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Abstract: Dimensionality reduction research in data envelopment analysis (DEA) has focused on
subjective approaches to reduce dimensionality. Such approaches are less useful or attractive in practice
because a subjective selection of variables introduces bias. A competing unbiased approach would be to
use ensemble DEA scores. This paper illustrates that in addition to unbiased evaluations, the ensemble
DEA scores result in unique rankings that have high entropy. Under restrictive assumptions, it is
also shown that the ensemble DEA scores are normally distributed. Ensemble models do not require
any new modifications to existing DEA objective functions or constraints, and when ensemble scores
are normally distributed, returns-to-scale hypothesis testing can be carried out using traditional
parametric statistical techniques.

Keywords: data envelopment analysis; dimensionality reduction; ensembles; exhaustive state space
search; entropy

1. Introduction

Data envelopment analysis (DEA) is a prominent technique for the non-parametric relative
efficiency analysis of a set of decision-making units (DMUs) drawn from a similar production
process [1]. DEA models are used in both operation research and data mining literature [2]. Some of
the traditional properties of production functions, such as the monotonicity and convexity of the inputs
and outputs, that are fundamental in DEA models are often found to be attractive in some data mining
models where datasets are noisy and model resistance to learning noise is necessary [3]. An important
aspect of DEA models is the reliability of DMU efficiency scores. It is generally accepted that the DEA
efficiency estimates are reliable when the sample size is large [4]. Since the reliability of the DEA scores
is dependent on the sample size, Cooper et al. [5] have suggested the following rule for the minimum
number (n) of DMUs for reliable DEA analysis (each DMU has m inputs and s outputs):

n ≥ max
{
3(m + s), m× s

}
(1a)

For small-size datasets, where violations of the minimum number of DMUs specified by
Equation (1a) frequently occur, dimensionality reduction (also known as variable reduction
or variable selection) approaches are frequently used to select a subset of variables to satisfy
Equation (1a). A variety of variable selection approaches are available in the literature. Among these
variable selection approaches are statistical [6], regression [7], efficiency contribution measure [8],
bootstrapping [9], hypothesis testing [10], variable aggregation [11] and statistical experiment
designs [12]. Variable selection approaches are criticized extensively for applying parametric procedures
and linear relationship assumptions for selecting variables to determine an unknown non-linear
and non-parametric efficiency frontier. Nataraja and Johnson [13] provide a good description of some
of these procedures and their pros and cons.
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Pendharkar [14] proposed a competing approach to the dimensionality reduction/variable selection
problem called the ensemble DEA. In his approach, traditional DEA analysis is conducted for all
possible input and output combinations, and the efficiency scores of each DEA model for each DMU
are averaged as an ensemble efficiency score for a DMU. Drawing from machine learning literature,
Pendharkar [14] showed that the ensemble efficiency score is a reliable estimate of the “true” efficiency
of a DMU. Even for small datasets, certain combinations of inputs will satisfy the criterion set by
Equation (1a), while others will violate it, but the average ensemble score will be closer to the true
efficiency of the DMU and will be reliable. Pendharkar [14] also proposed an exhaustive search
procedure to generate all possible input and output combinations, and proposed a formula to compute
the number of unique DEA models that need to be run to compute an average ensemble score.
This number N of unique DEA models may be computed using the following formula:

N =

(∑m

i=1

(
m
i

))
×

(∑s

i=1

(
s
i

))
= (2m

− 1) × (2s
− 1). (1b)

Using Banker et al.’s [15] variable-returns-to-scale (VRS) DEA BCC model, and data and models
obtained from a few studies in the literature, Pendharkar [14] showed that the ensemble DEA model
provides a better ranking of DMUs than the models proposed in a few studies from the literature.

This research investigates the additional properties and statistical distribution of the ensemble
DEA model scores. It is shown that there are added benefits of ensemble efficiency scores. In particular,
the ensemble efficiency scores maximize entropy, meaning that the DMU ranking distribution
generated by the ensemble efficiency scores has a lower bias when compared to some competing radial
and non-radial variable selection models recently reported in the literature, and second, the ensemble
efficiency scores may be normally distributed under certain restrictive assumptions. The normal
distribution of the efficiency score feature is particularly attractive because returns-to-scale hypothesis
testing may be conducted by using traditional difference-in-means parametric statistical procedures.
Both of these features are tested using data and models reported in a published study [16]. The rest
of the paper is organized as follows: In Section 2, the basic DEA radial and non-radial models,
ensemble DEA model and Entropy criterion for comparing different DEA models are described.
In Section 3, using Iranian gas company data, the results of ensemble DEA models are compared
with the results of variable selection models used in Toloo and Babaee’s [16] study. Additionally,
in Section 3, the properties of the ensemble DEA scores are investigated in terms of the entropy criterion
and their statistical distributions. In Section 4, the paper concludes with a summary and directions for
future research.

2. DEA Preliminaries, Ensemble DEA Model, Entropy Criterion for DEA Model Comparisons
and Statistical Distribution of Ensemble Scores

The basic DEA model assumes n DMUs, with each DMU consisting of m different inputs that
produce s different outputs. The input and output vectors are semi-positive, and for DMUj (j = 1, . . . ,
n), the space for the input and output vectors (xj,yj) ε Rm+s

+ . For a DMUo, its relative efficiency may be
computed by using the linear programming model under the constant returns-to-scale assumption.
This efficiency is computed by solving the following model:

max
∑s

r=1
uryro, (2a)

subject to:
m∑

i=1

vixio = 1 (2b)

s∑
r=1

uryrj −

m∑
i=1

vixi j ≤ 0 f or all j = 1, . . . , n (2c)
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vi, ur ≥ ε f or all i = 1, . . . , m and r = 1, . . . , s (2d)

where vi and ur are the weights associated with the ith input and jth output, respectively. The constant ε
> 0 is infinitesimally non-Archimedean. The model (2a)–(2d) is often called the primary CCR model [1],
and its dual is written as follows:

minimize θ− ε
(∑m

i=1
s−i +

∑s

r=1
s+r

)
, . . . . . . (2e)

subject to:
n∑

j=1

λ jxi j + s−i = θxio, i = 1, . . . , m (2f)

∑n

j=1
λ jyrj − s+r = yro, r = 1, . . . , s, and (2g)

λ j, s−i , s+r ≥ 0 f or all i = 1, . . . , m; j = 1, . . . , n; r = 1, . . . , s (2h)

The VRS BCC model augments the system (2e)–(2h) by adding the following constraint:

n∑
j=1

λ j = 1

The aforementioned models are radial DEA models that are criticized for not providing
input or output projections (for inefficient DMUs) that satisfy Pareto optimality conditions [17].
Fare and Lovell [18] independently proposed radial DEA models that allow for input or output
reductions at variable rates. The radial version of the CCR model is mathematically represented in
the following dual form:

minimize
1
m

m∑
i=1

θi

subject to:
n∑

j=1

λ jxi j ≤ θixio, i = 1, . . . , m

n∑
j=1

λ jyrj ≥ yro, r = 1, . . . , s

θi ≤ 1, i = 1, . . . , m . . . . . .

λi ≥ 0, j = 1, . . . , n

Pendharkar [14] proposed an ensemble DEA model based on the popularity of ensemble models
in machine learning literature. The ensemble DEA model requires an exhaustive search procedure
using a binary vector z whose components indicate whether an input or output is considered in
performing DEA analysis. The dimension of this binary vector is (m + s). Figure 1 illustrates the z
vector and exhaustive search tree for two-input-and-one-output datasets. The exhaustive tree is pruned
(dotted edges) for models that have either no inputs or no outputs. DEA analysis is then conducted on
the remaining models, and the efficiency results of each model for each DMU are averaged and used
as ensemble DEA scores. To illustrate the ensemble DEA approach on a two-input-and-one-output
dataset, a CCR DEA analysis using partial Cobb–Douglas production function data on US economic
growth between 1899 and 1910 [19] is conducted. Table 1 illustrates the results of our DEA analysis
and resulting ensemble scores. The two inputs were labor in person-hours worked per year and the
amount of capital invested. The output was the total annual production. The results of the analysis
show that the traditional DEA with z = [111] does not provide unique rankings (for the years 1901
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and 1902 receive the same efficiency score), but the ensemble DEA model provides unique DMU
rankings. Pendharkar’s [14] study provides a theoretical basis for the reliability of ensemble DEA scores.
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Figure 1. Exhaustive Search Tree for possible unique combinations of two-input-one-output datasets.

Table 1. Ensemble data envelopment analysis (DEA) scores for 1899–1910 US economic growth data.

Year Production Labor Capital
DEA Model Efficiencies Ensemble

Scorez = [111] z = [101] z = [011]

1899 100 100 100 0.681 0.681 0.665 0.676
1900 101 105 107 0.722 0.722 0.678 0.707
1901 112 110 114 0.693 0.693 0.689 0.692
1902 122 117 122 0.693 0.681 0.693 0.689
1903 124 122 131 0.720 0.720 0.714 0.718
1904 122 121 138 0.770 0.770 0.758 0.766
1905 143 125 149 0.793 0.710 0.793 0.765
1906 152 134 163 0.809 0.730 0.809 0.783
1907 151 140 176 0.836 0.794 0.836 0.822
1908 126 123 185 1.000 1.000 1.000 1.000
1909 155 143 198 0.921 0.870 0.921 0.904
1910 159 147 208 0.941 0.891 0.941 0.924

The maximum entropy (ME) principle has been applied to DEA DMU ranking distribution [20]
and model comparisons [21]. The ME principle measures the DMU ranking bias by using a more general
family of distributions [22]. Several statistical distributions can be characterized as ME densities [23].
The ME distributions are the least biased distributions obtained by imposing moment constraints
that are inherent in the data [21]. To obtain the ME for a given set of DMUs and their efficiencies,

normalized ranks are first obtained by computing
θ∗i∑n

i=1 θ
∗

i
, for each DMU, and then computing the ME

for a certain model z as follows:

MEz = −
n∑

i=1

 θ∗i∑n
i=1 θ

∗

i

ln

 θ∗i∑n
i=1 θ

∗

i


The ME for the DEA models in Table 1 are ME111 = 2.4768, ME101 = 2.4775 and ME011 = 2.4757.

The model with labor as an input and production as an output (z = [101]) has the highest entropy
and has the least bias, with a maximum difference between DMU efficiencies for closely ranked
DMUs for the years 1901 and 1902. The ensemble entropy is 2.4769, and since it is an average of all
z-vector combinations, the comparison benchmark for ensemble entropy is the model with z = [111].
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The ensemble entropy is higher than the benchmark. The highest possible entropy value or upper
bound (UB) for a model is given by the following expression:

MEUB = −n×
((1

n

)
ln

(1
n

))
(2i)

The MEUB for the data in Table 1 is 2.485, and the ensemble entropy is very close to the maximum
value. It is important to note that obtaining the maximum value is not always desirable, but it provides
a theoretical benchmark estimate for a completely unbiased normalized DMU score distribution.

To compute ensemble efficiency scores, an n × m matrix E of DEA efficiency scores is necessary.
The rows of such a matrix are the numbers of DMUs, and the columns are the numbers of models given
by the numbers of eligible models considered in computing ensemble efficiency scores. This number
of eligible models will have an upper bound given by N, computed using Equation (1b). The elements
of this matrix will be efficiency scores for each DMU computed for a given model identified by column
number. Figure 2 illustrates a five-DMU-and-five-model matrix. The ensemble efficiency score (θE

i ) for
each DMU is computed using the following formula:

θE
i =

∑m
j=1 θ

∗

i j

m
(2j)
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Figure 2. An illustration of 5 × 5 ensemble efficiency score matrix.

A few observations can be made about any row i ε {1, . . . , n} of the ensemble efficiency score matrix.
First, all the elements of a given row are an independent computation of efficiency scores by the same
DMU under a different model number with its unique set of input(s) and output(s). Second, in all
the elements of a given row, the DMU is maximizing its efficiency given its model constraints. Thus,
each row represents independent evaluations by a DMU under the maximum decisional efficiency
(MDE) principle [24]. The MDE principle was introduced by Troutt [25] to develop a function to
the aggregate the performance of multiple decision-makers. The underlying assumption of the MDE
principle is that all decision-makers seek to maximize their decisional efficiencies. Troutt [26] later
used the MDE approach to rank DMUs and showed that DMUs deemed efficient under MDE are
also efficient when ranked using the DEA. For a linear aggregator function, such as the one used in
Equation (2j), Troutt [26] illustrated that the decisional efficiencies θ can be described by the following
probability density function (pdf):

g(θ) = cαeαθ, α > 0 and θ ∈ [0, 1] (2k)

The pdf in (2k) is monotone, increasing on its interval with a mode at θ = 1 (see Figure 5 for
illustration). Using the laws of probability, the value of cα = α (eα − 1)−1. Since each element in a
given row of the ensemble efficiency score matrix is an independent evaluation by a decision-maker
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(i.e., a DMU in an ensemble model) trying to maximize its decisional efficiency θ∗i j for j = {1, . . . , m},
the probability density function for each row (DMU) can be written as:

g(θi) = cαie
αiθi , αi > 0 and θi ε [0, 1] (2l)

The central limit theorem mentions that the cumulative distribution functions (cdfs) of the sums
of independently identically distributed random variables asymptotically converge to a Gaussian cdf.
The ensemble efficiency scores are normalized sums of independent efficiency assessments that will
be distributed with a pdf given by (2l). These sums can be considered independent and identically
distributed if α1 = α2 = . . . = αn. Under the restrictive assumption that α1 = α2 = . . . = αn, the ensemble
efficiency scores are guaranteed to asymptotically converge to a normal distribution by the central
limit theorem. In practice, however, the ensemble efficiency scores are not entirely random or perfectly
identically distributed (due to the slight likely variation of Equation (2l)’s αi parameters for each
row), and each ensemble model does introduce a degree of mild randomization. For mild differences
in the row pdf parameters αi, where α1 ≈ α2 ≈ . . . ≈ αn, the ensemble efficiency scores are likely to
be normally distributed. A reader may note that under ideal conditions, where α1 = α2 = . . . = αn

and individual DMU scores follow Equation (2l)’s distribution, the entropy of the ensemble scores will
be highest and close to the highest upper bound mentioned in Equation (2i) because the distribution in
Equation (2i) has a mode of 1 (see Figure 5). Thus, it may be argued that the likelihood of normality of
the ensemble scores increases when the entropy of the ensemble scores is closer to its upper bound given
by Equation (2i). It is important to note that an entropy equal to the exact value of the upper bound
given by Equation (2i) is undesirable because at that value, the distribution is a uniform distribution
where all the DMUs are fully efficient for all the models. The entropy of the pdf in Equation (2k) is
maximized on the interval [0, 1] when the mean of the distribution is greater than 0.5 [27]. Additionally,
another important aspect of the distribution of the ensemble efficiency scores is that both the rows
and columns of ensemble efficiency scores (Figure 2) play a role in the pdf of the ensemble efficiency
scores because the rows represent sampling from the MDE distributions and the columns represent
sampling from the distribution of the sums of independent variables. Larger sample sizes increase
the statistical reliability and robustness of the results.

3. Comparing Variable Selection Models and Ensemble Model Using Gas Company Data
and Entropy Criterion

For small datasets, many input or output variables are aggregated so that the selected variables
satisfy the heuristic given in Equation (1a). There are two problems with all the variable selection
approaches. First, they use an artificial criterion to select variables for a non-linear and non-parametric
approach. Any artificial/subjective criterion will make some assumptions that are harder to justify.
Second, these techniques have several selection parameters and thresholds that often lead to
inconsistencies in applying these techniques. For example, Toloo and Babaee [16] illustrate three
problems with a variable selection approach and suggested an improved approach. By contrast,
the ensemble DEA approach does not make any assumptions, and for small datasets, trying out
different input and output combinations and aggregating efficiency scores provide more reliable
efficiency estimates than variable selection models. Part of the reason for the stability of ensemble DEA
efficiency scores is that, even for small datasets, some DEA models in an ensemble will always satisfy
the heuristic given in Equation (1a), which will increase the reliability of the ensemble efficiency scores
due to model averaging. This stability of ensemble efficiency scores is illustrated by comparing ensemble
scores with the results of models from Toloo and Babaee’s [16] study and using the entropy criterion.

To compare the results, the dataset from Toloo and Babaee’s [16] study is used. The dataset consists
of three inputs and four outputs from an Iranian gas company. The inputs are budget (x1), staff (x2)
and cost (x3). The outputs are customers (y1), the length of the gas network (y2), the volume delivered
(y3) and gas sales (y4). Table 2 lists these data. Table 3 lists the efficiency scores of the ensemble DEA
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with the CCR and BCC models and models used by Toloo and Babaee [16]. Using formula (1b), a total
of 105 unique DEA models were used to compute the DEA ensemble efficiency score.

Table 2. The Iranian gas company dataset.

DMU x1 x2 x3 y1 y2 y3 y4

1 177,430 401 528,325 801 41,675 77,564 201,529
2 221,338 1094 1,186,905 803 34,960 44,136 840,446
3 267,806 1079 1,323,325 251 24,461 27,690 832,616
4 160,912 444 648,685 816 23,744 45,882 251,770
5 177,214 801 909,539 654 36,409 72,676 443,507
6 146,325 686 545,115 177 18,000 19,839 341,585
7 195,138 687 790,348 695 31,221 40,154 233,822
8 108,146 152 236,722 606 23,889 37,770 118,943
9 165,663 494 523,899 652 25,163 28,402 179,315

10 195,728 503 428,566 959 43,440 63,701 195,303
11 87,050 343 298,696 221 9689 17,334 106,037
12 124,313 129 198,598 565 21,032 30,242 61,836
13 67,545 117 131,649 152 10,398 14,139 46,233
14 47,208 165 228,730 211 9391 13,505 42,094

Table 3. The results of experiments.

DMU Ensemble CCR Ensemble BCC Non-Radial & Radial &

1 0.87 (0.15) 0.95 (0.11) 0.98 0.75
2 0.75 (0.30) 0.77 (0.28) 1 1
3 0.61 (0.36) 0.62 (0.36) 0.9 0.82
4 0.71 (0.19) 0.8 (0.19) 0.79 0.63
5 0.77 (0.22) 0.82 (0.21) 0.95 0.83
6 0.58 (0.27) 0.64 (0.27) 0.76 0.64
7 0.54 (0.16) 0.57 (0.14) 0.57 0.47
8 0.98 (0.08) 0.99 (0.04) 1 1
9 0.57 (0.14) 0.6 (0.14) 0.61 0.46

10 0.86 (0.18) 0.96 (0.11) 0.85 0.77
11 0.47 (0.12) 0.63 (0.14) 0.55 0.46
12 0.93 (0.15) 0.96 (0.11) 1 1
13 0.63 (0.13) 0.96 (0.09) 0.68 0.51
14 0.6 (0.24) 0.86 (0.17) 0.56 0.51

& Results taken from Toloo and Babaee’s [16] study.

The entropies of the Ensemble CCR, Ensemble BCC, Non-Radial and Radial models were 2.616,
2.621, 2.615 and 2.599, respectively. The MEUB from Equation (2i) is 2.639. Comparing the Ensemble
CCR with the Non-Radial and Radial CCR models shows that the Ensemble CCR model has a
higher entropy. Only the VRS Ensemble BCC model has a higher entropy than the Ensemble CCR
model. The standard deviations of the Ensemble BCC model are mostly lower than the CCR model’s
as well. More importantly, the Ensemble CCR model generates unique rankings for the DMUs,
whereas the Non-Radial and Radial models generate a tie for three DMUs. The Ensemble BCC model
also generates unique rankings, but the differences occur at the third decimal place. The Ensemble
BCC efficiency scores for DMU 10, 12 and 13 were 0.960, 0.959 and 0.962, respectively.

Figures 3 and 4 illustrate the numbers of models (out of 105 total models) where a DMU was
fully efficient. These figures are useful for understanding to what extent the assumption α1 ≈ α2 ≈ . . .
≈ αn was satisfied for the theoretical normal distribution of the ensemble efficiency scores. For these
parameters to be similar, the expectation is that a similar number of fully efficient DMUs should exist
across all models. Clearly, some DMUs are never fully efficient under any of 105 models and the
assumption of identical distributions is violated. While the assumption is violated, Figure 4 illustrates
that some DMUs, e.g., 1, 8, 10, 12 and 13, have a somewhat similar number of fully efficient DMUs
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to others. These ensemble scores of these DMUs may be considered as normalized random sums
generated from identical distributions (such as Distribution 1). All of these DMUs have ensemble
efficiency scores greater than 0.95. Similarly, DMUs 5, 6 and 11, in Figure 4, have no fully efficient
scores, and these may also be considered as random normalized sums generated from identically
distributed pdfs (such as Distribution 2).
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Figure 3. Number of times a DMU is fully efficient in Ensemble CCR models.
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Figure 4. Number of times a DMU is fully efficient in Ensemble BCC models.

The ensemble scores for this dataset appear to be random normalized sums from two or more
pdfs of the forms given in Equation (2k). Given that these are independent random normalized sums,
it can be easily shown that the product of two or more independent MDE pdfs is also an MDE pdf.
Figure 5 illustrates two sample MDE pdfs for two different values of alpha. The entropy of an MDE
pdf is maximized when the mean of a distribution is greater than 0.5 [27]. For the ensemble BCC
model, from Table 3, this criterion is satisfied. The lowest value of the ensemble BCC score is 0.57,
which is greater than the mean of 0.5 required to maximize entropy and higher than the lowest values
for the efficiency scores for the radial, non-radial and ensemble CCR models. As a result, the ensemble
BCC model appears to maximize its entropy slightly better than the ensemble CCR model.
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While ensemble scores have a minor violation of an identical distribution for some DMUs, a formal
test of the normality of the distribution of the ensemble efficiency scores was conducted. Table 4
illustrates the results of these tests. The Shapiro–Wilk statistic for the Ensemble CCR model is 0.944,
and that for the Ensemble BCC model is 0.876, which, at 14 degrees of freedom, are non-significant,
consistent the null hypothesis that the efficiency score distribution is normally distributed at the 95%
level of statistical significance.

Table 4. The results of normality tests.

Kolmogorov–Smirnov Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Ensemble BCC 0.196 14 0.149 0.876 14 0.051
Ensemble CCR 0.182 14 0.200 0.944 14 0.477

A paired sample t-test for the difference in mean efficiency scores between the Ensemble CCR
and the Ensemble BCC models gives a |t|-value of 3.524, which is significant at the 99% level of statistical
significance (df = 13), indicating that a variable returns-to-scale relationship exists between inputs
and outputs. The normality of the ensemble efficiency score distributions increases the power of
parametric statistical tests.

4. Summary, Conclusions and Directions for Future Work

A significant amount of research in the DEA literature has focused on dimensionality
reduction/variable selection techniques for small datasets. These techniques are often criticized
and have their limitations, with no clear way of selecting which technique is the best. A better approach
would be to use an ensemble DEA score that does not make any additional assumptions and provides
models that have high entropy values and normally distributed scores under restrictive assumptions.
Pendharkar [14], in his study, has already provided a theoretical foundation for the reliability of
ensemble DEA scores. The added benefit of ensemble DEA scores is that they provide unique
DMU rankings.

The normality of ensemble DEA scores is not guaranteed unless the ensemble DEA scores are
normalized sums generated from independent identically distributed MDE pdfs. This assumption
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may not be strictly satisfied in most real-world datasets, but the current study shows that minor
deviation from this assumption may be tolerated because the entropy of all MDE pdfs is maximized
when normalized sums have a value greater than 0.5. This means that, typically, the differences in
means between the underlying pdfs (Equation (2l)) for ensemble entropy scores will be less than 0.5,
and, while these pdfs may not be identically distributed, the means of these distributions will be close,
resulting in the likely normal distribution of ensemble scores in most real-world cases. The normality
of ensemble DEA scores allows for the application of traditional statistical tests for return-of-scales
hypothesis tests. Traditional DEA hypothesis-testing methods are not perfect and are known to be
slightly biased [28]. Future research may focus on comparing ensemble DEA-based hypothesis testing
with traditional DEA hypothesis testing to identify which method provides reliable results.
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