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Abstract: Chatbots, also known as conversation agents, are programs that are able to simulate and
reproduce an intelligent conversation with humans. Although this type of program is not new,
the explosion of the available information and the rapid increase of the users seeking this information
have renewed the interest in their development. In this paper, we present R2D2, an intelligent chatbot
relying on semantic web technologies and offering an intelligent controlled natural language interface
for accessing the information available in DBpedia. The chatbot accepts structured input, allowing
users to enter triple-pattern like queries, which are answered by the underlying engine. While typing,
an auto-complete service guides users on creating the triple patterns, suggesting resources available
in the DBpedia. Based on user input (in the form of triple-pattern like queries), the corresponding
SPARQL queries are automatically formulated. The queries are submitted to the corresponding
DBpedia SPARQL endpoint, and then the result is received by R2D2 and augmented with maps
and visuals and eventually presented to the user. The usability evaluation performed shows the
advantages of our solution and its usefulness.

Keywords: chatbots; DBpedia; conversation agents

1. Introduction

During the last years, chatbots have played a prominent role as human-computer interfaces.
Chatbots are computer programs that are capable of establishing a conversation with users, with either
written messages or vocal commands. Such programs provide easy and pleasant conversations and
answers; they can automatically manage large volumes of users, replacing human operators, which are not
always available [1]. The first chatbot was ELIZA [2], trying to simulate a psychotherapist, whereas many
chatbots are currently promoted and used by commercial vendors such as Apple’s Siri, Amazon Alexa,
Microsoft Cortana, and Google Assistant [3], whereas it is foreseen that between 2017 and 2023, the spread
of chatbots will be increased up to 37% [1].

In addition, although a vast amount of information is now available online, still, users find it
difficult to identify the information of interest and navigate to the numerous and large information
sources [4,5]. DBpedia [6] is a crowd-sourced community effort, including 38.4 million resources in
multiple languages, trying to extract structured content from the information already available in various
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Wikimedia projects. Data are available as Linked Open Data, and one can navigate through the available
information through standard web browsers, automated crawlers, recommendation engines [7,8],
or pose complex SPARQL queries. Although the information there is highly interconnected, trying to
retrieve answers through browsing events to trivial queries for the interconnected information is really
difficult. On the other hand, SPARQL endpoints are a no-go territory for the average web user.

On the other hand, traditional question answering systems enable users to issue queries in natural
text, which is then usually transformed internally to a query over the knowledge graph, and the results
are returned to the users. However, despite the progress in those systems, still, many of the user
questions remain unanswered, and even simple questions in many cases return erroneous results.
Toward this direction, in this paper, we present R2D2, a novel chatbot that enables real-time conversation
with end users that is able to answer complex queries using an intuitive graphical user interface.
The system trades expressivity for correctness, meaning that it imposes a triple-pattern like controlled
language to the end users, heavily supported by auto-completion; however, it guarantees that the
correct information will be retrieved from the knowledge base.

More specifically, the contributions of this work are the following;:

We implement R2D2, an interactive chatbot answering complex queries using an intuitive graphical
user interface, employing interactive cards, clickable images, and maps to enhance user experience.

e  The chatbot accepts queries in a structured yet naive triple-like language with the help of an
auto-completion service that helps the users structure their query and explore the available
information and in real time.

e  The query is automatically transformed into the corresponding SPARQL query and sent to the
DBpedia SPARQL endpoint to be further answered.

e Then, another module receives the results and formulates the answer to the end-user using nice
cards, graphs, and maps.

Exploiting our approach for a different knowledge base only requires the availability of a SPARQL
endpoint and an update in the auto-complete mechanism. As such, it has the potential to be linked
to other knowledge bases as well. To the best of our knowledge, there is not currently available an
alternative simple yet powerful platform enabling access to SPARQL endpoints through an intelligent
chatbot offering a controlled natural language interface.

The remainder of this paper is structured as follows. In Section 2, we present related work. Then,
in Section 3, we present the architecture of the proposed system and describe the various components
implemented. Section 4 presents our user-based evaluation, whereas Section 5 concludes this paper
and presents directions for future work.

2. Related Work

As chatbots are supposed to provide answers to user queries, developing query-answering
systems has been the target of several research works [9]. For an overview in the area, the interested
reader is forwarded to [10].

As there have been several chatbots already developed, we could distinguish them into two
categories: the retrieval-based and the generative-model ones [11]. The retrieval-based chatbots
come with a set of written responses to minimize grammatical errors, improve coherence, and avoid
situations where the system can be hacked to respond in less appropriate ways. Retrieval-based
chatbots are best suited for closed-domain systems, which are built to specifically solve simple recurring
problems. However, the set of data available usually cannot foresee responses for all possible scenarios.
Trying to mitigate the aforementioned problem, the generative-model conversational agents are more
intelligent but more difficult to implement than retrieval-based chat bots. With generative chatbots,
a program without any active human assistance generates responses. Generative-model chatbots best
suit open-domain systems that are not constrained to a particular type of conversation domain and
they can easily be adapted or trained to be used in diverse domains. R2D2 is an open domain system
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limited only by the knowledge available in the linked SPARQL endpoint. As there have been many
approaches falling in these two categories, we only focus on the ones using semantic technologies.

Among these approaches, we can further distinguish ones that exploit templates and ones
that exploit semantic-like search algorithms. One system in the former category is proposed by
Unger et al. [12] for RDF data. The authors transform a method that parses user questions to produce a
SPARQL template that directly mirrors the internal structure of the question. Other template-based
approaches employ graph learning to map user queries to SPARQL queries [13]. In the second
category, we can find approaches such as those of [14,15] that focus on semantic search-like algorithms,
performing entity linking on properties and entities and eventually retrieving the top k-ranked entities
representing the intention behind a natural language query. However, in our case, we do not match
the input queries with template queries but directly transform them into fully fledged queries that can
be directly issued to the triple store. Of course this is possible, since the user input is really close to
triple patterns.

In another approach by Vegesna et al. [16], the authors propose an ontology-based chatbot for
the e-commerce domain. Available e-commerce APIs (e.g., eBay API) are used for retrieving external
data, whereas ontology templates are used to retrieve data from the data source using Jape rules.
When data have been extracted, users can ask questions which are parsed using NLP techniques and
the results are being returned to the users. However, in R2D2 no time-consuming data transformation
is happening, whereas the agent can also provide figures and maps to better inform the end user.

Another approach based on semantics is proposed within the research project FRASI [17] trying to
develop a question-answering system supporting consumers to find information regarding products of
interest. The choice was to implement a Question-Answering (QA) system using a pattern-matching
chatbot technology. However, their design required the definition of all possible interactions with the
user, leading to a cumbersome Knowledge Base (KB) and a time-consuming development process.
A common sense ontology was used trying to recognize the kind of sentence and to consequently
reduce it to a simpler structure. However, in our case, we do not rely on recording all possible user
interactions, nor do we try to reduce input to simpler structures.

In addition, there are works such as those that focus solely on the generation of textual descriptions
of sets of triples [18,19], which generate textual summaries from knowledge base triples [20] or
exploit neural networks to generate explanations in natural language from knowledge graphs [21].
However, although relevant to one component of our work (the one transforming the results into text),
those approaches could be used off the shelf to our purpose, and we target to a more generic solution
that includes also services such as auto-completion of user query, graphical visualization of the results,
chatbot functionality, etc.

Finally, we have to mention that there are approaches already that are specifically designed for
DBpedia such as the DBNQA dataset [22] that provides a comprehensive dataset of questions and
SPARQL queries. However, in our case, the construction of the corresponding SPARQL queries is
trivial from the user input. In addition, there is already a chatbot available for the DBpedia [23].
The bot is capable of responding to users in the form of simple short text messages or through more
elaborate interactive messages. Users can communicate or respond to the bot through text and through
interactions (such as clicking on buttons/links). However, in order for the engine to work, the intent
of the questions should be appropriately classified and used for query answering, with many rules
being defined and exploited by the system. Our approach moves to the same direction as the existing
DBpedia chatbot using interactive cards, clickable images, and maps. However, our system can work
as is, without requiring any additional preprocessing, cleaning, or rule definition, which makes it really
simple to be exploited and used.

3. Architecture

The architecture of the R2D2 chatbot is composed of three layers as shown in Figure 1: (a) the
graphical user interface (GUI), (b) the intelligent services including a recommendation service,
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a text-to-SPARQL service, and a results-to-text and images service, and finally, (c) the DBpedia
knowledge base. In the following, we will analyze each one of those components in detail.

NS

Results2Text
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DBpedia
SPARQL endpoint

ax

Figure 1. The high-level architecture of the R2D2 chatbot.

3.1. The Graphical User Interface

The graphical user interface has been developed using HTML, CSS, and JavaScript. In addition,
Bootstrap was used, which is a free and open-source front-end framework for enabling a responsive
website. The generated website includes relevant information and the main chatbot where the users
can interactively ask for information from the DBpedia. A screenshot of the chatbot is shown in
Figure 2. The R2D2 chatbot accepts queries in a structured language and consists of one or more of
triple patterns of the following form:

Entity Property Value 1)

where Entity is a resource from the DBpedia knowledge base linked with a Property to some Value.
Entities, properties, and values might be variables, whereas many triple patterns can be used for a
single query. As a running example, consider the following query asking for Albert Einstein’s birth
date and birthplace.

Albert_Einstein birth_date? x Albert_Einstein birth_place?y. )

As soon as the user starts typing, the system suggests possible auto-completions from the
knowledge already available to the DBpedia KB. As soon the entity part is typed, then the available
connections to that entity are also proposed to the user, making really trivial the formulation of the
whole query—without requiring any knowledge about triple patterns and structured query languages
(it only needs 5 min explanation to the untrained end users, as our evaluation results showed; refer to
Section 4).

Then, the query is issued to the system, and the result is visualized back to the end user, which is
usually accompanied by a related image, map, or information card. We have to mention that we have
added trivial answers to trivial user questions (e.g., who am I, hello, good morning, etc.) in order to
reply to those questions without even going to the knowledge base.
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Figure 2. A screenshot of the graphical user interface (GUI).
3.2. Query Completion

As already mentioned, a service is constantly used to auto-complete end-user input and to guide
query formulation. When the user starts typing in the input field, as soon as more than three characters
are typed, the plugin starts to search for entries that match and displays a list of entries to choose from.
As soon as the first part of the triple pattern is retrieved (i.e., the entity part), the same service is the
called to retrieve properties that are linked with the entities that might have been inserted in the entity
part of the triple pattern. The properties are retrieved and presented to the user as a drop-down list,
as well, allowing him to select the one of interest. If a variable is inserted at the entity part of the triple
pattern, then all properties are retrieved matching the first three characters that the user has entered.
In any case, the user can ignore the recommendations and continue writing; the auto-completion
suggestions are constantly updated as more characters are typed. However, in case of incomplete
labels, the query will return no answers.

This is implemented using a JQuery autocomplete widget. For searching, the DBpedia lookup
service has been used and extended. The available service is used to lookup DBpedia URIs using
as input related keywords. Those keywords can either be the label of a resource or frequently used
anchor text in Wikipedia. The results are ranked by the number of links from other Wikipedia pages
and automatically sorted and presented to the user as s/he types. The implemented service offers a
web API for prefix search and for given partial keyword, it returns the URIs of the related DBpedia
resources. All data can be returned in either XML or JSON.

For example, for DBpedia, the following SPARQL query is issued to the corresponding SPARQL
endpoint to get the available labels of the various properties that are used to link an already typed
<ENTITY> in the query with other information:

SELECT DISTINCT ?label

WHERE {

<ENTITY> ?p 0.

?p <httpy/www.w3.org/2000/01/rdf-schema#label> ?label.
FILTER(LANG(?label) = “* || LANGMATCHES(LANG(?label), “en”))
/

The FILTER for the language is used as the current implementation is focusing only in the
English language; nevertheless, this is quite easy to be updated for other languages as well. Then,
the output is parsed, and the list of properties is formulated and presented to the user. All the
properties, which consist of more than one word, are converted to snake_case format, enabling a better
segmentation of the three parts of the triple patterns.
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We have to note that this auto-completion service can be directly connected to other SPARQL
endpoints as well, but we foresee that minor adjustments might be needed according to the peculiarities
of the individual data sources. However, this configuration should be implemented only once per
SPARQL endpoint.

3.3. Text2SPARQL Service

This service receives a query string as formulated by the end user and constructs the SPARQL
query to be issued to the SPARQL endpoint for retrieving the information of interest. Before formulating
the SPARQL query, the web service checks if there is a malformed user input and returns appropriate
messages to the end user. Then, it first adds the prefixes of the SPARQL query and identifies the
triple patterns in the query string. The variables in the triple patterns are added in the select clause of
the SPARQL query, and the necessary triple patterns for retrieving the related images, the primary
topics, and the correct language are added. In our running example, Equation (2) is transformed to the
following SPARQL query:

PREFIX dbr: <http;/dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <httpy/dbpedia.org/property/>

PREFIX foaf: <http:/xmlns.com/foaf/0.1/>

SELECT *

WHERE {

dbr:Albert_Einstein dbo:birth_date ?x.
dbr:Albert_Einstein dbo:birth_place ?y.
OPTIONAL {
?x dbo:abstract ?x1;
foaf:isPrimaryTopicOf ?x2;
foaf:depiction ?x3
/.
FILTER (lang(?x) = “ || lang(?x) = ‘en’)
OPTIONAL {
2y dbo:abstract ?y1;
foaf:isPrimaryTopicOf ?y2;
foaf:depiction ?y3
/.
FILTER (lang(?y) = “ || lang(?y) = ‘en’)
1

3.4. Results2Text

This service retrieves as input (a) the user query and (b) the SPARQL query formulated by the
Text2SPARQL and returns the results to be visualized by the web GUI.

There are two modes in the result formulation: (a) natural language answers and (b) references to
card boxes, maps, and figures.

Using the first option, the triple patterns are seen as sentences that can be reused to answer
user’s queries trivially. Although there are many works for optimizing the presentation of the results
(see [18] for an example where the authors use machine learning for sentence creation out of triples),
we leave this as future work and we present a simple yet effective algorithm. This algorithm that
is used for transforming the triple answers into text is presented in Algorithm 1. As shown, first,
the SPARQL query is forwarded to the Virtuoso triple store for execution. The results are retrieved,
and the mapping of the variables in the user triple patterns and the retrieved results is recorded. Then,
based on this mapping between the user triple patterns and the returned results, for each user, triple
pattern, and returned result, the corresponding sentence is added to the text that will be presented to
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the user (lines 2—4). When all individual sentences have been constructed, the final result is returned to
the user.

Algorithm 1. Results2Text.

Input: TQ: The user triple patterns, Q: The SPAROL query
Output: result_text: The text to be presented to the user.

. result:-execute(Q)

. result_text:-"”

. for each (entity property value) in TQ

. for each binding of the (entity property value) in the results

. result_text:-result_text + entity + '+ property+ “is '+ value * ’.

Ul A WN NP

. return result_text

For example, the triple pattern “Albert_Einstein birth_date ?x.” and the result of the query
14 March 1879” can be combine to return the following sentence:

Albert Einstein birth date is 14 March 1879

Using the second option, the corresponding summary is retrieved by DBpedia and presented as a
card to the user, visualizing also interesting images or maps. Although a combination of those might
be seen as useful, preliminary experiments showed that users preferred the card/image/map approach
only, and we configured the chatbot to use the second option.

We have to note that besides star-shaped queries, queries of arbitrary shape are also possible,
which are similar to the way SPARQL queries are being formulated. For example, searching Barack
Obama’s spouse’s religion would require the formulation of the following query:

Barack_Obama wife ?x. ?x religion ?y.
The result on the aforementioned question would be:

Barack Obama’s wife is Michelle Obama. Michele Obama’s religion is United Methodist

4. Evaluation

For evaluating the chatbot, we recruited 70 students of the Department of Electrical and Computer
Engineering at the Hellenic Mediterranean University. The requirements for using the system are
minimal, and only 5 min were adequate to explain how the chatbot works to the untrained students.
After a short demonstration of the system, we asked them to use the system for 5 min searching for
information through R2D2. We instructed them to perform at will at least 3 queries with at least one of
them including more than one triple pattern. Although we did not recorded individual user queries,
we provide online a set of examples provided to the students to better understand query formulation
(note that the last three of those queries are the three example queries proposed from the DBpedia
chatbot). As most of the students were already familiar with chatbots such as Apple Siri and Cortana,
they quickly grasped the idea behind the chatbot and were able to use it effectively.

Then, we asked them to fill in a questionnaire (Appendix A). The questionnaire was constructed
using the quality features from the product quality model of the ISO/IEC 25.000 series [24] together
with the System Usability Scale (SUS) [25], which we transformed to simple questions. The results are
reported in Table 1 for the various evaluation categories.
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Table 1. The results for the various evaluation categories.

Suitability 4.18
Functionality Accurateness 4.09 4.15
Compliance 4.18
Efficiency Time Behavior 4.2 405
Resource 43
Utilization ’
. Co-Existence 4.09
Compatibility Interoperability 445 4.27
Understandability ~ 4.36
ire Learnability 4.54
Usabil
sability Operability 4 433
Attractiveness 4.45
. et Fault tolerance 34
Reliability Recoverability 3.54 347
Analyzability 3.7
e s ire Changeability 4
Maintainability Stability 39 3.94
Testability 418
Adaptability 418
1. Installability 3.90
P 1
ortability Conformance 3.94 404
Replaceability 414
Effectiveness 4
Quality of Use Efficiency 4 3.96
Satisfaction 3.90
suUsS 78/100 (Kappa 0.8)

Values greater than three represent the high level of the specific software feature; values between
2.5 and 3 are at low risk, whereas values below 2.5 are considered high risk. In our case, all were
graded with a satisfactory average above 3.47, showing the high quality of the software. The lowest
average score was for the reliability (3.7/5), since in some cases, errors appeared (e.g., images not
shown) without allowing a proper recovery or adequate explanation. Reliability of the system is also
affected by the external services that are used (directly from DBpedia), as in several cases, the services
were not functioning—however, not during the user evaluation.

In addition, as the different services have been developed using many different technologies,
users identified as a relatively hard task the maintainability of the system (average maintainability
3.94/5). The questions regarding the quality of use also score relatively high, demonstrating again the
quality of the system. The evaluation provided us with valuable feedback on the current state and was
used to correct the reported errors. The highest average score for efficiency (4.25/5) shows that the
system can quickly respond to the queries issued and uninterruptedly provide answers from such a
large source of information. In essence, the execution time required for query answering is the time
required to return the result through DBpedia SPARQL endpoint, with only milliseconds spent in the
trivial SPARQL formulation and result presentation.

Furthermore, the SUS usability score was 78 on a scale of 0 to 100, whereas the inter-rater agreement
was rather good (kappa 0.8). The average SUS score from published studies has been measured by
Sauro et al. [26] as 62.1, but 68 is often used as a gold standard. Therefore, SUS scores exceeding
68 are considered above average, while SUS scores below 68 are below average. Our SUS score of
79.18 exceeds by far the reference point of 68, yet future improvements can be made to provide even
higher levels of reliability, perhaps by installing a triple store within the R2D2 so that the whole system
does not have to rely on external SPARQL endpoints.
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Finally, we used the 20 examples that we provided to the students for comparing R2D2 with the
DBpedia chatbot [23]. We have to note that three of those examples were proposed in the corresponding
DBpedia chatbot site. In addition, as the DBpedia chatbot accepts textual input and R2D2 accepts
triple-pattern like input, in the online Excel sheet, we provide both the textual and the triple-pattern
like queries. We measured the session success rate of using the two systems and the results are shown
in Figure 3: the session success rate measures the ratio of user sessions that lead to a success.

Session success rates of R2D2 and DBpedia
chatbot

120
100

80

5
—

Session Success Rate (%)

R2D2 Dbpedia Chatbot
System

Figure 3. Session success rates of R2D2 and DBpedia chatbot.

As shown, all queries were able to be appropriately formulated and answered using the R2D2
system, whereas for the DBpedia chatbot, only one query returned an actual answer (despite the fact
that three of the queries were examples presented in the DBpedia chatbot site). This corresponds to
only 5% of the cases in our evaluation.

Overall, what we observe is that 5 min were enough for the untrained students to use the chatbot,
enabling students to formulate simple triple-like queries and effectively returning the corresponding
answers. As triple pattern formulation is guided by an auto-complete service, the engine guarantees
that if there is a corresponding result available in DBpedia, the information will always be retrieved and
presented to the user. This is not true for the DBpedia chatbot as previously shown, which struggles to
answer textual user input.

5. Discussion and Conclusions

This paper presents a novel chatbot that is able to respond to user queries regarding information
stored in the DBpedia. User input is received in the form of triple-pattern like queries. The chatbot
accepts structured input and guides users on query formulation. Then, those queries are transformed
to SPARQL queries and are sent to the DBpedia SPARQL endpoint to be answered. The answers are
collected by another service, which enriches the results with natural text, graphical images, maps,
and cards, and it sends the corresponding information to the GUI to be finally visualized and presented
to the user. Our system differs from a traditional question-answering system in the fact that it employees
a cleaner, user-friendly interface, it provides multimedia answers, and it also provides answers to trivial
queries without even going to the DBpedia. The user evaluation performed shows the high usability
of our solution and the advantages gained when R2D2 is used for searching information available
through DBpedia. An advantage of the system is that it requires no complex, costly mapping of natural
language input to templates, SPARQL queries, or parts of the graph, as the triples patterns are provided
as input by the user through a triple-pattern like language. The simplicity of the triple-pattern like
queries makes the system usable by non-trained experts, trading expressivity with usability.

Limitations. As SPARQL cannot handle queries with missing label parts, to mitigate partially
provided labels by the users, the auto-complete service is used/enforced. As such, the end user has to
select and complete the missing part of each label. However, a more natural approach would be to
allow partially provided labels and do a search and importance ranking (e.g., [27]) for automatically
solving the problem without relying on user input. In addition, another problem is that when the
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returned results are many, then the text returned by our algorithms can have a considerable length
with obvious information repetition. Further, solution modifiers (for example queries including how
long, how many, average, count, etc.) performing calculation over the retrieved data are not currently
supported. Although SPARQL queries are supporting this functionality, more research is required on
ways that the user would prefer to optimally formulate these requests in our triple-pattern like queries.
Finally, in several cases, we experienced unavailability of the external services used from DBpedia,
which impacts the reliability of the system.

Future Work. Our immediate plans include extending the functionality of the chatbot for tackling
the aforementioned limitations. We are already in the process of installing locally the services of
the DBpedia so as not to rely in external services. However, as ontologies and KBs are constantly
evolving [28,29], this might lead to access to outdated information, trading effectiveness for the always
more recent information. A solution there would be to rely on the online DBpedia services and only
in case of failures to use locally deployed services. In addition, we intend to extend our approach to
include non-expected text and by asking questions for refining the result (for example, when multiple
results are available). To this direction, a memory will be added to the chatbot being able to expand
over previous results, not repeating the same information and providing more information about a
certain entity based on user feedback.
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Appendix A Questionnaire Answered by the Users

Can software perform the tasks required?

Suitabilit . . . . .
Htabiity Explanation: Were the users able to perform queries easily for the information of interest?
Is the result as expected?
. . Accurateness . . S ;
Functionality Explanation: Do the results provided have appropriate information content?
Is the system compliant with standards?
Compliance Explanation: Is the system compliant with the standards you have in mind for the web (e.g.,

HTTP/CSS/HTMI/RDF)?
How quickly does the system respond?
Explanation: Do you receive answers in reasonable time?

Time Behavior

LG Resource Does the system utilize resources efficiently?
Utilization Explanation: Does the system have too high computational resources to be used by end users?
Can the system share resources without loss of its functionality?
Co-existence Explanation: Based on the high-level architecture presented, do you believe that the system can be run in
Compatibility parallel with other services, provided by the server?

Can the system share information/data with other components?

Interoperabilit . . . . .
P Y Explanation: Is it able to communicate and exchange information with other components?
..., Does the user comprehend how to use the system easily?
Understandability ) mp ¥ Y
Explanation: Is it easy to understand how to use the system?
Can the user learn to use the system easily?
Learnability Y y

Usability Explanation: Is it easy to learn how to use the system?
Operability Can the user use the system without much effort?

Explanation: Is it easy to use the system without devoting much effort?
Does the interface look good?

Attractiveness . . . .
Explanation: Are you satisfied with the graphical user interface?

Is the software capable of handling errors?

Fault tolerance . .
Explanation: Have you experienced errors from the system? Was it easy for the system to handle them?

Reliability
Can the software resume working & restore lost data after failure?

Recoverabilit; , . .
Y Explanation: Have you experienced errors from the system? Was it easy for the system to resume working?
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Can faults be easily diagnosed?

Explanation: If you experienced strange behavior by the system, was it easy to understand why?

Can the software be easily modified?

Changeability Explanation: Based on the high-level presentation of the architecture, do you believe that the system can be

Analyzability

L. . easily modified?
Maintainability Can the software continue functioning if changes are made?

Stability Explanation: Based on the high-level presentation of the architecture, do you believe that some services can

be changed transparently to the user?
. Can the software be tested easily?

Testability . .
Explanation: Can you easily test the system?
Can the software be moved to other environments?

Adaptability Explanation: Based on the high-level presentation of the architecture, do you believe that the software can be
easily migrated to other environments?
Can the software be installed easily?

Installability Explanation: Based on the high-level presentation of the architecture, do you believe that the software can be

Portability easily installed?

Does the software comply with portability standards?

Conformance Explanation: Based on the high-level presentation of the architecture, do you believe that the software
complies with portability standards?

. Can the software easily replace other software?

Replaceability . . ) .
Explanation: Do you believe that the software can be used as a service for other systems to call it?
How accurate and complete is the software for the intended use?

Effectiveness Explanation: Based on the suggested scenarios described, do you believe the software is complete for its
intended use?

Quality of Use Does the software improve the time or reduce resources for the intended goal?

Efficiency Explanation: Based on the suggested scenarios described, do you believe that the system help you save time
and resources for getting the desired information?

Satisfaction Does the software satisfy the perceived achievements of pragmatic goals?
Explanation: Do you believe that the target of the system is pragmatic and realistic?

1. Ithink that I would like to use this system frequently.

2. Ifound the system unnecessarily complex.

3. Ithought the system was easy to use.

4. Ithink that I would need the support of a technical person to be able to use this system.

5. Ifound the various functions in this system were well integrated.

SuUs 6.  Ithought there was too much inconsistency in this system.

7. Iwould imagine that most people would learn to use this system very quickly.

8. Ifound the system very cumbersome to use.

9.  Ifeltvery confident using the system.

10.  Ineeded to learn a lot of things before I could get going with this system.
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