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Abstract: We propose a novel algorithm for unsupervised graph representation learning with
attributed graphs. It combines three advantages addressing some current limitations of the literature:
(i) The model is inductive: it can embed new graphs without re-training in the presence of new
data; (ii) The method takes into account both micro-structures and macro-structures by looking at
the attributed graphs at different scales; (iii) The model is end-to-end differentiable: it is a building
block that can be plugged into deep learning pipelines and allows for back-propagation. We show
that combining a coarsening method having strong theoretical guarantees with mutual information
maximization suffices to produce high quality embeddings. We evaluate them on classification tasks
with common benchmarks of the literature. We show that our algorithm is competitive with state of
the art among unsupervised graph representation learning methods.

Keywords: graph representation learning; Graph2Vec; graph convolutional networks;
graph coarsening; unsupervised learning; mutual information maximization

1. Introduction

Graphs are a canonical way of representing objects and relationships among them. They have
proved remarkably well suited in many fields such as chemistry, biology, social sciences or computer
science in general. The connectivity information (edges) is often completed by discrete labels or
continuous attributes on nodes, resulting in so-called attributed graphs. Many real-life problems
involving high dimensional objects and their links can be modeled using attributed graphs.

Machine learning offers several ways to solve problems such as classification, clustering or
inference, provided that a sufficient amount of training examples is available. Yet, the most classical
frameworks are devoted to data living in regular spaces (e.g., vector spaces), and they are not suitable
to deal with attributed graphs. One way to overcome this issue is to represent or encode the attributed
graphs in such a way that usual machine learning approaches are efficient. A recent take on that is
known as graph representation learning [1]: the graphs are embedded in a fixed dimensional latent
space such that similar graphs share similar embeddings.

Three properties are desirable in order for a method of attributed graph representation learning
to be widely applicable and expressive enough. We expect a method to be: I. unsupervised because
labels are expensive, and not always available; II. inductive so that computing the embedding of an
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unseen graph (not belonging to the training set) can be done on the fly (in contrast to transductive
methods); III. hierarchical so as to take into account properties on both local and global scales;
indeed, structured information in graphs can reside at various scales, from small neighborhoods
to the entire graph.

In order to obtain these three desirable properties for attributed graphs representation learning, the
present work introduces a new Hierarchical Graph2Vec (HG2V) model. Like Graph2Vec [2] with which
it shares some similarities, it is based on the maximization of some mutual information. Thanks to a
proper use of coarsening, as proposed by Loukas [3], it is hierarchical and incorporates information
at all scales, from micro-structures like node neighborhoods up to macro-structures (communities,
bridges), by considering a pyramid of attributed graphs of decreasing size.

The article is organised as follows. Section 2 presents some related work in the literature.
In Section 3, we introduce the notation and the required background. Section 4 is dedicated to
the detailed presentation of our main contribution: the Hierarchical Graph2Vec method. In Section 5,
an experimental study is reported that demonstrates the effectiveness of the framework for
various tasks.

2. Related Work

Graph Representation learning is related to a large spectrum of works, from kernel algorithms to
graph neural networks.

Kernels methods. Graph kernels have become a well established and a widely used technique for
learning graph representations [4,5]. They use handcrafted similarity measures between every pair of
graphs. Some are restricted to discrete labels [6,7], while others can handle continuous attributes [8–10].
The main drawback of kernel methods is the computational burden of building and storing the kernel
matrix, which has quadratic complexity unless using approximation techniques.

Infomax Principle hypothesizes that good representations maximize mutual information between
the input data and its embedding. Deep Graph Infomax [11] and GraphSAGE [12] rely on negative
sampling to build an estimator of Mutual Information (MI). It is used to produce node embeddings for
solving a classification task. InfoGraph [13] uses the same estimator to produce embeddings for entire
attributed graphs.

Graph2Vec [2] uses the same MI estimator in combination with Wesfeiler–Lehman procedure (see
Section 3) to produce graph embeddings. It was originally inspired by languages models (especially
Word2Vec) and considers node embedding as the vocabulary used to “write” a graph.

Graph coarsening. The aim of graph coarsening is to produce a sequence of graphs of decreasing
sizes; it can be done by node pooling, as with Loukas’s algorithm [3], or by node decimation,
like for example Kron reduction [14,15]. Coarsening can be combined with edge sparsification [15,16],
so as to reduce the density of coarsened graphs. In another context, DiffPool [17] performs graph
coarsening using clustering but it learns the pooling function specific to each task in a supervised
manner. MinCutPool [18] also relies on clustering by optimizing a relaxed version of minCut objective,
and provides high quality partitioning of the graph.

Graph Neural Networks (GNNs). Developed after the renewed interest in Neural Networks
(NNs), they are known to offer interesting graph embedding methods [1], in addition to solving
several graph-related task, see [19] (and references therein) for a survey, and specifically the popular
Chebyshev GNN [20], GCN [21] and GAT [22]. Stacking them to increase the receptive field may raise
scalability issues [23].

Still, it has been shown that some easy problems on graphs (diameter approximation,
shortest paths, cycle detection, s-t cut) cannot be solved by a GNN of insufficient depth [24].
By combining GNNs with coarsening, e.g., [3], and node pooling, e.g., [14,17,25], those impossibility
results no longer apply. This combination thus helps in designing a method encompassing all structural
properties of graphs.
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3. Definitions and Background

The proposed method is inspired by Graph2Vec [2], which was itself built upon negative sampling
and the Weisfeiler–Lehman (WL) algorithm [26]. The present section recalls the fundamental ideas of
those algorithms. The Weisfeiler–Lehman method produces efficient descriptors of the topology
of the graph, which allows to create embeddings of good quality through the maximization of
Mutual Information.

Definition 1. An attributed graph is a tuple (V, A, Z), where V is the set of nodes, A ∈ R|V|×|V| is a weighted
adjacency matrix, and Z : V → Rn is the function that maps each node u ∈ V to its attribute vector Z(u).
Let G be the space of attributed graphs.

Definition 2. A graph embedding is a function E : G→ Rd that maps each attributed graph to a vector in the
latent space Rd for some non-negative integer d.

3.1. Weisfeiler–Lehman Procedure (WL)

The seminal paper [26] proposes an algorithm initially created in an attempt to solve the graph
isomorphism problem (whether or not the graph isomorphism problem belongs to P is still an open
problem). It maps the original graph, with discrete node labels, onto a sequence of labelled graphs, by
repeatedly applying the same deterministic operator, as sketched in Figure 1. The sequence of node
representations generated at each iteration can be used to distinguish between two graphs (although
different graphs producing the same sequence exist). The method can be used to build efficient kernels
for graph learning [7]. In the following, we will use the WL-Optimal Assignment kernel [27] as
state-of-the-art. The procedure to generate the labels is the following:

x0(u) = Z(u) (1)

xl+1(u) = hash
({

xl(v)|v ∈ N (u) ∪ {u}
})

(2)

where N (u) is the set of neighbours of u.
The hashing function has to be injective in order to distinguish between different rooted subtrees.

The notation {} emphasizes the fact that the output only depends on the unordered set of labels
(“bag of labels”). The procedure is iterated on l up to a (user defined) depth L: the deeper, the wider
the neighborhood used to distinguish between graphs.

By definition, the label xl(u) of a node u at the l-th level depends only on the labels of the nodes
at distance at most l from u. The output is invariant under node permutation, and hence is the same
for isomorphic graphs. If graph gi contains Ni nodes, then it produces at most Ni new labels per level,
for a maximal number of NiL new labels at the end.

Figure 1. Two iterations of the Weisfeiler–Lehman (WL) algorithm, starting with uniform labels.

3.2. Negative Sampling and Mutual Information

Many problems in machine learning amount to learn a distribution PY|X given training examples
(x, y) ∼ PX,Y. It usually requires the usage of a Softmax function, implying the expensive computation
of a normalization constant: this is unfeasible when the domain of Y is too big (for example in the
context of natural language processing, given the size of vocabulary). Hence, Word2Vec [28] replaces
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it by a sequence of binary classification problems, where a discriminator T learns to distinguish
between real and fake pairs. Instead of modeling the conditional distribution PY|X , the binary classifier
learns to distinguish between examples coming from the joint distribution PX,Y and coming from the
product distribution PX ⊗ PY. Negative Sampling can be used to build the Jensen–Shannon estimator
of Mutual Information (MI) between X and Y (see [29] for the first usage of this estimator, see [30] for
its construction and [31] for other insights):

Î (JSD)(X, Y) = −E(x,y)∼PXY
log σ(Tθ(x, y))−E(x,y)∼PX⊗PY

log σ(−Tθ(x, y)) (3)

where Tθ : X ×Y → R is the discriminator, i.e., a function parameterized by θ (whose exact form is
specified by the user, it can be a neural network), and typically σ(x) = 1/(1 + e−x). Maximizing this
estimator of MI is equivalent to minimizing cross entropy between the prediction σ(T(x, y)) and the
labels of the binary classification, with PX,Y (resp. PX ⊗ PY) is the distribution of class 1 (resp. 2).

3.3. Graph2Vec

Those two ideas are combined by [2] to produce its graph embedding. The joint probability
PXY = PX|YPY is constructed by sampling a graph g from the dataset, and then by sampling a label x
from the sequence generated by WL from this graph. Minimizing the cross entropy with respect to θ

leads to the following expression for the loss:

L = E(x,g)∼PXY
log σ(θg · θx) +E(x,g)∼PX⊗PY

log σ(−θg · θx) (4)

The discriminator function Tθ(x, y) = θy · θx is taken as a dot product between a graph embedding
θg ∈ Rd and a WL label embedding θx ∈ Rd, which are vector of parameters randomly initialized and
optimized with SGD. There is one such vector for each graph g and each label x produced by WL .
The resulting graph embedding is E(g) = θg while θx can be discarded. Optimizing this objective
ensures to maximize the mutual information between the WL labels and the graph embeddings, which
is a way to compress information about the distribution of WL labels into the embedding.

4. Contribution: Hierarchical Graph2Vec (HG2V)

Our motivations for this work can be summarized as follows:

• we first show that WL fails to capture global scale information, which is hurtful for many tasks;
• we then show that such flaw can be corrected by the use of graph coarsening. In particular,

Loukas’s coarsening exhibits good properties in this regard;
• we finally show that the advantage of GNN over WL is to be continuous functions in node

features. They are robust to small perturbations.

Based on those observations, we propose a new algorithm building on graph coarsening and
mutual information maximization, which we term Hierarchical Graph2Vec (HG2V). It has the
following properties:

• The training is unsupervised. No label is required. The representation can be used for
different tasks.

• The model is inductive, trained once for all with the graphs of the dataset in linear
time. The training dataset is used as a prior to embed new graphs, whatever their
underlying distribution.

• It handles continuous nodes attributes by replacing the hash function in WL procedure by a
Convolutional Graph NN. It can be combined with other learning layers, serving as pre-processing
step for feature extraction.

• The model is end-to-end differentiable. Its input and its output can be connected to other deep
neural networks to be used as building block in a full pipeline. The signal of the loss can be
back-propagated through the model to train feature extractors, or to retrain the model in transfer



Algorithms 2020, 13, 206 5 of 22

learning. For example, if the node features are rich and complex (images, audio), a CNN can be
connected to the input to improve the quality of representation.

• The structures of the graph at all scales are summarized using Loukas coarsening. The embedding
combines local view and global view of the graph.

The resulting algorithm shares a similar spirit with Graph2Vec (MI maximization between node
and graph descriptors), but it corrects some of its above-mentioned flaws. A high level overview of
the method is provided in Algorithm 1. Table 1 summarizes key properties of the method, against the
other ones found in literature.

In the following, we introduce in Section 4.1 the Loukas’s coarsening method of [3], and detail
how we use it in Section 4.2. Then, Section 4.3 deals with the continuity property achieved by GNN,
while Section 4.4 explains how to train our proposed model HG2V.

Algorithm 1: High-level version of the Hierarchical Graph2Vec (HG2V) algorithm
Result: Graph embedding E(g) for each graph g
Input: A training set of attributed graphs g, subset of G and the number of stages L ; GNNs Fl

θ

and Hl
θ with randomly initialized θ, 1 ≤ l ≤ L

foreach batch of attributed graphs do
foreach graph g in the batch do

See Section 4.1: run Loukas’s algorithm on g to produce a sequence of coarsened graphs
gl , 1 ≤ l ≤ L;

end
foreach level 1 ≤ l ≤ L do

foreach graph gl in the batch do
foreach node u in gl do

See Section 4.2: Generate local neighborhood embedding xl(u) using Hl
θ ;

Let P(u) ∈ gl+1 the image of u after pooling a node of the coarsened graph;
Generate node embedding gl+1(P(u)) using Fl

θ ;
Create positive example (xl(u), gl+1(P(u));

end
end
foreach pair of graphs (g, g′) do

foreach pair of nodes (u, v) ∈ (g, g̃) do
Create negative examples (xl(u), g̃l+1(P(v));

end
end
Minimize the cross entropy in Equation (3) between positive and negative examples
with discriminator T(x, y) = x · y and using Section 4.4.

end
end



Algorithms 2020, 13, 206 6 of 22

Table 1. Key properties of methods (related or proposed) for graph embedding. N is the number of
graphs. Symbol 7 for complexity (inference) means the method is transductive (and not inductive) and
one needs to use the same time as for training. Symbol 3 for supervised means labels are required to
learn a representation (by back-propagating classification loss).

Method Continuous
Attributes

Complexity
(Training)

Complexity
(Inference)

End-to-End
Differentiable Supervised

Kernel methods, e.g.,
WL-OA [27], WWL [4] 3 O(N2)* O(N)* 7 7

Graph2Vec [2] 7 O(N) 7 7 7

GIN [32], DiffPool [17],
MinCutPool [18] 3 O(N) O(1) 3 3

HG2V (Section 4),
Infograph [13] 3 O(N) O(1) 3 7

* Can be improved with Nystrom approximation or Random Fourier Features.

4.1. Loukas’s Coarsening

In this section we detail the main drawback of WL procedure, and the benefit of graph coarsening
to overcome this issue. For simplification, we will put aside the node attributes for a moment, and
only focus on the graph structure. Even in this simplified setting, WL appears to be sensitive to
structural noise.

4.1.1. Wesfeiler-Lehman Sensibility to Structural Noise

The ability of WL to discriminate all graph patterns comes with the incapacity to recognize as
similar a graph and its noisy counterpart. Each edge added or removed can strongly perturb the
histogram of labels produced by WL. Said otherwise, WL is not a good solution to inexact graph
matching problem.

We perform experiments to evaluate the effect of adding or removing edges on different graphs.
We randomly generate 100 graphs of 500 nodes each, that belong to four categories (cycle, tree, wheel
and ladder), using the routines of NetworkX [33] library. For each generated graph g, we randomly
remove from 1 to 10 edges, sampled with independent and uniform probability, to create the graph g′.
One may hope that such little modification over this huge edge set would not perturb excessively the
labels of WL procedure.

To evaluate the consequences of edge removal we propose to use as similarity score the intersection
over union of histogram of labels of g and g′ at each stage 1 ≤ l ≤ 5:

S l(g, g′) = 100× |histo(WLl(g)) ∩ histo(WLl(g′))|
|histo(WLl(g)) ∪ histo(WLl(g′))|

(5)

The average similarity score S̃ l(g, g′) over the 100 graphs is reported in Figure 2.
The similarity decreases monotonically with the number of edges removed, even when restricting

the procedure to the first stage (neighborhood of width 1). On higher stages (wider neighborhood)
the effect is even worse. On graphs with small diameter (such as wheel graph or 3-regular tree) a
significant drop in similarity can be noticed. On ladder graph and cycle, sparse graphs with huge
diameter, the effect of edge removal remains significant.
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(a) (b)

(c) (d)
Figure 2. Similarity score as a function of edges removed for different stages of WL iterations.
The similarity score reaches 100% for identical sets of labels, and 0% for disjoint sets of labels. (a) Cycle:
the 2-regular graph with one giant connected component. (b) Tree: three children per node, except the
ones at the last level. (c) Wheel: like cycle graph, with an additional node connected to all the others.
(d) Ladder: two paths of 250 nodes each, where each pair of nodes is joined by an edge.

4.1.2. Robustness to Structural Noise with Loukas’s Coarsening

WL procedure characterizes a graph as a sequence of rooted subtrees with increasing width.
While this description is suitable for small patterns and inexact graph matching at local scale, it is
very sensitive to structural noise. Adding or removing few edges (without hurting the global shape)
changes the labels completely for subtrees of higher width. So as to characterize global features
(e.g., communities, bridges, sparsest cuts...), we rely on a sequence of coarsened graphs based on the
Loukas’s procedure, that replaces the different iterations of neighborhoods of WL.

Definition 3 (Graph Coarsening). Graph coarsening is an operation mapping a graph (V1, E1) to a new graph
(V2, E2) verifying |V2| < |V1|, using a surjective graph homomorphism P : V1 → V2 called pooling function:

(u, v) ∈ E1 =⇒ (P(u),P(v)) ∈ E2 or P(u) = P(v)
(P(u),P(v)) /∈ E2 =⇒ (u, v) /∈ E1

(6)

Loukas’s method [3] is a graph coarsening operation. This spectral reduction of attributed graphs
offers the guarantee, in the spectral domain, that a coarsened graph approximates well its larger
version. The idea is that the graph spectrum (eigenspaces and eigenvalues of their Laplacian) describes
global and local structures of graphs. Structural noise may have very little consequences on the
spectrum, depending of the nature of the intervention. Hence Loukas’s coarsening, which preserves
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components associated with a low frequency in the graph spectrum, will produce a smaller graph with
the same global shape as the input one, as demonstrated in Figure 3.

In a nutshell, the method computes a sequence of projection matrices (Pl)1≤l≤L such that the
Laplacian of the coarsened graph can be written as Ll+1 = P∓l Ll Pl (where ∓ denotes the transposed
pseudo-inverse). Since the algorithm is quite evolved and its explanation beyond the scope of our
work, we refer to the original paper [3] for an explicit description of Loukas’s method and an extensive
list of properties and guarantees.

Figure 3. Coarsening of four graphs built from MNIST digits using Loukas’s algorithm. The bigger the
node, the wider the neighborhood pooled. Similar digits share similar shapes.

The interest of this coarsening method is that, if two graphs gl−1 and hl−1 are close enough, the
coarsened graphs gl is itself a satisfying coarsening for hl−1. By symmetry, the same result follows
for hl and gl−1. Hence, one may hope that gl and hl share similar patterns (Figure 4), and it will be
advantageous for the WL procedure.

Such intuition can be confirmed experimentally. On four datasets (see Section 5 for their
description), we sample two graphs g0 and h0 with independent and uniform probability.

We measure their similarity using the Wasserstein distance between their spectra. Such choice is
motivated by the fact that two graphs with different number of nodes have spectrum of different sizes.
Wasserstein provides an elegant way to measure distance between sets of different size, in addition to
be fast and easy to compute.

Definition 4 (Wasserstein Distance between Graph Spectra). Let λ = {λ1, λ2, . . . , λn} and µ =

{µ1, µ2, . . . , µm} the spectra of two graphs. The Wasserstein distance is defined as:

dW (λ, µ) = min
π∈Π

∑
i,j

π(i, j)|λi − µj| (7)

where Π is the collection of measures over λ× µ whose marginals are discrete uniform distributions over λ and
µ respectively.

Since Loukas’s coarsening preserves spectrum, we expect the distance between g0 and h0 to be
correlated with the distance between their coarsened counterpart g1 and h1. Each dot in Figure 4
corresponds to an experiment, which are repeated 1000 times. Interestingly, this correlation strongly
depends of the underlying dataset.
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Figure 4. Wasserstein distance between spectra of graphs g0 and h0 sampled from different datasets
(see Section 5 for their description) compared to the same distance between their coarsened graphs g1

and h1 and their two times coarsened graphs g2 and h2 . In blue (resp. red) are given the correlation
coefficients of the distance between g0 & h0 and g1 & h1 (resp. g2 & h2). These coefficients have been
computed after averaging 10 runs where we sampled 1000 graphs couples (g0, h0) for each dataset.
As expected the more we coarsened graph the more the correlation coefficient decreases because
coarsening always lost some structural informations.

4.2. Hierarchy of Neighborhoods

Taking advantage of the previous observation, we propose to build a hierarchy of
coarsened graphs gl

i using Loukas’s method. It induces a hierarchy of nested neighborhoods
u,P(u),P(P(u)), . . . ,P L(u) by pooling the nodes at each level.

We learn the node embedding gl(u) (of node u) at each level. This node embedding is used to
produce a local neighborhood embedding xl(u) using function Hl

θ , and to produce the node embedding
of the next level gl+1(P(u)) using function Fl

θ . Formally, the recurrent equations defining the successive
embeddings are:

g0(u) = Z(u) (8)

xl(u) = Hl
θ({gl(v)|v ∈ N (u) ∪ {u}}) (9)

gl+1(P(u)) = Fl
θ({gl(v)|v ∈ N (u) ∪ {u}}) (10)

The procedure is illustrated in Figure 5. In practice, functions Hl
θ and Fl

θ are graph neural networks
parametrized by θ, and whose exact form will be specified in next Section.
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Figure 5. Single level of the pyramid. Local information xl(u) centered around node u is extracted from
graph gl . The graph is coarsened to form a new graph gl+1. There, gl+1(P(u)) captures information
at a larger scale, centered on node P(u). The pair (xl(u), gl+1(P(u))) is used as positive example in
the negative sampling algorithm, and it helps to maximize mutual information between global and
local view.

4.3. Handling Continuous Node Attributes with Truncated Krylov

The WL algorithm uses a discrete hash function in Equation (2), with the issue that nodes sharing
similar but not quite identical neighborhoods are considered different. If the differences are caused by
noise in computations or measures, they should not result in much differences in the labels. For that,
we relax the injectivity property of WL by replacing it by a function with a continuity property.

It is known that Graph Neural Networks (GNN) have a discriminative power at least equivalent
to WL [32,34,35]. We require the opposite, and we emphasize the importance of not having a too strong
discriminator. We use the extension of the Gromov–Wasserstein distance to attributed graphs, that
requires the mapping to preserve both edge weights and node attributes. The resulting distance is a
special case of the Fused Gromov–Wasserstein distance [36].

Definition 5 (Fused Gromov–Wasserstein distance.). Let g1 = (V1, A1, Z1) and g2 = (V2, A2, Z2) be two
attributed graphs in G.

dG(g1, g2) = minπ∈Π ∑u,u′ ,v,v′ π(u, v)π(u′, v′)
(
|A1(u, u′)− A2(v, v′)|+ |Z1(u)− Z2(v)|+ |Z1(u′)− Z2(v′)|

)
(11)

where Π is the collection of measures over V1 ×V2 whose marginals are discrete uniform distributions over V1

and V2.

This definition allows us to state the continuity of GNN under this metric.

Lemma 1 (GNN continuity.). GNNs with continuous activation function are continuous on the topological
space induced by the metric dG.

Proof in Appendix A.
GNNs are usually parameterized functions learnable with stochastic gradient descent, and hence

fulfill this continuity constraint. Moreover, some attributes may be irrelevant, and should be discarded,
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or sometimes the graph is only characterized by some function (for example a linear combination) of
the attributes. Such a function can be inferred directly from the dataset itself, simply by looking by the
co-occurrences of some similar sub-graphs. Hence, the ability of GNN to learn features relevant for
some specific task is an other advantage over WL.

GCN [21] is as a baseline among this family of networks (see Section 2 for a brief survey).
Unfortunately, [23] have shown that they behave badly when stacked. They propose Truncated Krylov
GNN in replacement of GCN, correcting its flaws, with better theoretical guarantees and empirical
evidence of their superiority over GCN. We chose it, encouraged by the promising results of early
experiments. It amounts to consider, for a given node, a receptive field extended to the neighborhood
of nodes at most at given distance a. The resulting layer uses the normalized adjacency matrix
Ã = D−1/2(A + I)D−1/2 (like in GCN) of the graph gl :

gl+1 = Pool(tanh ([gl , Ãgl , Ã2gl , . . . , Ãagl ]θl
1))θ

l
2 + θl

3

xl = tanh ([gl , Ãgl , Ã2gl , . . . , Ãagl ]θl
4).

(12)

The vector θ is made of the trainable parameters, and [. . .] denotes the concatenation operation.
We abused the notations, using x and g as real-valued vectors indexed by node set V. In Equation (12),
one implements a specific graph filter of order a, close to the ones considered by Chebyshev polynomial
approximation in [20].

Pool denotes the merging of nodes. Their features are summed because it preserves information
on multiset, as argued in [32].

Note that Fl
θ and Hl

θ span the same neighborhood (up to distance a). However, the usage of
coarsening constraints Fl

θ to summarize the information content in the group of pooled nodes. It is this
last point that makes gl+1 a global descriptor. The affine transformation X 7→ Xθl

2 + θl
3 in (12) is used

to improve the expressiveness of the model thanks to a bias term. Indeed, gl must both summarize the
current level l an be used as input for the next one, while xl only aims to summarize the neighborhood.

4.4. Hierarchical Negative Sampling

Following the principles of Graph2Vec we aim to maximize mutual information between node
embeddings and local neighborhood embeddings at each level. We achieve this by training a classifier
to distinguish between positive and negative examples of such pairs of embeddings. Positive pairs are
defined as node v in level l and its “super node” P(v) in level l + 1.

More precisely, consider the l-th level of the hierarchical pyramid. The probability PYl is built
by sampling a graph g from the dataset, then by sampling a node u with uniform probability from
this graph. PXl |Yl is obtained by sampling a node from P−1(u). It gives a pair (xl(P−1(u)), gl+1(u))
sampled according to PXlYl = PYl PXl |Yl . The negative pairs are built as usual from the independent
probability PXl ⊗ PYl . The corresponding loss function takes the form:

Ll = E(xl
j(u),g

l(P(u)))∼PXlYl
log σ(xl(u) · gl(P(u))) +E(xl(u),gl(v))∼PXl⊗PYl

log σ(−xl(u) · gl(v)) (13)

The overall method is described in Algorithm 1.
A descriptor El(g) for each level l of the graph g is computed by global pooling over node

embeddings. The final graph embedding is obtained by concatenating those descriptors. The sum
aggregator is always preferred over mean aggregator, because of its better ability to distinguish
between multisets instead of distributions, as argued in [32]. Hence, the learned representation is:

El(g) =

[
∑

u∈V
gl(u), max

u∈V
gl(u)

]
(14)

E(g) = CONCATENATE (E1(g), E2(g), ..., EL(g)) (15)
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In the Loukas’s method, the number of stages is not pre-determined in advance: only the final
coarsened graph size can be chosen. When the number of stages produced by the Loukas method is
not aligned with the depth of the neural network, the pooling is either cropped (too much stages) or
completed with identity poolings (not enough stages). The resulting vector can be used for visualization
purposes (PCA, t-SNE) or directly plug into a classifier with labels on graphs.

Complexity

Time. The coarsening of each graph can be pre-computed once for all, in linear time in the number
of nodes and edges [3]. Hence, the main bottleneck is the maximization of mutual information. Let
|V| the maximum number of nodes in a graph. Let B be the batch size. Let L be the number of
stages. Let a the order of Truncated Krylov. Let d the dimension of node embedding. The complexity
of the algorithm per batch is O(BLa|V|3 + BLa|V|2d + BLa|V|d2 + B2Ld). The first term is due to
exponentiation of adjacency matrix, the second one to diffusion along edges, the third one to forward
pass in network layers, and the last one to the Cartesian product to create positive and negative
examples. The average complexity per graph is hence: O(La|V|(|V|+ d)2 + BLd). The most sensitive
factor is the number of nodes, followed by the the number of features and the batch size. The magnitude
of those matrices allows to handle graphs with hundred of nodes efficiently on modern GPUs, with
embedding as big as 512 and up to 8 graphs per batch and 5 stages of coarsening. In practice, the
bottleneck turn out to be the pre-computation of coarsening, which does not benefit the GPU speed.

Space. Note that for datasets with small graphs we have dim(Ei) = 2Ld > dim(Xi) + dim(Ai) =

n|V|+ |V|2. However, when the number of nodes exceeds 50, the embedding size is always smaller
than the adjacency matrix. Hence, this method is more suitable for big graphs with hundreds of nodes.

5. Evaluation

The code for the proposed method and to reproduce the experiments can be found on: https:
//github.com/Algue-Rythme/GAT-Skip-Gram.

An experimental evaluation is conducted on various attributed graphs datasets, and the quality of
the embeddings is assessed on supervised classification tasks in Section 5.2. Our method is inductive:
the model can be trained over a dataset and be used to embed graphs coming from another dataset.
This property is analysed in Section 5.3. HG2V differs from Graph2Vec by the usage of GNN and
Loukas coarsening. The influence of those two elements is analysed with ablatives studies in Section 5.4.

5.1. Datasets

Standard datasets.

We use standard datasets from literature: PROTEINS, ENZYMES, D&D, NCI1, NCI109, MUTAG,
IMDB (binary and multi) and PTC_FR downloaded from [37]. We also use the challenging REDDIT
(binary and 5K versions).

Synthetic datasets.

Additionally, we introduce a novel dataset for the community: Diffusion Limited Aggregation
(DLA). The attributed graphs are created by a random process that makes the graphs scale free, DLA
being known to be fractal objects. The graphs have then an interesting property that justifies the
creation of a new benchmark. In addition it provides natural features for the nodes: the coordinates
in space (and this is why we prefer it to the well known and usual scale-free network model that is
the Barabasi-Albert model). We refer to Appendix C.1 for more details. The code can be found on
https://github.com/Algue-Rythme/DiffusionLimitedAgregation

Image datasets. We convert MNIST and USPS popular datasets of the computer vision community
into graphs, by removing blank pixels, and adding luminosity and (x, y) coordinates as node features.
To solve the task, the method should be able to recognize the shape of the graph, which is a global

https://github.com/Algue-Rythme/GAT-Skip-Gram
https://github.com/Algue-Rythme/GAT-Skip-Gram
https://github.com/Algue-Rythme/DiffusionLimitedAgregation
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property. Due to the size of these datasets, we restrain ourselves to a subset of 10, 000 images randomly
sampled (instead of the 70, 000 available).

Frankenstein dataset was created in [38] by replacing nodes labels of BURSI dataset with
MNIST images.

Pre-processing

All the continuous node attributes are centered and normalized. The discrete node labels use one
hot encoding. When there is no node feature, we use the degree of the node instead.

5.2. Supervised Classification

In the first task, the model is trained over all the attributed graphs in the dataset. The quality of
these embeddings is assessed on a supervised classification task. The classifier used is C-SVM with
RBF kernel from scikit-learn library.

5.2.1. Training Procedure

The embeddings are trained over 10 epochs. At each step, eight graphs are picked randomly
from the dataset, and all the vocabulary from these graphs is used to produce positive and negative
pairs (by Cartesian product). Hence, the number of negative examples in each batch is higher than the
number of positive examples. Consequently we normalize the loss of negative samples to reduce the
unbalance. The optimizer is Adam [39] and the learning rate follows a geometric decay, being divided
by approximately 1000 over the 10 epochs.

5.2.2. Model Selection

The relevant hyper-parameters of HG2V are the number of features d ∈ {16, 128, 256} at each
stage, the receptive field of Truncated Krylov a ∈ {2, 4}, and the maximum depth of Loukas’s
coarsening L ∈ {3, 5}. They are selected using a grid search. Five random split of the dataset are
generated: TrainVal (80% of the data) and Test (20% of the data). HG2V is trained over TrainVal.
Then, a C-SVM is trained over TrainVal, using 5-cross validation grid search for the selection of its
hyper-parameters (C, Gamma). The average validation score of the best C-SVM classifier is used to
select the hyper-parameters (d∗, a∗, L∗) of HG2V. The average test score of the best C-SVM classifier
(accuracy over Test split) is reported in Table 2. Note that HG2V could be trained on the test set without
using labels, due to its unsupervised nature. We decided not doing it, to ensure fair comparison with
the other methods.
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Table 2. Accuracy on classification tasks. HG2V is trained over both TrainVal+Test splits, without using
labels due to its unsupervised nature. Model selection of C-SVM and hyper-parameters of HG2V have
been done with 5-cross validation over TrainVal split. We report on the accuracy over the Test split,
averaged over 10 runs, and with standard deviation. Unavailable result marked as 7.

DATASET #graphs #nodes HG2V
(Ours) Graph2Vec Infograph DiffPool

(Supervised)
GIN

(Supervised)
MinCutPool
(Supervised)

WL-OA
(Kernel)

WWL
(Kernel)

IMDB-m 1500 13 47.9± 1.0 50.4 ± 0.9 49.6± 0.5 45.6± 3.4 48.5± 3.3 7 7 7

PTC_FR 351 15 67.5 ± 0.5 60.2± 6.9 7 7 7 7 63.6± 1.5 7

FRANK. 4337 17 65.3 ± 0.7 60.4± 1.3 7 7 7 7 7 7

MUTAG 188 18 81.8± 1.8 83.1± 9.2 89.0 ± 1.1 7 7 7 84.5± 1.7 87.3± 1.5

IMDB-b 1000 20 71.3± 0.8 63.1± 0.1 73.0± 0.9 68.4± 3.3 71.2± 3.9 7 7 74.4 ± 0.8

NCI1 4110 30 76.3± 0.8 73.2± 1.8 7 76.9± 1.9 80.0± 1.4 7 86.1 ± 0.2 85.8± 0.2

NCI109 4127 30 75.6± 0.7 74.3± 1.5 7 7 7 7 86.3 ± 0.2 7

ENZYMES 600 33 66.0± 2.5 51.8± 1.8 7 59.5± 5.6 59.6± 4.5 7 59.9± 1.1 73.3 ± 0.9

PROTEINS 1113 39 75.7± 0.7 73.3± 2.0 7 73.7± 3.5 73.3± 4.0 76.5± 2.6 76.4± 0.4 77.9 ± 0.8

MNIST 10000 151 96.1 ± 0.2 56.3± 0.7 7 7 7 7 7 7

D&D 1178 284 79.2± 0.8 58.6± 0.1 7 75.0± 3.5 75.3± 2.9 80.8 ± 2.3 79.2± 0.4 79.7± 0.5

REDDIT-b 2000 430 91.2± 0.6 75.7± 1.0 82.5± 1.4 87.8± 2.5 89.9± 1.9 91.4 ± 1.5 89.3 7

DLA 1000 501 99.9 ± 0.1 77.2± 2.5 7 7 7 7 7 7

REDDIT-5K 4999 509 55.5± 0.7 47.9± 0.3 53.5± 1.0 53.8± 1.4 56.1 ± 1.7 7 7 7

5.2.3. Baselines

We compare our work to various baselines of the literature:
Kernel Methods: All the results reported are extracted from the corresponding papers [27,40],

giving an idea of the best possible performance achievable by WL-Optimal Assignment [27] and the
Wasserstein Wesfeiler–Lehman [4] graph kernels. It almost always outperform inductive methods
based on neural networks. However, like many kernel-based method, they have quadratic time
complexity in the number of graphs, which is prohibitive for dealing with large datasets.

DiffPool, GIN: We report the results of the rigorous benchmarks of [41], including the popular
DiffPool [17] and GIN [32]. Those algorithms are end-to-end differentiable, but they are supervised.
DiffPool also relies on graph coarsening, but their pooling function is learned, while Loukas coarsening
is task agnostic.

MinCutPool: We report the results of the original paper [18]. Note that they used not only node
degree, but also clustering coefficient as node features. Consequently they benefit from additional
information compared to our setting.

Infograph We also report the results of Infograph [13]. It is the closest method to our work:
it is unsupervised, end-to-end differentiable, and also relies on mutual information maximization,
but it does not benefit of coarsening. Infograph is currently the state of the art in unsupervised graph
representation learning.

5.2.4. Results

We note that get substantial improvements over Graph2Vec baseline for many datasets,
more specifically when the graph are big and carry high dimensional features.

For FRANKENSTEIN, if we connect a randomly initialized two-layer CNN to the input of
the model for better feature extraction, the results are improved and reach 66.5± 0.4% which is a
noticeable improvement. Thanks to the end-to-end differentiability of the model, the CNN is trained
with backpropagation, benefiting from the unsupervised loss signal.

On the notably difficult REDDIT-B and REDDIT-5K we reach high results, comparable to SOTA.
The coarsening operation is beneficial to these datasets, considering the size of the graphs. On datasets
with smaller graphs, the results are less significant.
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5.2.5. Computation Time

Training on only 1 epoch already provides a strong baseline for molecule datasets, and lasts less
than 1 min, using GTX 1080 GPU. The most challenging dataset was REDDIT-MULTI-5K, trained on
V100 GPU, with 5000 graphs, an average of 508 nodes and 595 edges per graph. The pre-computation
of Loukas’s coarsening required 40 min (that can be improved with parallelization, not implemented).
After this step, the runtime never exceed 190 s per epoch, for a total training time of 70 min.

5.3. Inductive Learning

The method is inductive: it allows us to train HG2V on a dataset and test on another dataset.
The training set is used to extract relevant features, that are expected to be seen again during inference.
In Section 5.2 we showed that when the domain of training set and inference set are the same (different
splits of the same dataset) it provides good results. In this section, we prove that even when the
training set and the inference set are disjoint, the model is still able to produce good representations.

We emphasize that this property is specific to unsupervised inductive methods. Hence, it is
not possible to perform such experiment on Graph2Vec (transductive), or on models trained with
supervised loss (e.g., GIN, DiffPool). To the best of our knowledge, no such domain adaption
experiments have been done in graph classification tasks. Consequently, we miss comparisons to other
methods. A more in-depth analysis of this property is left as future work. Our preliminary results
with this regard are summarized in Table 3, and we hope that it will encourage community to perform
similar experiments.

Table 3. Accuracy on classification tasks by training on some input distribution and performing
inference on an other. The hyper-parameters selected are identical to the ones of Table 2.

Training Set Inference Set Accuracy
(Inference)

Delta with baseline
(see Table 2)

MNIST USPS 94.86 7

USPS MNIST 93.68 −2.40

REDDIT-b REDDIT-5K 55.00 −0.48

REDDIT-5K REDDIT-b 91.00 −0.15

REDDIT-b IMDB-b 69.00 −2.25

REDDIT-5K IMDB-b 69.50 −1.75

MNIST FASHION
MNIST 83.35 7

The best hyper-parameters found in the previous section are kept as is without further
hyper-parameter tuning. The goal was not to reach the best possible result, but ensures that we
can reuse trained weights to produce quickly good embeddings.

USPS is a dataset of handwritten digits similar to MNIST, hence we expect that a model trained
on it can also embed MNIST graphs.

FASHION MNIST introduced in [42] is built similarly to MNIST: a set of 28× 28 grayscale images.
We only work on a subset of 10, 000 training examples.

Results

We see that the model can easily transfer from one domain to another. MNIST seems to be a
better prior than USPS, which is a behavior previously observed in transfer learning. On the other
datasets, the accuracy drops compared to the baseline: it is expected, since the new graphs are out of
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distribution of the training set. Nevertheless, even in this unfavorable setting, the accuracy remains
within a comparable range to the baseline.

We conclude that the inductivity property is not only theoretical, but also a property that can be
checked in practice, without specific hyper-parameter tuning or costly manual adaptation.

5.4. Ablative Studies

We perform ablative studies by removing separately Loukas coarsening and GNN. If we remove
both, we fall back to Graph2Vec. The dimension of the embeddings is chosen equal to 1024.

Graph2Vec+GNN

We remove Loukas coarsening. The only difference with Graph2Vec is the replacement of WL
iterations with forward pass through a GNN. All the attributes available are used.

Graph2Vec+Loukas

We remove GNN. The resulting algorithm is Graph2Vec applied on the sequence of coarsened
graphs. On the coarsened graphs, new labels are generated by concatenating and hashing the labels of
the nodes pooled (like a WL iteration would do). The sequence of (unconnected) graphs is fed into
Graph2Vec. Continuous attributes are ignored because WL can not handle them.

The results are summarized in Table 4.

Table 4. Ablative studies. The accuracy on test set is in the column “Accuracy”. The column “Delta”
corresponds to the difference in average accuracy with Graph2Vec. OOM—Out of Memory Error.

HG2V Graph2Vec + GNN Graph2Vec + Loukas Graph2Vec
DATASET #nodes Accuracy Delta Accuracy Delta Accuracy Delta

IMDB-b 20 70.85 +7.75 70.70 +7.60 57.5 −5.60 63.10

NCI1 30 77.97 +4.75 75.40 +2.18 65.45 −7.77 73.22

MNIST 151 95.83 +39.56 91.05 +34.78 72.5 +16.23 56.27

D&D 284 78.01 +19.37 79.26 +13.16 66.10 +7.45 58.64

REDDIT-B 430 91.95 +16.23 OOM 7 82.50 +6.78 75.72

Results

On datasets with small graphs (less than 30 nodes in average) the use of coarsening is hurtful,
resulting in loss compared to Graph2Vec. As soon the graphs get big, coarsening leads to huge
improvements in accuracy. We also notice that the usage of GNN and its ability to handle continuous
attributes, and to be trained to extract co-occurring features, leads to significant improvements on
all datasets.

5.5. Latent Space

Figure 6 illustrates some graphs (leftmost column) with their six closest neighbors in the learned
latent space (right columns 1 to 6), from the closest to the farthest, taken from MNIST and IMDB. We
observe that isomorphic graphs share similar embeddings, and even when the graphs are not quite
isomorphic they exhibit similar structures.
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a)

b)

c)

d)

e)

f)

g)

h)

0       1 2       3       4       5       6 0       1 2       3       4       5       6

Figure 6. Six nearest neighbors of graphs in the learned latent space for four graphs from IMDB-b and
MNIST. Column 0 corresponds to a randomly chosen graph, then the six nearest neighbors are drawn
in increasing distance order from left to right (1 to 6).

6. Conclusions

We proposed a new method for Graph Representation Learning. It is fully unsupervised, and it
learns to extract features by Mutual Information maximization. The usage of Loukas’s coarsening
allows us to tackle all scales simultaneously, thanks to its capacity to preserve the graph spectrum.
The method is inductive, and can be trained on only a fraction of the data before being used in transfer
learning settings. Despite being unsupervised, the method produces high quality embeddings leading
to competitive results on classification tasks against supervised methods.

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, investigation, data
curation, visualization, writing—original draft preparation: L.B. and Y.K.; resources, writing—review and editing,
supervision, project administration, funding acquisition: P.B., A.H. and A.G. All authors have read and agreed to
the published version of the manuscript.

Funding: We thank ACADEMICS (“Machine Learning & Data Science for Complex and Dynamical Models”)
project for their funding, an Scientific Breakthrough Project given by the IDEXLYON project of the Université de
Lyon, as part of the “Programme Investissements d’Avenir” ANR-16-IDEX-0005.

Acknowledgments: We thank the Centre Blaise Pascal (ENS de Lyon) for the computational resources, the GPUs,
and their technical support, especially Emmanuel Quémener.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proofs
Proof of Lemma 1.

Proof. We use Message Passing Neural Networks (MPNN) framework introduced in [43]. In order to
demonstrate our theorem, we use the same notations as their paper. Let g = (V, A, Z) ∈ G. Let u ∈ V
a node, and t the index of a layer. Then:

h0(u) = Z(u) (A1)

mt+1(u) = ∑
v∈N (u)

Mt(ht(u), ht(v), euv) (A2)

ht+1(u) = Ut(ht(u), mt+1(u)) (A3)

Every GNN layer fall under MPNN framework. When the activation function used is
continuous, the functions Mt and Ut are also continuous, because they involve matrix products
(which are continuous operations). Moreover, the sum over N (u) is finite because we consider finite
graphs. Consequently, ht+1(u) depend continuously of {ht(v), v ∈ N (u)} through St = Ut ◦ Mt.
By composition, the result holds for any number of layers T. Let F the resulting function on graph
domain G, i.e., if (V′, A′, Z′) = g′ = F(g) then A = A′ and V = V′ (GNNs do not modify topology),
and for every node u ∈ V we have Z′(u) = hT(u).
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Let (gn)n∈N ∈ GN a sequence of attributed graphs such that limn→∞ gn = g in the topological
space induced by the metric dG. Let (πn : Vn ×V)n∈N the corresponding set of transportation plans
between gn and g. Let g′n = (V′n, A′n, Z′n) = F(gn) and g′ = (V′, A′, Z′) = F(g). Then:

dG(g′n, g′) ≤ ∑
u,u′ ,v,v′

πn(u, v)πn(u′, v′)
(
|A′n(u, u′)− A′(v, v′)|+ |Z′n(u)− Z′(v)|+ |Z′n(u′)− Z′(v′)|

)
= ∑

u,u′ ,v,v′
πn(u, v)πn(u′, v′)

(
|An(u, u′)− A(v, v′)|+ |Z′n(u)− Z′(v)|+ |Z′n(u′)− Z′(v′)|

) (A4)

Now, because limn→∞ gn = g we have necessarily:

lim
n→∞

πn(u, v)πn(u′, v′)|Zn(u)− Z(u)| = 0 (A5)

lim
n→∞

πn(u, v)πn(u′, v′)|An(u, u′)− A(v, v′)| = 0 (A6)

The continuity of St allows to further conclude that:

lim
n→∞

πn(u, v)πn(u′, v′)|Z′n(u)− Z′(u)| = 0 (A7)

Finally, the right hand size of (A4) must have limit 0, hence:

lim
n→∞

g′n = g′ (A8)

We just proved that limn→∞ gn = g implies limn→∞ g′n = g′, which is precisely the definition of F
being continuous w.r.t the topology induced by dG.

Appendix B. Additional Visualizations of the Embeddings

We present other randomly sampled graphs and their six closest neighbors from MNIST-Graph,
IMDB and PTC Datasets in, respectively, Figures A1–A3.

Figure A1. Six nearest neighbors of graphs in latent space from MNIST for four graphs. Column
0 correspond to the randomly chosen graph then the six nearest neighbors are draw in increasing
distance order from left to right (from 1 to 6).
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Figure A2. Six nearest neighbors of graphs in latent space from IMDB for ten graphs. Column 0
correspond to the randomly chosen graph then the six nearest neighbors are draw in increasing
distance order from left to right (from 1 to 6).

Figure A3. Six nearest neighbors of graphs in latent space from PTC for six graphs. Column 0
correspond to the randomly chosen graph then the six nearest neighbors are draw in increasing
distance order from left to right (from 1 to 6).

Appendix C. Details about the Datasets

In this section we give additional details on some datasets we used.

Appendix C.1. DLA

The DLA dataset has been artificially generated with Diffusion Limited Aggregation [44],
a random process that creates cluster of particles following a Brownian motion. Particles are added
one by one, and when two particles touch, they can aggregate with some probability of stickiness p.
The resulting structure is a tree, each particle being a node and each link corresponding to a bond.
The resulting graphs have scale free properties [45]. The degree distribution of the nodes and their
position in space will depend on p.

We generated a total of 1000 graphs with 500 nodes each. This dataset is splited into two classes,
one with stickiness p = 1 and the other with stickiness p = 0.05. The attributes are the x and y
coordinates of the particles following a 2D Brownian motion for simplicity.

It has been observed that Graph2Vec is unable to reach a good accuracy by relying solely on node
degree distribution, while Hierarchical Graph2Vec is able to use the features and reach near perfect
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accuracy. The code that generated this dataset can be found here: https://github.com/Algue-Rythme/
DiffusionLimitedAgregation.

Appendix C.2. MNIST and USPS

We produce graphs from MNIST (resp. USPS) handwritten digits dataset . The graphs are created
by removing all the pixel with luminosity equals to 0 (resp. less than 0.3), by mapping each remaining
pixel to a node, and then by adding the x and y coordinate of each node to the vector of attributes.
Due to the size of MNIST (70, 000 images in total) we kept only the test split (10, 000 images) to train
the embeddings, and kept the whole dataset for USPS (9298 images). However these datasets and their
graphs remain way larger than the other standard benchmarks.

References

1. Hamilton, W.L.; Ying, R.; Leskovec, J. Representation learning on graphs: Methods and applications.
arXiv 2017, arXiv:1709.05584.

2. Narayanan, A.; Chandramohan, M.; Venkatesan, R.; Chen, L.; Liu, Y.; Jaiswal, S. graph2vec: Learning
distributed representations of graphs. arXiv 2017, arXiv:1707.05005.

3. Loukas, A. Graph reduction with spectral and cut guarantees. J. Mach. Learn. Res. 2019, 20, 1–42.
4. Togninalli, M.; Ghisu, E.; Llinares-López, F.; Rieck, B.; Borgwardt, K. Wasserstein weisfeiler-lehman

graph kernels. In Proceedings of the Annual Conference on Neural Information Processing Systems 2019,
Vancouver, BC, Canada, 8–14 December 2019; pp. 6439–6449.

5. Vishwanathan, S.V.N.; Schraudolph, N.N.; Kondor, R.; Borgwardt, K.M. Graph kernels. J. Mach. Learn. Res.
2010, 11, 1201–1242.

6. Shervashidze, N.; Borgwardt, K.M. Fast subtree kernels on graphs. In Proceedings of the 23rd Annual
Conference on Neural Information Processing Systems 2009, Vancouver, BC, Canada, 7–10 December 2009;
pp. 1660–1668.

7. Shervashidze, N.; Schweitzer, P.; Leeuwen, E.J.V.; Mehlhorn, K.; Borgwardt, K.M. Weisfeiler-lehman graph
kernels. J. Mach. Learn. Res. 2011, 12, 2539–2561.

8. Feragen, A.; Kasenburg, N.; Petersen, J.; De Bruijne, M.; Borgwardt, K. Scalable kernels for graphs with
continuous attributes. In Proceedings of the 27th Annual Conference on Neural Information Processing
Systems 2013, Lake Tahoe, NV, USA, 5–8 December 2013; pp. 216–224.

9. Kriege, N.; Mutzel, P. Subgraph matching kernels for attributed graphs. arXiv 2012, arXiv:1206.6483.
10. Morris, C.; Kriege, N.M.; Kersting, K.; Mutzel, P. Faster kernels for graphs with continuous attributes via

hashing. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona,
Spain, 12–15 December 2016.
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