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Abstract: In the large scale canonical correlation analysis arising from multi-view learning applications,
one needs to compute canonical weight vectors corresponding to a few of largest canonical
correlations. For such a task, we propose a Jacobi–Davidson type algorithm to calculate canonical
weight vectors by transforming it into the so-called canonical correlation generalized eigenvalue
problem. Convergence results are established and reveal the accuracy of the approximate canonical
weight vectors. Numerical examples are presented to support the effectiveness of the proposed method.
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1. Introduction

Canonical correlation analysis (CCA) is one of the most representative two-view multivariate
statistical techniques and has been applied to a wide range of machine learning problems including
classification, retrieval, regression and clustering [1–3]. It seeks a pair of linear transformations for two
view high-dimensional features such that the associated low-dimensional projections are maximally
correlated. Denote the data matrices Sa ∈ Rm×d and Sb ∈ Rn×d from two data sets with m and n
features, respectively, where d is the number of samples. Without loss of generality, we assume Sa and
Sb are centered, i.e., Sa1d = 0 and Sb1d = 0 where 1d ∈ Rd is the vector of all ones, otherwise, we can
preprocess Sa and Sb as Sa ← Sa − 1

d (Sa1d)1T
d and Sb ← Sb − 1

d (Sb1d)1T
d , respectively. CCA aims to

find a pair of canonical weight vectors x ∈ Rm and y ∈ Rn that maximize the canonical correlation

max xTCy, subject to xT Ax = 1 and yTBy = 1, (1)

where
A = SaST

a ∈ Rm×m, B = SbST
b ∈ Rn×n and C = SaST

b ∈ Rm×n, (2)

and then projects the high-dimensional data Sa and Sb onto low-dimensional subspaces spanned by x
and y, respectively, to achieve the purpose of dimensionality reduction. In most cases [1,4,5], only one
pair of canonical weight vectors is not enough since it means the dimension of low-dimensional
subspaces is just one. When a set of canonical weight vectors are required, the single-vector CCA (1)
has been extended to obtain the pair of canonical weight matrices X ∈ Rm×k and Y ∈ Rn×k by solving
the optimization problem

max trace(XTCY), subject to XT AX = Ik and YTBY = Ik. (3)

Usually, both A and B are symmetric positive definite. However, there are cases, such as the under-sampled
problem [6], that A and B may be semi-definite. In such a case, some regular techniques [7–10] by
adding a multiple of the identity matrix to them are applied to find the optimal solution of
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max trace(XTCY), subject to XT(A + κa Im)X = Ik and YT(B + κb In)Y = Ik,

where κa and κb are called regularization parameters and they usually are chosen to maximize the
cross-validation score [11]. In other words, A and B are replaced by A + κa Im and B + κb In to keep
the invertible of A and B, respectively. Hence, in this paper, by default we assume A and B are both
positive definite and m ≥ n unless explicitly stated otherwise.

As shown in [4], the optimization problem (3) can be equivalently transformed into solving the
following generalized eigenvalue problem

Kz :=

[
0 C

CT 0

] [
x
y

]
= λ

[
A 0
0 B

] [
x
y

]
= λMz, (4)

where the positive definiteness of the matrices A and B implies M being positive definite.
The generalized eigenvalue problem (4) is referred as the Canonical Correlation Generalized Eigenvalue

Problem (CCGEP) in this paper. Define J :=

[
R−1

A 0
0 R−1

B

]
where

A = RT
A RA and B = RT

B RB (5)

are their Cholesky decomposition. It is easy to verify that

JT

[
0 C

CT 0

]
J J−1

[
x
y

]
= λJT

[
A 0
0 B

]
J J−1

[
x
y

]

gives rise to [
0 C̃

C̃T 0

] [
p
q

]
= λ

[
p
q

]
, (6)

where
C̃ = R−T

A CR−1
B , p = RAx and q = RBy, (7)

and it implies
C̃q = λp and C̃T p = λq.

It means that the eigenpairs of (4) can be obtained by computing the singular values and the
associated left and right singular vectors of C̃. This method works well when the sample size
d and feature dimension m and n are of moderate size but it will be very slow and numerically
unstable for large-scale datasets which are ubiquitous in the age of “Big Data” [12]. For large-scale
datasets, the equivalence between (4) and (6) makes it possible for us to simply adapt the subspace
type algorithms for calculating the partial singular values decomposition, such as Lanczos type
algorithms [13,14] and Davidson type algorithms [15,16], and then translate them for CCGEP (4).
However, in practice, the decompositions of the sample covariance matrices A and B are usually
unavailable in large scale matrix cases. The reason is that the decomposition is too expensive to
compute explicitly for large scale problems, and may destroy the sparsity and some structural
information. Furthermore, sometime sample covariance matrices A and B should never be explicitly
formed, such as in online learning systems.

Meanwhile, in [17], it is suggested to solve CCGEP (4) by considering the large scale symmetric
positive definite pencil {K, M}. Some subspace type numerical algorithms also have been generalized
to computing partial eigenpairs of {K, M}, see [18,19]. However, these generic algorithms do not make
use of the special structure in (4), and they usually are less efficient than custom-made algorithms.
Therefore, existing algorithms either can not avoid the covariance matrices decomposition, or do not
consider the structure of CCGEP.
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In this paper, we will focus on the Jacobi–Davidson type subspace method for canonical correlation
analysis. The idea of Jacobi–Davidson algorithm proposed in [20] is Jacobi’s approach combined with
Davidson type subspace method. Its essence is to construct a correction for a given eigenvector
approximation in a subspace orthogonal to the given approximation. The correction in a given
subspace is extracted in a Davidson manner, and then the expansion of the subspace is done by solving
its correction equation. Due to the significant improvement in convergence, the Jacobi–Davidson has
been one of the most powerful algorithms in the matrix eigenvalue problem, and is almost generalized
to all fields of matrix computation. For example, in [15,21], Hochstenbach presented Jacobi–Davidson
methods for singular value problems and generalized singular value problems, respectively. In [22,23],
Jacobi–Davidson methods are developed to solve the nonlinear and two-parameter eigenvalue
problems, respectively. Some other recent work on Jacobi–Davidson methods can be found in [24–29].
Motivated by these facts, we will continue the effort by extending the Jacobi–Davidson variant to
canonical correlation analysis. The main contribution is that the algorithm directly tackles CCGEP (4)
without involving the large matrix decomposition, and does take advantage of the special structure of
K and M, while the significance of transforming (4) into (6) lies only in our theoretical developments.

The rest of this paper is organized as follows. Section 2 collects some notations and a basic result
for CCGEP that are essential to our later development. Our main algorithm is given and analyzed in
detail in Section 3. We present some numerical examples in Section 4 to show the behaviors of our
proposed algorithm and to support our analysis. Finally, conclusions are made in Section 5.

2. Preliminaries

Throughout this paper, Rm×n is the set of all m× n real matrices, Rm = Rm×1, and R = R1. In is
the n× n identity matrix. The superscript “·T” takes transpose only, and ‖ · ‖1 denotes the `1-norm of
a vector or matrix. For any matrix N ∈ Rm×n with m ≥ n, σi(N) for i = 1, . . . , n is used to denote the
singular values of N in descending order.

For vectors x, y ∈ Rn, the usual inner product and its induced norm are conveniently defined by

〈x, y〉 := yTx, ‖x‖2 :=
√
〈x, x〉.

With them, the usual acute angle 6 (x, y) between x and y can then be defined by

6 (x, y) := arccos
|〈x, y〉|
‖x‖2‖y‖2

.

Similarly, given any symmetric positive definite W ∈ Rn×n, the W-inner product and its induced
W-norm are defined by

〈x, y〉W := yTWx, ‖x‖W :=
√
〈x, x〉

W
.

If 〈x, y〉W = 0, then we say x ⊥W y or y ⊥W x. The W-acute angle 6 W(x, y) between x and y can
then be defined by

6
W(x, y) := arccos

|〈x, y〉W |
‖x‖W‖y‖W

.

Let the singular value decomposition of C̃ be C̃ = PΛQT where P = [p1, . . . , pm] ∈ Rm×m and
Q = [q1, . . . , qn] ∈ Rn×n are orthonormal, i.e., PTP = Im and QTQ = In, and Λ = diag(λ1, . . . , λn) ∈
Rm×n with λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 is a leading diagonal matrix. The singular value decomposition of
C̃ closely relates to the eigendecomposition of the following symmetric matrix [30] (p. 32):[

0 C̃
C̃T 0

]
, (8)
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whose eigenvalues are ±λi for i = 1, . . . , n plus m− n zeros, i.e.,

− λ1 ≤ · · · ≤ −λn ≤ 0 ≤ · · · ≤ 0︸ ︷︷ ︸
m−n

≤ λn ≤ · · · ≤ λ1, (9)

with associated eigenvectors are[
pi
±qi

]
, i = 1, 2, . . . , n, and

[
pi
0

]
, i = n + 1, . . . , m,

respectively. The equivalence between (4) and (6) leads that the eigenvalues of CCGEP (4) are ±λi for
i = 1, . . . , n plus m− n zeros, and the corresponding eigenvectors are[

xi
±yi

]
, i = 1, 2, . . . , n, and

[
xi
0

]
, i = n + 1, . . . , m,

respectively, where
xi = R−1

A pi and yi = R−1
B qi. (10)

Let X = [x1, . . . , xm] and Y = [y1, . . . , yn]. Then, the A- and B-orthonormal constraints of X and Y,
respectively, i.e.,

XT AX = Im and YTBY = In (11)

are followed by PTP = Im and QTQ = In. Here, the first few xi and yi for i = 1, 2, . . . , k with k < n are
wanted canonical correlation weight vectors. Furthermore, their corresponding eigenvalues satisfy
the following maximization principle which is critical to our later developments. For the proof see
Appendix A.1.

Theorem 1. The following equality holds for any U ∈ Rm×k and V ∈ Rn×`

min{k,`}

∑
i=1

λi = max
UT AU=Ik , VTBV=I`

min{k,`}

∑
i=1

σi
(
UTCV

)
, (12)

where A, B and C are defined in (2) and λi defined in (9), and σi(UTCV) for 1 ≤ i ≤ min{k, `} are the
singular values of UTCV.

3. The Main Algorithm

The idea of the Jacobi–Davidson method [20] is to construct iteratively approximations of certain
eigenpairs. It uses solving a correction equation to expand the search subspace, and finds approximate
eigenpairs as best approximations in such search subspace.

3.1. Subspace Extraction

Let X ⊆ Rm and Y ⊆ Rn with dim(X ) = k and dim(Y) = `, respectively. As stated in [31],
we call {X ,Y} a pair of defalting subspaces of CCGEP (4) if

CY ⊆ AX and CTX ⊆ BY . (13)

Let X ∈ Rm×k and Y ∈ Rn×` be A- and B-orthonormal basis matrices of the subspaces X and Y ,
respectively, i.e.,

XT AX = Ik and YTBY = I`.
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The equality (13) implies that there exist DA ∈ Rk×` and DB ∈ R`×k [32] (Equation (2.11)) such that

CY = AXDA and CTX = BYDB. (14)

They imply DA = XTCY = (YTCTX)T = DT
B . So (14) is equivalent to

CY = AXDA and CTX = BYDT
A .

Now if (λ, x̂, ŷ) is a singular triplet of DA, then (λ, z) gives an eigenpair of (4), where z = [xT, yT]T,
x = Xx̂ and y = Yŷ. This is because

Cy = C(Yŷ) = (CY)ŷ = AXDAŷ = λAXx̂ = λAx.

and similarly CTx = λBy. That means[
0 C

CT 0

] [
x
y

]
= λ

[
A 0
0 B

] [
x
y

]
.

Hence, we have shown that a pair of deflating subspaces {X ,Y} can be used to recover those
eigenpairs associated with the pair of deflating subspaces of CCGEP (4). In practice, pairs of exact
deflating subspaces are usually not available, and one usually use Lanczos type methods [14] or
Davidson type methods [15] to generate approximate ones, such as Krylov subspaces in Lanczos
method [33]. Next, we will discuss how to extract best approximate eigenpairs from a given pair of
approximate deflating subspaces.

In what follows, we consider the simple case: k = `. Suppose {U ,V} is an approximation of a
pair of deflating subspaces {X ,Y} with dim(U ) = dim(V) = k. Let U ∈ Rm×k and V ∈ Rn×k be the
A- and B-orthonormal basis matrices of the subspaces U and V , respectively. Denote θi, i = 1, 2, . . . , k
the singular values of UTCV in descending order with associated left and right singular vectors ûi and
v̂i, respectively, i.e.,

(UTCV)v̂i = θiûi and (UTCV)Tûi = θi v̂i, for 1 ≤ i ≤ k.

Even though U and V as A- and B-orthonormal basis matrices are not unique, these θi are.
Motivated by the maximization principle in Theorem 1, we would seek the best approximations
associated with the pair of approximate deflating subspaces {U ,V} to the eigenpairs (λi, zi) (1 ≤ i ≤
j ≤ k) in the sense of

max
j

∑
i=1

σi(ŨT
j CṼj). (15)

for any Ũj ∈ Rm×j and Ṽj ∈ Rn×j satisfying span(Ũj) ⊆ U , span(Ṽj) ⊆ V and ŨT
j AŨj = ṼT

j BṼj = Ij.

We claim that the quantity in (15) is given by ∑
j
i=1 θi. To see this, we notice that any Ũj and Ṽj in (15)

can be written as
Ũj = UÛj and Ṽj = VV̂j

for some Ûj ∈ Rk×j and V̂j ∈ Rk×j with ÛT
j Ûj = V̂T

j V̂j = Ij, and vice versa. Therefore the quantity
in (15) is equal to

max
ÛT

j Ûj=V̂T
j V̂j=Ij

j

∑
i=1

σi(ÛTUTCVV̂),

which is ∑
j
i=1 θi by the proposition of the singular value decomposition of UTCV [30]. The maximum is

attended at Ûj = [û1, û2, . . . , ûj] and V̂j = [v̂1, v̂2, . . . , v̂j]. Therefore naturally, the best approximations
to (λi, zi) (1 ≤ i ≤ j) in the sense of (15) are given by
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(θi, z̃i), where z̃i =

[
x̃i
ỹi

]
, x̃i = Uûi and ỹi = Vv̂i. (16)

Define the residual

ri := Kz̃i − θi Mz̃i =

[
0 C

CT 0

] [
x̃i
ỹi

]
− θi

[
A 0
0 B

] [
x̃i
ỹi

]
=

[
r(i)

a

r(i)
b

]
, (17)

where K and M defined in (4), r(i)
a = Cỹi − θi Ax̃i and r(i)

b = CT x̃i − θiBỹi. It is noted that

UTr(i)
a = UT(Cỹi − θi Ax̃i) = UTCVv̂i − θiUT AUûi = 0

and similarly VTr(i)
b =0. We summarize what we do in this subsection in the following theorem.

Theorem 2. Suppose {U ,V} is a pair of approximate deflating subspaces with dim(U ) = dim(V) = k.
Let U ∈ Rm×k and V ∈ Rn×k be the A- and B-orthonormal basis matrices of the subspaces U and V ,
respectively. Denote θi, i = 1, 2, . . . , k the singular values of UTCV in descending order. Then, for any j ≤ k,

j

∑
i=1

θi = max
span(Ũj)⊆U ,span(Ṽj)⊆V

ŨT
j AŨj=ṼT

j BṼj=Ij

j

∑
i=1

σi(ŨT
j CṼj),

the best approximations to the eigenpairs (λi, zi) (1 ≤ i ≤ j) in the sense of (15) are (θi, z̃i) (1 ≤ i ≤ j) given
by (16), and the associated residuals defined in (17) admit r(i)

a ⊥ U and r(i)
b ⊥ V .

3.2. Correction Equation

In this subsection, we turn to construct a correction equation for a given eigenpair approximation.
Suppose (θ, [x̃T, ỹT]T) with x̃T Ax̃ = ỹTBỹ = 1 is an approximation of the eigenpair (λ, [xT, yT]T) of
CCGEP (4), and [rT

a , rT
b ]

T is the associated residual. We seek A- and B-orthogonal modifications of x̃
and ỹ, respectively, such that [

0 C
CT 0

] [
x̃ + s
ỹ + t

]
= λ

[
A 0
0 B

] [
x̃ + s
ỹ + t

]
, (18)

where s ⊥A x̃ and t ⊥B ỹ. Then, by (18), we have[
−λA C

CT −λB

] [
s
t

]
= −

[
ra

rb

]
+ (λ− θ)

[
A 0
0 B

] [
x̃
ỹ

]
. (19)

Notice that ra ⊥ x̃ and rb ⊥ ỹ by Theorem 2, which gives rise to[
Im − Ax̃x̃T 0

0 In − BỹỹT

] [
ra

rb

]
=

[
ra

rb

]
,

[
Im − Ax̃x̃T 0

0 In − BỹỹT

] [
Ax̃
Bỹ

]
= 0,

and [
Im − Ax̃x̃T 0

0 In − BỹỹT

] [
−λA C

CT −λB

] [
s
t

]
= −

[
ra

rb

]
. (20)

Because s ⊥A x̃ and t ⊥B ỹ, Equation (20) is rewritten as[
Im − Ax̃x̃T 0

0 In − BỹỹT

] [
−λA C

CT −λB

] [
Im − x̃x̃T A 0

0 In − ỹỹTB

] [
s
t

]
= −

[
ra

rb

]
. (21)
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However, we do not know λ here. It is natural that we use θ to replace λ in (21) to get the final
correction equation, i.e.,[

Im − Ax̃x̃T 0
0 In − BỹỹT

] [
−θA C
CT −θB

] [
Im − x̃x̃T A 0

0 In − ỹỹTB

] [
s
t

]
= −

[
ra

rb

]
. (22)

We summarize what we have so far into Algorithm 1, and make a few comments on Algorithm 1.

(1) At step 2, A- and B-orthogonality procedures are applied to make sure UT At̃ = 0 and VTBs̃ = 0.
(2) At step 7, in most cases, the correct equation is not necessity to solve exactly. Some steps

of iterative methods for symmetric linear systems, such as linear conjugate gradient method
(CG) [34] or the minimum residual method (MINRES) [35], are sufficient. Usually, more steps in
solving the correction equation lead to fewer outer iterations. This will be shown in numerical
examples.

(3) For the convergence test, we use the relative residual norms

η(θi, z̃i) :=
‖r(i)

a ‖1 + ‖r(i)
b ‖1

(‖C‖1 + θi‖A‖1)‖x̃i‖1 + (‖C‖1 + θi‖B‖1)‖ỹi‖1
(23)

to determine if the approximate eigenparis (θi, z̃i) has converged to a desired accuracy. In addition,
in the practical implementation, once one or several of approximate eigenpairs converge to a
preset accuracy, they should be deflated so that they will not be re-computed in the following
iterations. Suppose λi for 1 ≤ i ≤ j, Xj = [x1, . . . , xj] and Yj = [y1, . . . , yj] have been computed
where j ≤ k. We can consider the generalized eigenvalue problem

K̃z = λMz, (24)

where

K̃ =

[
Im − AXjXT

j 0
0 In − BYjYT

j

] [
0 C

CT 0

] [
Im − XjXT

j A 0
0 In −YjYT

j B

]
. (25)

By (11), it is clear that the eigenvalues of (24) consist of two groups. Those eigenvalues associated
with the eigenvectors [xT

1 , yT
1 ]

T, . . . , [xT
j , yT

j ]
T, [xT

1 ,−yT
1 ]

T, . . . , [xT
j ,−yT

j ]
T are shifted to zero and the

others remain unchanged. Furthermore, for the correction equation, we find s and t subject to
additional A- and B-orthogonality constrains for s and t against Xj and Yj, respectively. By a
similar derivation of (22), the correction equation after deflation becomes[

Im − Ax̃x̃T 0
0 In − BỹỹT

] [
−θ1 A Ĉ

ĈT −θ1B

] [
Im − x̃x̃T A 0

0 In − ỹỹTB

] [
s
t

]
= −

[
r(1)

a

r(1)
b

]
, (26)

where Ĉ = (Im − AXjXT
j )C(In − YjYT

j B). Notice that s ⊥A Xj and t ⊥B Yj mean U ⊥A Xj and

V ⊥B Yj in Algorithm 1, respectively. It follows that UTĈV = UTCV.
(4) At step 5, LAPACK’s routine xGESVD can be used to solve the singular value problem of UTCV

because of its small size, where UTCV takes the following form:
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UTCV =

This form is preserved in the algorithm during refining the basis U and V at step 8. The new
basis matrices UÛ and VV̂ are reassigned to U and V, respectively. Although a few extra costs
are incurred, this refinement is necessary in order to have faster convergence for eigenvectors as
stated in [36,37]. Furthermore, the restart is easily executed by keeping the first smin columns of
U and V when the dimension of the subspaces span{U} and span{V} exceeds smax. The restart
technique appears at step 8 to keep the size of U, V and UTCV small. There are many ways to
specify smax and smin. In our numerical examples, we just simply take smax = 3k and smin = k.

Algorithm 1 Jacobi–Davidson method for canonical correlation analysis (JDCCA)

Input: Initial vectors u0, v0, s = u0, t = v0 and V = U = [ ].
Output: Converged canonical weight vectors x̃i and ỹi for i = 1, . . . , k.

1: for iter = 1, 2, . . . ,until convergence do
2: A- and B-orthogonal s and t against U and V, respectively, to obtain

s̃ and t̃.
3: Compute u = s̃/‖s̃‖A and v = t̃/‖t̃‖B. Let U = [U, u] and V = [V, v].
4: Update the corresponding column and row of UTCV.
5: Compute the singular value decomposition of UTCV, i.e., UTCV = ÛΘV̂T.
6: Compute the wanted approximate eigenpairs (θi, [x̃T

i , ỹT
i ]

T) by (16) and the
corresponding residuals r(i)

a and r(i)
b .

7: Solve[
Im − Ax̃1 x̃T

1 0
0 In − Bỹ1ỹT

1

] [
−θ1 A C

CT −θ1B

] [
Im − x̃1 x̃T

1 A 0
0 In − ỹ1ỹT

1 B

] [
t
s

]
= −

[
r(1)

a

r(1)
b

]
.

8: Update U = UÛ and V = VV̂. If the dimension of U and V exceeds smax, then replace U and V
with U(1:smin) and V(1:smin) respectively.

9: end for

3.3. Convergence

The convergence theories on the Jacobi–Davidson method for the eigenvalue and singular value
problem are given in [15,38], respectively. Here we prove a similar convergence result for the
Jacobi–Davidson method of CCGEP based on the following lemma. Specifically, if we solve the
correction Equation (22) exactly, and then x̃ and ỹ are close enough to x and y, respectively, it can be
hoped that the approximate eigenvectors converge cubically. For the proof see Appendices A.2 and A.3.

Lemma 1. Let λ be a simple eigenvalue of CCGEP (4) with the corresponding eigenvector [xT, yT]T.
Then the matrix

G :=

[
Im − AxxT 0

0 In − ByyT

] [
−λA C

CT −λB

] [
Im − xxT A 0

0 In − yyTB

]

is a bijection from span(x)⊥A × span(y)⊥B onto itself, where span(x)⊥A and span(y)⊥B are A- and
B-orthogonal complementary spaces of span(x) and span(y), respectively.
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Theorem 3. Assume the condition of Lemma 1, sin 6 A(x, x̃) = O(ε) and sin 6 B(y, ỹ) = O(ε). Let [sT, tT]T

be the exact solution of the correction Equation (22). Then,

|sin 6 A(x, x̃ + s)| = O(ε3) and |sin 6 B(y, ỹ + t)| = O(ε3). (27)

4. Numerical Examples

In this section, we present some numerical examples to illustrate the effectiveness of Algorithm 1.
Our goal is to compute the first few canonical weight vectors. A computed approximate eigenpair
(θi, z̃i) is considered converged when its relative residual norm

η(θi, z̃i) =
‖r(i)

a ‖1 + ‖r(i)
b ‖1

(‖C‖1 + θi‖A‖1)‖x̃i‖1 + (‖C‖1 + θi‖B‖1)‖ỹi‖1
≤ 10−8. (28)

All the experiments in this paper are executed on a Ubuntu 12.04 (64 bit) Desktop-Intel(R)
Core(TM) i7-6700 CPU@3.40 GHz, 32 GB of RAM using MATLAB 2010a with machine epsilon
2.22× 10−16 in double-precision floating point arithmetic.

Example 1. We first examine Theorem 3 by using two pairs of data matrices Sa and Sb which come from a
publicly available handwritten numerals dataset (https://archive.ics.uci.edu/ml/datasets/Multiple+Features).
It consists of features handwritten numerals (‘0’–‘9’) and each digit has 200 patterns. Each pattern is represented
by six different feature sets, i.e., Fou, Fac, Kar, Pix, Zer and Mor. Two pairs of feature sets Fou-Zer and Pix-Fou
are chosen for Sa and Sb, respectively, such that Sa ∈ R76×d and Sb ∈ R47×d in Fou-Zer, and Sa ∈ R240×d and
Sb ∈ R76×d in Pix-Fou with d = 2000. To make the numerical example repeatable, the initial vectors are set
to be

u0 = x1 + 10−3 × ones(m, 1) and v0 = y1 + 10−3 × ones(n, 1)

where m and n are the dimension of Sa and Sb, respectively, ones is MATLAB built-in function, and [xT
1 , yT

1 ]
T is

computed by MATLAB’s function eig on (4) and considered to be the “exact” eigenvector for testing purposes.
The corrected Equation (22) in Algorithm 1 is solved by direct methods, such as Gaussian elimination, and
the solution [sT, tT]T by such methods is regarded as “exactly” in this example. Figure 1 plots sin 6 A(x1, x̃1)

and sin 6 B(y1, ỹ1) in the first three iterations of Algorithm 1 for computing first canonical weight vector of
Fou-Zer and Pix-Fou. It is clearly shown by Figure 1 that the convergence of Algorithm 1 is very fast when the
initial vectors are enough close to the exact vectors, and the cubical convergence of Algorithm 1 appears in the
third iteration.

1 2 3

Iterations

10
-10

10
-5

10
0

Fou-Zer

1 2 3

Iterations

10
-10

10
-5

10
0

Pix-Fou

Figure 1. Convergence behavior of Algorithm 1 for computing the first canonical weight vector of
Fou-Zer and Pix-Fou.

Example 2. As stated in Algorithm 1, the implementation of JDCCA involves solving the correction
Equation (22) in every step. Direct solvers mentioned in Example 1 referring to O

(
(m + n)3) operations

are prohibitively expensive in solving large-scale sparse linear systems. In such a case, iterative methods,
such as MINRES method which is simply GMRES [39] applied to symmetric linear systems, are usually
preferred. In this example, we report the effect of the number of steps in the solution of the correction equation,

https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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denoted by ng, on the total number of matrix-vector products (denoted by “#mvp”), outer iteration number
(denoted by “#iter”), and CPU time in seconds for Algorithm 1 to compute the first 10 canonical weight vectors
of the test problems appeared in Table 1. Table 1 presents three face datasets, i.e., ORL (https://www.cl.cam.
ac.uk/research/dtg/attarchive/ facedatabase.html,) FERET (http://www.nist.gov/itl/ iad/ig/colorferet.cfm) and
Yale (https://computervisiononline.com/dataset/1105138686) datasets. The ORL database contains 400 face
images of 40 distinct persons. For each individual, there are 10 different gray scale images with 92× 112
pixels. These images are collected by volunteers at different times, different lighting and different facial
expressions (blinking or closed eyes, smiling or no-smiling, wearing glasses or no-glasses). In order to apply
CCA, as numerical experiments in [40], the ORL dataset is partitioned into two groups. We select the first five
images per individual as the first view to generate the data matrix Sa, while the remaining for Sb. Similarly,
we get data matrices Sa and Sb for the FERET and Yale datasets. The numbers of row and column of Sa and Sb
are detailed in Table 1.

Table 1. Test problems.

Problems ORL FERET Yale

m 10,304 6400 10,000
n 10,304 6400 10,000
d 200 600 75

In this example, we set the initial vectors u0 = ones(m, 1) and v0 = ones(n, 1) with smax = 30 and
smin = 10 for restarting and simply take regularization parameter κa = κb = 10−4. We let MINRES steps ng

vary from to 5 to 40, and collect the numerical results in Figure 2. As expected, the number of total outer iterations
decreases as ng increases, while the total number of matrix-vector products does not change monotonically with
ng. It depends on the degree of reduction of outer iterations by the increasing of ng. In addition, it is shown
by Figure 2 that the total #mvp is not a unique deciding factor on the total CPU time. When ng is larger,
the significantly reduced #iter leads to smaller total CPU time. For these three test examples, the MINRES steps
ng around 15 to 25 appear to be cost-effective, further increasing ng over 40 usually does not have significant
effect. The least efficient case is when ng is too small.

Example 3. In this example, we compare Algorithm 1, i.e., JDCCA, with Jacobi–Davidson QZ type method [41]
(JDQZ) for the large scale symmetric positive definite pencil {K, M} defined in (4) to compute the first 10
canonical weight vectors of the test problems appeared in Table 1 with MINRES steps ng = 20. We take
u0 = ones(m, 1) and v0 = ones(n, 1) in Algorithm 1 and the initial vector ones(m + n, 1) for the JDQZ
algorithm, and compute the same relative residual norms η(θi, z̃i). The corresponding numerical results are
plotted in Figure 3. For these three test problems, it is suggested by Figure 3 that Algorithm 1 always outperforms
the JDQZ algorithm. Other experiments that we tested with different test problems and MINRES steps not
reported here also illustrate our points.

https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.nist.gov/itl/iad/ig/colorferet.cfm
https://computervisiononline.com/dataset/1105138686
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Figure 2. Cost in computing the first 10 canonical weight vectors of ORL (top), FERET (middle) and
Yale (bottom) datasets with MINRES steps for the correction equation varying from 5 to 40.
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Figure 3. Convergence behavior of JDCCA and JDQZ for computation of the first 10 canonical weight
vectors of ORL (top), FERET (middle) and Yale (bottom) datasets with MINRES step ng = 20.

5. Conclusions

To analyze the correlations between two data sets, several numerical algorithms have been
available to find the canonical correlations and the associated canonical weight vectors; however,
there is very little discussion of the large scale sparse and structured matrix cases in the literature.
In this paper, a Jacobi–Davidson type method, i.e., Algorithm 1, is presented for large scale canonical
correlation analysis by computing a small portion of eigenpairs of the canonical correlation generalized
eigenvalue problem (4). The theoretical result is established in Theorem 3 to demonstrate that the
cubic convergence of the approximate eigenvector if the correction equation is solved exactly and the
approximate eigenvector of the previous step is close enough to the exact one. The corresponding
numerical results are presented to confirm the effectiveness of asymptotic convergence rate provided
by Theorem 3, and to demonstrate that Algorithm 1 performs far superior to the JDQZ method for the
large scale symmetric positive definite pencil {K, M}.

Notice that the main computational tasks in every iteration of Algorithm 1 consist of solving
the correction Equation (22). In our numerical example, we only focus on the plain version of
MINRES, i.e., without considering any preconditioner. However, it is not hard to notice that
incorporating a preconditioner presents no difficulty and can promote the numerical performance if
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the preconditioner is available. In addition, from the point of view that multi-set canonical correlation
analysis (MCCA) [42] proposed to analyze linear relationships among more than two data sets can be
equivalently transformed to the following generalized eigenvalue problem

0 C12 . . . C1t
C21 0 . . . C2t

...
...

...
...

Ct1 Ct2 . . . 0




x1

x2
...

xt

 = λ


C11 0 . . . 0
0 C22 . . . 0
...

...
...

...
0 0 . . . Ctt




x1

x2
...

xt

 ,

where Cij = SiST
j and Si is the data matrix, the development of efficient Jacobi–Davidson methods for

treating such large scale MCCA will be a subject of our future study.
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Appendix A

Appendix A.1

Proof of Theorem 1. To prove (12), for any U ∈ Rm×k and V ∈ Rn×` satisfying UT AU = Ik and
VTBV = I`, respectively, we first consider the augmented matrices of C̃ and UTCV, i.e.,[

0 C̃
C̃T 0

]
and

[
0 UTCV

VTCTU 0

]
,

whose eigenvalues ±λi for i = 1, . . . , n plus m− n zeros and σi(UTCV) for i = 1, . . . , min{k, `} plus
k + `− 2 min{k, `}, respectively. Notice that[

0 UTCV
VTCTU 0

]
=

[
UTRT

A 0
0 VTRT

B

] [
0 C̃

C̃T 0

] [
RAU 0

0 RBV

]
,

where RA and RB are defined in (5), and RAU and RBV satisfy (RAU)TRAU = UT AU = Ik and
(RBV)TRBV = VTBV = I`, respectively. Hence, apply Cauchy’s interlacing inequalities [30]

(Corollary 4.4) for the symmetric eigenvalue problem to the matrices

[
0 C̃

C̃T 0

]
and

[
0 UTCV

VTCTU 0

]
,

to get λi ≥ σi(UTCV) for 1 ≤ i ≤ min{k, `} and consequently

min{k,`}

∑
i=1

λi ≥ max
min{k,`}

∑
i=1

σi(UTCV) (A1)

for any U ∈ Rm×k and V ∈ Rn×` such that UT AU = Ik and VTBV = I`.
On the other hand, let U = [x1, x2, . . . , xk] and V = [y1, y2, . . . , y`] where xi and yi are defined

in (10). Then, by (11), we have UT AU = Ik and VTBV = I`. Furthermore,

UTCV = [p1, p2, . . . , pk]
T C̃ [q1, q2, . . . , q`] = diag(λ1, . . . , λmin{k,`}) ∈ Rk×`

which to give σi(UTCV) = λi for 1 ≤ i ≤ min{k, `} and thus
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min{k,`}

∑
i=1

λi ≤ max
UT AU=Ik , VTBV=I`

min{k,`}

∑
i=1

σi(UTCV). (A2)

Equation (12) is a consequence of (A1) and (A2).

Appendix A.2

Proof of Lemma 1. Let [wT
1 , wT

2 ]
T ∈ span(x)⊥A × span(y)⊥B and it satisfies G[wT

1 , wT
2 ]

T = 0. We will
prove [wT

1 , wT
2 ]

T = 0. Since

G

[
w1

w2

]
=

[
Im − AxxT 0

0 In − ByyT

] [
−λA C

CT −λB

] [
w1

w2

]
,

then we have [
−λA C

CT −λB

] [
w1

w2

]
=

[
γ1 Ax
γ2By

]
,

where γ1 = xT(Cw2 − λAw1) and γ2 = yT(CTw1 − λBw2), which leads to{
Cw2 = λAw1 + γ1 Ax,

CTw1 = λBw2 + γ2By,
⇒

{
Cw2 = λRT

A RAw1 + γ1RT
A RAx,

CTw1 = λRT
B RBw2 + γ2RT

B RBy.
(A3)

Let w̃1 = RAw1 and w̃2 = RBw2. Then the equality (A3) can be rewritten as{
C̃w̃2 = λw̃1 + γ1 p,

C̃Tw̃1 = λw̃2 + γ2q,
(A4)

where C̃, p and q are defined in (7). Multiply the first and second equations of (A4) by C̃T and C̃ from
left, respectively, to get {

C̃TC̃w̃2 = λC̃Tw̃1 + γ1C̃T p = λ2w̃2 + λγ2q + γ1λq,

C̃C̃Tw̃1 = λC̃w̃2 + γ2C̃q = λ2w̃1 + λγ1 p + γ1λp,

⇒
{
(C̃TC̃− λ2 In)w̃2 = (λγ2 + λγ1)q,

(C̃C̃T − λ2 Im)w̃1 = (λγ1 + λγ1)p.

Therefore, both w̃1 and p belong to the kernel of (C̃C̃T − λ2 Im)2, and both w̃2 and q belong to the
kernel of (C̃TC̃− λ2 In)2. The simplicity of λ implies w̃1 and w̃2 are multiples of p and q, respectively.
Since w1 ∈ span(x)⊥A and w2 ∈ span(y)⊥B , we have w̃1 ∈ span(p)⊥ and w̃2 ∈ span(q)⊥, which
means w̃1 = w̃2 = 0. Therefore, w1 = w2 = 0. The bijectivity follow from comparing dimensions.

Appendix A.3

Proof of Theorem 3. Let

F :=

[
Im − Ax̃x̃T 0

0 In − BỹỹT

]
.

Then the correction equation is

F

[
−θA C
CT −θB

]
FT

[
s
t

]
= −

[
ra

rb

]
. (A5)
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Since ‖x̃‖A = ‖x‖A = 1, there exists f ⊥A x̃ such that x = αx̃ + f where α2 + ‖ f ‖2
A = 1. It follows

that x
α = x̃ + f̃ where f̃ = f

α and ‖ f̃ ‖A = tan 6 A(x, x̃) = O(ε). Similarly, there are g̃ ⊥B ỹ and a scalar β

such that y
β = ỹ + g̃ where ‖g̃‖B = tan 6 B(y, ỹ) = O(ε). It is noted that

0 =

[
−λA C

CT −λB

] [
x
y

]
=

[
−λαA βC

αCT −λβB

] [
x
α
y
β

]

=

([
−θA C
CT −θB

]
+

[
(θ − λα)A (β− 1)C
(α− 1)CT (θ − λβ)B

]) [
x
α
y
β

]

=

[
−θA C
CT −θB

] [
x
α
y
β

]
−
[

ω1 Ax
ω2By

]
, (A6)

where ω1 = λα−θ
α + λ(1−β)

β and ω2 = λβ−θ
β + λ(1−α)

α . Since x
α = x̃ + f̃ and y

β = ỹ + g̃, the equality (A6)
leads to [

−θA C
CT −θB

] [
f̃
g̃

]
= −

[
−θA C
CT −θB

] [
x̃
ỹ

]
+

[
ω1 Ax
ω2By

]

= −
[

ra

rb

]
+

[
ω1αA(x̃ + f̃ )
ω2βB(ỹ + g̃)

]
. (A7)

It is noted that F

[
ra

rb

]
=

[
ra

rb

]
, F

[
Ax̃
Bỹ

]
= 0, F

[
A f̃
Bg̃

]
=

[
A f̃
Bg̃

]
and FT

[
f̃
g̃

]
=

[
f̃
g̃

]
. Then, we have

by (A7)

F

[
−θA C
CT −θB

]
FT

[
f̃
g̃

]
= −F

[
ra

rb

]
+ F

[
ω1αA f̃
ω2βBg̃

]

= −
[

ra

rb

]
+

[
ω1αA f̃
ω2βBg̃

]
. (A8)

Together (A5) with (A8) to get

F

[
−θA C
CT −θB

]
FT

[
f̃ − s
g̃− t

]
=

[
ω1αA f̃
ω2βBg̃

]
. (A9)

In addition, since ra ⊥ x̃ and rb ⊥ ỹ, multiplying (A7) on the left by

[
x̃ 0
0 ỹ

]T

leads to

[
ω1α

ω2β

]
=

[
(x̃T Ax̃)−1

(ỹTBỹ)−1

] [
−θx̃T A x̃TC
ỹTCT −θỹTB

] [
f̃
g̃

]

=

[
−θx̃T A f̃ + x̃TCg̃
ỹTCT f̃ − θỹTBg̃

]
(by x̃T Ax̃ = ỹTBỹ = 1)

=

[
x̃TCg̃

ỹTCT f̃

]
=

[
( x

α − f̃ )TCg̃
( y

β − g̃)TCT f̃

]

=

[
( x

α )
TCg̃− f̃ TCg̃

( y
β )

TCT f̃ − g̃TCT f̃

]

=

[
λβ
α g̃TBg̃− f̃ TCg̃

λα
β f̃ T A f̃ − g̃TCT f̃

]
. (A10)
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By Lemma 1, when x̃ and ỹ are close enough to x and y, respectively, we see that

F

[
−θA C
CT −θB

]
FT is invertible. It follows by (A9) that

[
f̃ − s
g̃− t

]
=

(
F

[
−θA C
CT −θB

]
FT

)−1 [
ω1αA f̃
ω2βBg̃

]
⇒

∥∥∥∥∥
[

f̃ − s
g̃− t

]∥∥∥∥∥
M

= O
(

ε3
)

.

The last equality holds because of ‖ f̃ ‖A = O(ε), ‖g̃‖B = O(ε) and (A10), which means ‖ f̃ − s‖A =

O
(
ε3) and ‖g̃− t‖B = O

(
ε3). Therefore,

| sin 6 A(x, x̃ + s)| = | sin 6 A(x,
x
α
+ s− f̃ )|

=
‖X⊥A( x

α + s− f̃ )‖2

‖x̃ + s‖A

=
‖X⊥A( f̃ − s)‖2

‖x̃ + s‖A

≤ ‖ f̃ − s‖A

‖x̃ + s‖A

= O
(

ε3
)

,

where X⊥ = [x2, . . . , xm]. Similarly, we have | sin 6 B(y, ỹ + t)| = O
(
ε3).

References

1. Hardoon, D.R.; Szedmak, S.; Shawe-Taylor, J. Canonical correlation analysis: An overview with application
to learning methods. Neural Comput. 2004, 16, 2639–2664. [CrossRef] [PubMed]

2. Harold, H. Relations between two sets of variates. Biometrika 1936, 28, 321–377.
3. Wang, L.; Zhang, L.H.; Bai, Z.; Li, R.C. Orthogonal canonical correlation analysis and applications.

Opt. Methods Softw. 2020, 35, 787–807. [CrossRef]
4. Uurtio, V.; Monteiro, J.M.; Kandola, J.; Shawe-Taylor, J.; Fernandez-Reyes, D.; Rousu, J. A tutorial on

canonical correlation methods. ACM Comput. Surv. 2017, 50, 1–33. [CrossRef]
5. Zhang, L.H.; Wang, L.; Bai, Z.; Li, R.C. A self-consistent-field iteration for orthogonal CCA. IEEE Trans.

Pattern Anal. Mach. Intell. 2020, 1–15. [CrossRef]
6. Fukunaga, K. Introduction to Statistical Pattern Recognition; Elsevier: Amsterdam, The Netherlands, 2013.
7. González, I.; Déjean, S.; Martin, P.G.P.; Gonçalves, O.; Besse, P.; Baccini, A. Highlighting relationships

between heterogeneous biological data through graphical displays based on regularized canonical correlation
analysis. J. Biol. Syst. 2009, 17, 173–199. [CrossRef]

8. Leurgans, S.E.; Moyeed, R.A.; Silverman, B.W. Canonical correlation analysis when the data are curves. J. R.
Stat. Soc. B. Stat. Methodol. 1993, 55, 725–740. [CrossRef]

9. Raul, C.C.; Lee, M.L.T. Fast regularized canonical correlation analysis. Comput. Stat. Data Anal. 2014, 70, 88–100.
10. Vinod, H.D. Canonical ridge and econometrics of joint production. J. Econ. 1976, 4, 147–166. [CrossRef]
11. González, I.; Déjean, S.; Martin, P.G.P.; Baccini, A. CCA: An R package to extend canonical correlation

analysis. J. Stat. Softw. 2008, 23, 1–14. [CrossRef]
12. Ma, Z. Canonical Correlation Analysis and Network Data Modeling: Statistical and Computational

Properties. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, 2017.
13. Golub, G.; Kahan, W. Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal.

1965, 2, 205–224. [CrossRef]
14. Jia, Z.; Niu, D. An implicitly restarted refined bidiagonalization Lanczos method for computing a partial

singular value decomposition. SIAM J. Matrix Anal. Appl. 2003, 25, 246–265. [CrossRef]
15. Hochstenbach, M.E. A Jacobi—Davidson type SVD method. SIAM J. Sci. Comput. 2001, 23, 606–628.

[CrossRef]
16. Zhou, Y.; Wang, Z.; Zhou, A. Accelerating large partial EVD/SVD calculations by filtered block Davidson

methods. Sci. China Math. 2016, 59, 1635–1662. [CrossRef]

http://dx.doi.org/10.1162/0899766042321814
http://www.ncbi.nlm.nih.gov/pubmed/15516276
http://dx.doi.org/10.1080/10556788.2019.1700257
http://dx.doi.org/10.1145/3136624
http://dx.doi.org/10.1109/TPAMI.2020.3012541
http://dx.doi.org/10.1142/S0218339009002831
http://dx.doi.org/10.1111/j.2517-6161.1993.tb01936.x
http://dx.doi.org/10.1016/0304-4076(76)90010-5
http://dx.doi.org/10.18637/jss.v023.i12
http://dx.doi.org/10.1137/0702016
http://dx.doi.org/10.1137/S0895479802404192
http://dx.doi.org/10.1137/S1064827500372973
http://dx.doi.org/10.1007/s11425-016-0274-0


Algorithms 2020, 13, 229 17 of 17

17. Allen-Zhu, Z.; Li, Y. Doubly accelerated methods for faster CCA and generalized eigendecomposition.
In Proceedings of the International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August
2017; pp. 98–106.

18. Saad, Y. Numerical Methods for Large Eigenvalue Problems: Revised Edition; SIAM: Philadelphia, PA, USA, 2011.
19. Stewart, G.W. Matrix Algorithms Volume II: Eigensystems; SIAM: Philadelphia, PA, USA, 2001; Volume 2.
20. Sleijpen, G.L.G.; Van der Vorst, H.A. A Jacobi—Davidson iteration method for linear eigenvalue problems.

SIAM Rev. 2000, 42, 267–293. [CrossRef]
21. Hochstenbach, M.E. A Jacobi—Davidson type method for the generalized singular value problem.

Linear Algebra Appl. 2009, 431, 471–487. [CrossRef]
22. Betcke, T.; Voss, H. A Jacobi–Davidson-type projection method for nonlinear eigenvalue problems.

Future Gen. Comput. Syst. 2004, 20, 363–372. [CrossRef]
23. Hochstenbach, M.E.; Plestenjak, B. A Jacobi—Davidson type method for a right definite two-parameter

eigenvalue problem. SIAM J. Matrix Anal. Appl. 2002, 24, 392–410. [CrossRef]
24. Arbenz, P.; Hochstenbach, M.E. A Jacobi—Davidson method for solving complex symmetric eigenvalue

problems. SIAM J. Sci. Comput. 2004, 25, 1655–1673. [CrossRef]
25. Campos, C.; Roman, J.E. A polynomial Jacobi—Davidson solver with support for non-monomial bases and

deflation. BIT Numer. Math. 2019, 60, 295–318. [CrossRef]
26. Hochstenbach, M.E. A Jacobi—Davidson type method for the product eigenvalue problem. J. Comput.

Appl. Math. 2008, 212, 46–62. [CrossRef]
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