, it is able to process datasets with a massive amount of features in few hours by extracting
multiple alternative models by cutting out the features resulting significantly relevant in previous
iterations. BIGBIOCL is able to run hundred of classification iterations in a very limited time window
by distributing multiple jobs over the distributed computational environment. Additionally, in the case
of BIGBIOCL, the results have been validated ten times with different randomly generated training
(80%) ad test (20%) sets The results compared with the HD approach in terms of achieved accuracy
(and standard deviations) are shown in Table 6. For what concerns the computational time, both the
BIGBIOCL and HD approaches achieved comparable performances with in average 5.47 ± 0.37 and
4.21 ± 0.46 h for BRCA, 2.98 ± 0.12 and 2.13 ± 0.08 h for KIRP, and 3.70 ± 0.47 and 3.33 ± 0.13 for
THCA, respectively.
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Table 4. Benchmarks of the HD classification algorithm performances with different configurations
of HD vectors dimensionality and HD-levels with a maximum amount of 100 retraining iterations.
The best result achieved by the HD-classifier after the number of retraining iterations is shown.
The configurations that led to a classification accuracy greater than 80% have been highlighted.

Dataset HD Vectors HD-Levels Retraining Training Classification Accuracy
Dimensionality Iterations Time (h) Time (s) (%)

9000 900 100 10.53 6 56.11
9000 600 25 3.08 1 54.44
9000 500 100 3.07 6 57.78
7000 900 40 13.85 2 56.67
7000 700 52 5.08 3 57.78

BRCA 7000 500 82 2.94 4 59.44
5000 900 5 3.51 <1 51.11
5000 500 7 8.30 <1 48.89
3000 900 84 2.79 3 58.33
3000 500 85 3.34 3 61.11
1000 900 3 2.33 <1 88.89
1000 500 65 11.41 2 60.00

9000 900 94 3.67 2 64.06
9000 600 12 1.07 <1 57.81
9000 500 29 1.05 <1 59.38
7000 900 100 1.00 1 62.50
7000 700 69 1.00 1 62.50

KIRP 7000 500 2 0.98 <1 60.94
5000 900 25 0.94 <1 64.06
5000 500 38 0.93 <1 62.50
3000 900 94 0.82 1 62.50
3000 500 8 0.82 <1 60.94
1000 900 3 0.78 <1 85.94
1000 500 24 0.77 <1 59.38

9000 900 32 2.00 1 54.39
9000 600 18 2.10 <1 57.89
9000 500 38 2.07 1 59.65
7000 900 100 1.91 3 64.04
7000 700 50 1.95 1 61.40

THCA 7000 500 43 2.39 1 61.40
5000 900 22 1.71 <1 56.14
5000 500 26 1.69 <1 56.14
3000 900 5 1.87 <1 100.0
3000 500 61 1.62 1 62.28
1000 900 3 1.47 <1 90.35
1000 500 6 4.95 <1 99.12

It is worth noting that BIGBIOCL has been executed on one of the 66 nodes of the PICO cluster
of Cineca, which is the Italian inter-university consortium as well as the largest Italian computing
centre, allocating 18 out of 128 GB of RAM and seven threads of a 2.5 GHz Intel Xeon E5 2670 v2
CPU (20 cores), whereas HD-classifier on a consumer laptop allocating just one thread of the 1.2 GHz
(Intel Core M) CPU and 8GB of RAM.

Additionally, we compare our approach with a Decision Tree classifier (C4.5) and a Support Vector
Machine (SVM), two state-of-the-art classification algorithms. In order to perform these comparisons,
we applied the Weka software package [38] and tested the two classifiers on the BRCA dataset only
with ten different randomly generated training (80%) and test (20%) sets. We summarised the achieved
results with the SVM and the Decision Tree classifiers in Tables 7 and 8, respectively,( by varying
their parameters.
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Table 5. Benchmarks of the HD classification algorithm performances with different amounts of
HD-levels and HD vector dimensionality fixed to 1000 and 100 maximum retraining iterations. The best
result achieved by the HD-classifier after the number of retraining iterations is shown.

Dataset HD-Levels Retraining Training Classification Accuracy
Iterations Time (h) Time (s) (%)

1000 2 2.30 <1 88.89
900 3 2.33 <1 88.89
800 3 6.77 <1 88.89

BRCA 700 3 2.73 <1 88.89
600 3 4.76 <1 88.89
500 65 11.41 2 60.00

1000 3 0.78 <1 85.94
900 3 0.78 <1 85.94

KIRP 800 3 0.77 <1 85.94
700 3 0.77 <1 85.94
600 3 0.77 <1 85.94
500 24 0.77 <1 59.38

1000 3 1.38 <1 90.35
900 3 1.47 <1 90.35

THCA 800 3 1.37 <1 90.35
700 2 1.38 <1 90.35
600 2 1.35 <1 90.35
500 6 4.95 <1 99.12

Table 6. Comparison of HD-classifier vs. BIGBIOCL classifier on ten different randomly generated
training (80%) and test (20%) sets for each tumor dataset.

Dataset HD-Classifier BIGBIOCL
Avg. Accuracy ± Std.Dev (%) Avg. Accuracy ± Std.Dev (%)

BRCA 97.7 ± 0.54 98.0 ± 0.94
KIRP 98.4 ± 1.36 97.0 ± 2.04

THCA 100 ± 0.002 97.0 ± 0.03

It is worth noting that all the proposed comparisons have been performed in multithreading.
We tried to also repeat these experiments by running the sequential implementation of the classification
algorithms, with no results, even after days of computation. It is also worth to note that we were able
to perform our analyses with the HD classifier on a consumer laptop with 1.2 GHz (Intel Core M) CPU
and 8 GB of RAM in single thread, proving that the HD approach can handle massive datasets with
a very limited amount of computational resources.

Table 7. SVM classifier performance on the Breast Invasive Carcinoma (BRCA) dataset with ten
different randomly generated training (80%) and test (20%) sets.

Memory Threads Regularization Regularization Iterations Avg. Execution Avg.
Method Parameter Time (h) Accuracy ± Std.Dev (%)

12 GB 7 L2 1.0 100 2.05 ± 0.11 98.95 ± 1.54
12 GB 7 L2 1.0 200 3.53 ± 0.02 98.97 ± 2.04
12 GB 7 L1 0.1 100 1.67 ± 0.07 95.46 ± 0.63
12 GB 7 L1 0.1 200 1.32 ± 0.04 99.16 ± 1.35
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Table 8. Decision Tree classifier performance on the BRCA dataset with ten different randomly
generated training (80%) and test (20%) sets.

Memory Threads Max Max Impurity Avg. Execution Avg.
Depth Bins Time ± Std.Dev (min) Accuracy ± Std.Dev

5 GB 4 5 16 Gini 55.2 ± 3.02 98.51 ± 1.34
5 GB 4 5 32 Gini Out of Memory -
12 GB 7 5 32 Gini 68.19 ± 2.74 98.76 ± 0.83
12 GB 7 10 32 Gini 69.88 ± 3.68 99.20 ± 0.38
12 GB 7 5 8 Gini 11.52 ± 0.86 98.03 ± 2.17
18 GB 7 5 128 Gini Out of Memory -

4. Discussion, Conclusions, and Future Directions

Our approach for classifying tumor vs non tumor samples through their DNA methylation
data is proposed as a starting point for the application of HD computing to the life science
domain. Building a HD model is much easier than any other procedure involving state-of-the-art
classification algorithms, but we demonstrated that it can reach and overcome them in terms of
accuracy, running time, and memory usage. We want to highlight that our experiments have not been
performed in parallel. However, the proposed approach can be easily run in parallel on both CPU
and GPU architectures due to the nature of the HD paradigm [39,40]. This would drastically speed up
the procedure for building the classification model and the prediction of a class for new observations.
Moreover, because the HD-classifier is very sensitive and depends on the number of HD-levels used to
encode the data, a fine tuning procedure of the method is sometimes necessary in order to produce the
best results in term of accuracy. Indeed, we are currently working on a new method for the automatic
estimation of the best parameters for the HD algorithm in order to achieve the best performances in terms
of computational time, memory consumption, and accuracy. Additionally, our proposal can work on
pure classification tasks only, without extracting relevant features, as some supervised machine learning
algorithms can perform, e.g., rule- or tree-based classification algorithms. However, this functionality
can be possibly defined by analysing the content distribution of the HD representations of the classes
and identifying the features that are involved in the definition of patterns that can discriminate one
class from the others. These features correspond to specific CpG islands that are overlapped to the
genomic region of known genes. If the identified genes are known in literature to be responsible for the
advancement of a specific disease, our proposal could be adopted for diagnostic purposes.

To summarize, we presented a brain-inspired hyperdimensional classifier. The proposed approach
has been applied on three biological datasets concerning experiments that were conducted on both
healthy and diseased individuals affected by three different types tumors, e.g., Breast Invasive
Carcinoma (BRCA), Kidney Renal Papillary Cell Carcinoma (KIRP), and Thyroid Carcinoma (THCA).
We validated our method by comparing the achieved results with three different classification
algorithms, one specifically designed for omics data ( BIGBIOCL) and two state-of-the-art ones
(Decision Trees and Support Vector Machines). Our approach overcomes all of them in terms of
computational time, the amount of memory, and achieved accuracy, highlighting that it efficiently
manages massive datasets on consumer laptops with a very limited amount of computational resources.
Therefore, HD computing is a valid highly efficient alternative to state-of-the-art classification
algorithms. The very limited set of arithmetic operations required to encode a dataset, i.e., element
wise sum and subtraction of vectors, makes the HD-classifier the first candidate for the novel emergent
class of processors, which has the main goal of consuming just a small fraction of the energy actually
consumed from the current class of CPUs. Additionally, the promising results achieved in terms of
speed and accuracy make our approach a good candidate for quasi-real-time analytics applications in
healthcare and life sciences.

In the future, we plan to extend the experimentation on other omics datasets, in order to confirm
the validity of our approach. Additionally, we want to improve the computational performance of
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our classifier by implementing a multi-threading version of our algorithm through CPUs and GPUs
computing. Finally, we are investigating the possibility to use the vector representations of HD computing
to improve the feature selection step in supervised and unsupervised machine learning problems.
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to the immunophenotype-based prognosis of the B-cell chronic lymphocytic leukemia. Am. J. Hematol.
1998, 59, 143–148. [CrossRef]

23. Li, Y.; Tang, X.Q.; Bai, Z.; Dai, X. Exploring the intrinsic differences among breast tumor subtypes defined
using immunohistochemistry markers based on the decision tree. Sci. Rep. 2016, 6, 35773. [CrossRef]

24. Rahimi, A.; Kanerva, P.; Rabaey, J.M. A robust and energy-efficient classifier using brain-inspired
hyperdimensional computing. In Proceedings of the 2016 International Symposium on Low Power Electronics
and Design, San Francisco, CA, USA, 8–10 August, 2016; pp. 64–69.

25. Kanerva, P. Hyperdimensional computing: An introduction to computing in distributed representation with
high-dimensional random vectors. Cogn. Comput. 2009, 1, 139–159. [CrossRef]

26. Ge, L.; Parhi, K.K. Classification Using Hyperdimensional Computing: A Review. IEEE Circuits Syst. Mag.
2020, 20, 30–47. [CrossRef]

27. Imani, M.; Kong, D.; Rahimi, A.; Rosing, T. Voicehd: Hyperdimensional computing for efficient speech
recognition. In Proceedings of the 2017 IEEE International Conference on Rebooting Computing (ICRC),
Washington, DC, USA, 8–9 November 2017; pp. 1–8.

28. Imani, M.; Huang, C.; Kong, D.; Rosing, T. Hierarchical hyperdimensional computing for energy efficient
classification. In Proceedings of the 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
San Francisco, CA, USA, 24–28 June 2018; pp. 1–6.

29. Gupta, S.; Imani, M.; Rosing, T. Felix: Fast and energy-efficient logic in memory. In Proceedings of the
2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, CA, USA,
5–8 November 2018; pp. 1–7.

30. Imani, M.; Kim, Y.; Riazi, S.; Messerly, J.; Liu, P.; Koushanfar, F.; Rosing, T. A framework for collaborative
learning in secure high-dimensional space. In Proceedings of the 2019 IEEE 12th International Conference
on Cloud Computing (CLOUD), Milan, Italy, 8–13 July 2019; pp. 435–446.

31. Kim, Y.; Imani, M.; Rosing, T.S. Efficient human activity recognition using hyperdimensional computing.
In Proceedings of the 8th International Conference on the Internet of Things, Santa Barbara, CA, USA,
15–18 October 2018; pp. 1–6.

32. Datta, S.; Antonio, R.A.; Ison, A.R.; Rabaey, J.M. A programmable hyper-dimensional processor architecture
for human-centric IoT. IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 439–452. [CrossRef]

http://dx.doi.org/10.1016/j.gene.2004.02.043
http://www.ncbi.nlm.nih.gov/pubmed/15177689
http://dx.doi.org/10.1182/blood-2017-03-735654
http://dx.doi.org/10.1038/ng.2764
http://dx.doi.org/10.1177/117693510600200030
http://dx.doi.org/10.1016/j.ygeno.2014.07.004
http://dx.doi.org/10.1016/j.bdr.2018.02.005
http://dx.doi.org/10.1093/bioinformatics/btv635
http://dx.doi.org/10.1002/(SICI)1096-8652(199810)59:2<143::AID-AJH7>3.0.CO;2-Y
http://dx.doi.org/10.1038/srep35773
http://dx.doi.org/10.1007/s12559-009-9009-8
http://dx.doi.org/10.1109/MCAS.2020.2988388
http://dx.doi.org/10.1109/JETCAS.2019.2935464


Algorithms 2020, 13, 233 13 of 13

33. Burrello, A.; Schindler, K.; Benini, L.; Rahimi, A. One-shot learning for iEEG seizure detection using end-to-end
binary operations: Local binary patterns with hyperdimensional computing. In Proceedings of the 2018 IEEE
Biomedical Circuits and Systems Conference (BioCAS), Cleveland, OH, USA, 17–19 October 2018; pp. 1–4.

34. Imani, M.; Nassar, T.; Rahimi, A.; Rosing, T. Hdna: Energy-efficient dna sequencing using hyperdimensional
computing. In Proceedings of the 2018 IEEE EMBS International Conference on Biomedical & Health
Informatics (BHI), Las Vegas, NV, USA, 4–7 March 2018; pp. 271–274.

35. Kim, Y.; Imani, M.; Moshiri, N.; Rosing, T. GenieHD: Efficient DNA pattern matching accelerator using
hyperdimensional computing. In Proceedings of the 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Grenoble, France, 9–13 March 2020; pp. 115–120.

36. Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference
genome. BMC Bioinform. 2011, 12, 323. [CrossRef]

37. Du, P.; Zhang, X.; Huang, C.C.; Jafari, N.; Kibbe, W.A.; Hou, L.; Lin, S.M. Comparison of Beta-value and
M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform. 2010, 11, 587.
[CrossRef] [PubMed]

38. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software:
An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

39. Salamat, S.; Imani, M.; Khaleghi, B.; Rosing, T. F5-hd: Fast flexible fpga-based framework for refreshing
hyperdimensional computing. In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Seaside, CA, USA, 24–26 February 2019; pp. 53–62.

40. Imani, M.; Messerly, J.; Wu, F.; Pi, W.; Rosing, T. A binary learning framework for hyperdimensional
computing. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE), Florence, Italy, 25–29 March 2019; pp. 126–131.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/1471-2105-12-323
http://dx.doi.org/10.1186/1471-2105-11-587
http://www.ncbi.nlm.nih.gov/pubmed/21118553
http://dx.doi.org/10.1145/1656274.1656278
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Identifying HD-Levels
	Encoding Data and Building the Classification Model
	Class Prediction

	Results
	Discussion, Conclusions, and Future Directions
	References

