
algorithms

Article

A New Chaotic-Based Approach for
Multi-Objective Optimization

Nassime Aslimani 1,∗ , Talbi El-ghazali 1 and Rachid Ellaia 2

1 INRIA Lille—Nord Europe Parc Scientifique de la Haute Borne, 40, Avenue Halley, Bat A, 59650 Villeneuve
d’Ascq, France; el-ghazali.talbi@univ-lille.fr

2 LERMA Laboratory, Mohammadia school of engineering, Mohammed V University in Rabat, 10040 Rabat,
Morocco; rachid.ellaia@gmail.com

* Correspondence: nassime.aslimani@inria.fr

Received: 15 June 2020; Accepted: 6 August 2020; Published: 20 August 2020
����������
�������

Abstract: Multi-objective optimization problems (MOPs) have been widely studied during the last
decades. In this paper, we present a new approach based on Chaotic search to solve MOPs. Various
Tchebychev scalarization strategies have been investigated. Moreover, a comparison with state of the
art algorithms on different well known bound constrained benchmarks shows the efficiency and the
effectiveness of the proposed Chaotic search approach.

Keywords: multi-objective optimization; large-scale optimization; Chaotic search; Tchebychev scalarization

1. Introduction

Many problems in science and industry are concerned with multi-objective optimization problems
(MOPs). Multi-objective optimization seeks to optimize several components of an objective function
vector. Contrary to single-objective optimization, the solution of a MOP is not a single solution, but
a set of solutions known as Pareto optimal set, which is called Pareto front when it is plotted in the
objective space. Any solution of this set is optimal in the sense that no improvement can be made on a
component of the objective vector without worsening at least another of its components. The main
goal in solving a difficult MOP is to approximate the set of solutions within the Pareto optimal set and,
consequently, the Pareto front.

Definition 1 (MOP). A multi-objective optimization problem (MOP) may be defined as:

(MOP) =

{
min F(x) = (f1(x), f2(x), . . . , fk(x))
s.c. x ∈ X

(1)

where k (k ≥ 2) is the number of objectives, x = (x1..., xn) is the vector representing the decision variables, and
X represents the set of feasible solutions associated with equality and inequality constraints, and explicit bounds.
F(x) = (f1(x), f2(x)..., fk(x)) is the vector of objectives to be optimized.

The set of all values satisfying the constraints defines the feasible region X and any point ~x ∈ X is
a feasible solution. As mentioned before, we seek for the Pareto optima.

Definition 2 (Pareto). A point ~x∗ ∈ X is Pareto Optimal if for every ~x ∈ X and I = {1, 2, . . . , k}
∀i∈I (fi (~x) ≥ fi(~x∗) and there is at least one i ∈ I such that fi (~x) > fi (~x∗).

This definition states that ~x∗ is Pareto optimal if no feasible vector ~x exists which would improve
some criterion without causing a simultaneous worsening in at least one other criterion.

Algorithms 2020, 13, 204; doi:10.3390/a13090204 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-9501-9596
http://dx.doi.org/10.3390/a13090204
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/9/204?type=check_update&version=3

Algorithms 2020, 13, 204 2 of 25

Definition 3 (Dominance). A vector ~u = (u1, . . . , un) is said to dominate~v=(v1, . . . , vn) (denoted by ~u 4 ~v)
if and only if ~u is partially less than ~v, i.e., ∀i ∈ {1, . . . , n} , ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi.

Definition 4 (Pareto set). For a given MOP ~f (~x), the Pareto optimal set is defined as P∗ = {~x ∈ X|¬∃~x′ ∈
X, ~f (~x′) 4 ~f (~x)}.

Definition 5 (Pareto front). For a given MOP ~f (~x) and its Pareto optimal set P∗, the Pareto front is defined
as PF ∗ = {~f (~x),~x ∈ P∗}.

Definition 6 (Reference point). A reference point z∗ = [z1, z2, . . . , zn] is a vector which defines the aspiration
level (or goal) zi to reach for each objective fi.

Definition 7 (Nadir point). A point y∗ = (y∗1 , y∗2 , . . . , y∗n) is the nadir point if it maximizes each objective
function fi of F over the Pareto set, i.e., y∗i = max(fi(x)), x ∈ P∗, i ∈ [1, n].

The approaches developed for treating optimization problems can be mainly divided
into deterministic and stochastic. Deterministic methods (e.g., linear programming, nonlinear
programming, and mixed-integer nonlinear programming, etc.) provide a theoretical guarantee
of locating the global optimum or at least a good approximation of it whereas the stochastic methods
offer a guarantee in probability [1–3].

Most of the well-known metaheuristics (e.g., evolutionary algorithms, particle swarm, ant
colonies) have been adapted to solve multi-objective problems [4,5] with a growing number of
applications [6–8].

Multi-objective metaheuristics can be classified in three main categories:

• Scalarization-based approaches: this class of multi-objective metaheuristics contains the
approaches which transform a MOP problem into a single-objective one or a set of such problems.
Among these methods one can find the aggregation methods, weighted metrics, cheybycheff
method, goal programming methods, achievement functions, goal attainment methods and the
ε-constraint methods [9,10].

• Dominance-based approaches: the dominance-based approaches (Also named Pareto approaches.)
use the concept of dominance and Pareto optimality to guide the search process. Since the
beginning of the nineties, interest concerning MOPs area with Pareto approaches always grows.
Most of Pareto approaches use EMO (Evolutionary Multi-criterion Optimization) algorithms.
Population-based metaheuristics seem particularly suitable to solve MOPs, because they deal
simultaneously with a set of solutions which allows to find several members of the Pareto optimal
set in a single run of the algorithm. Moreover, they are less sensitive to the shape of the Pareto
front (continuity, convexity). The main differences between the various proposed approaches arise
in the followins search components: fitness assignment, diversity management, and elitism [11].

• Decomposition-based approaches: most of decomposition based algorithms in solving MOPs
operate in the objective space. One of the well-known frameworks for MOEAs using
decomposition is MOEOA/D [12]. It uses scalarization to decompose the MOP into multiple scalar
optimization subproblems and solve them simultaneously by evolving a population of candidate
solutions. Subproblems are solved using information from the neighbouring subproblems [13].

We are interested in tackling MOPs using Chaotic optimization approaches. In our previous work,
we proposed a efficient metaheuristic for single objective optimization called Tornado which is based on
Chaotic search. It is a metaheuristic developed to solve large-scale continuous optimization problems.
In this paper we extend our Chaotic approach Tornado to solve MOPs by using various Tchebychev
scalarization approaches

The paper is organized as follow. Section 1 recalls the main principles of the Chaotic search
Tornado algorithm. Then the extended Chaotic search for multi-objective optimization is detailed in

Algorithms 2020, 13, 204 3 of 25

Section 3. In Section 4 the experimental settings and computational results against competing methods
are detailed and analyzed. Finally, the Section 5 concludes and presents some future works.

2. The Tornado Chaotic Search Algorithm

2.1. Chaotic Optimization Algorithm: Recall

The chaotic optimization algorithm (COA) is recently proposed metaheuristic method [14] which
is based on chaotic sequences instead of random number generators and mapped as the design
variables for global optimization. It includes generally two main stages:

• Global search: This search corresponds to exploration phase. A sequence of chaotic solutions is
generated using a chaotic map. Then, this sequence is mapped into the range of the search space
to get the decision variables on which the objective function is evaluated and the solution with
the best objective function is chosen as the current solution.

• Local search: After the exploration of the search space, the current solution is assumed to be close
to the global optimum after a given number of iterations, and it is viewed as the centre on which
a little chaotic perturbation, and the global optimum is obtained through local search. The above
two steps are iterated until some specified stopping criterion is satisfied.

In recent years COA has attracted widespread attention and have been widely investigated and
many choatic approaches have been proposed in the litterature [15–21].

2.2. Tornado Principle

The Tornado algorithm has been as an improvement to the basic COA approach to correct some
of major drawbacks such as the inability of the method to deal with high-dimensional problems[22,23].
Indeed, the Tornado algorithm introduces new strategies such as symmetrization and levelling of the
distribution of chaotic variables in order to break the rigidity inherent in chaotic dynamics.

The proposed Tornado algorithm is composed of three main procedures:

• The chaotic global search (CGS): this procedure explores the entire research space and select the
best point among a distribution of symmetrized distribution of chaotic points.

• The chaotic local search (CLS): The CLS carries out a local search on neighbourhood of the solution
initially found CGS, it exploits the of the solution. Moreover, by focusing on successive promising
solutions, CLS allows also the exploration of promising neighboring regions.

• The chaotic fine search (CFS): It is programmed after the CGS and CLS procedures in order to
refine their solutions by adopting a coordinate adaptive zoom strategy to intensify the search
around the current optimum.

As a COA approach, The Tornado algorithm relies on a chaotic sequence in order to generate
chaotic variables that will be used in the search process. For instance, Henon map was adopted as a
generator of a chaotic sequence in Tornado.

To this end. We consider a sequence (Zk)1≤k≤Nh
of normalized Henon vectors Zk =

(zk,1, zk,2, .., zk,n)∈ IRn built by the following linear transformation of the standard Henon map [24]:

zk,i =
yk,i − αi

βi − αi
, ∀ (k, i) ∈ [[1, Nh]]× [[1, n]], (2)

where αi = mink(yk,i) and βi = maxk(yk,i).
Thus, we obtain ∀ (k, i) ∈ [[1, Nh]]× [[1, n]], 0 6 zk,i 6 1. In this paper, the parameters of the

Henon map sequence (Zk) are set as follows:
a = 1.5, b = 0.2, ∀k ∈ [[1, n]], (xk,0 , yk,0) = (rk, 0), rk ∼ U(0, 1).
The structure of the proposed Tornado approach is given in Algorithm 1.

Algorithms 2020, 13, 204 4 of 25

Algorithm 1 The Tornado algorithm structure.

Initialization of the Henon chaotic sequence ;
Set k = 1 ;
Repeat

Chaotic Global Search (CGS);
Set s = 1 ;
Repeat;

Chaotic Local Search (CLS);
Chaotic Finest Search (CFS);
s = s + 1;

Until s = Ml ; /* Ml is the number of CLS/CFS by cycle */
k = k + 1 ;

Until k = M ; /* M is maximum number of cycles of Tornado */

2.2.1. Chaotic Global Search (CGS)

CGS starts by mapping the chaotic sequence generated by the adopted standard Henon map
variable Z into ranges of design variable X by considering the following transformations (Figure 1):

X1 = L + Z(U − L). X2 = θ + Z(U − θ), X3 = U − Z(U − θ), θ =
1
2
(L + U). (3)

|| | • •|•
X2 X3X1L Uθ

Figure 1. Selection of chaotic variables for CGS.

Those proposed transformations aim to overcome the inherent rigidity of the chaos dynamics.

• Levelling approach: In order to provide more diversification in the chaotic distribution, CGS
proceeds by levelling with Nc chaotic levels. In each chaotic level l ∈ [[1, Nc]], and for each
iteration k three chaotic variables are generated through the following formulas:

X1 = L + (U − L)× Zk+(l−1)Nc (4)

X2 = θ + (U − θ)× Zk+(l−1)Nc (5)

X3 = U − (U − θ)× Zk+(l−1)Nc (6)

Note that for sake of simplicity, henceforth Xi,k will be simply noted Xi.
• Symmetrization approach: In high-dimensional space, the exploration of all the dimensions is not

practical because of combinatorial explosion. To get around this difficulty, we have introduced
a new strategy based on a stochastic decomposition of the search space Rn into two vectorial
subspaces: a vectorial line D and its corresponding hyperplaneH:

IRn = D ⊕H, D = IR× ep, H = vect(ei)i 6=p. (7)

By consequence,
∀X = (x1, x2, . . . , xn) ∈ IRn: X = Xd + Xh, (8)

where
Xd = (0, ··, 0, xp, 0, ··, 0) ∈ D, Xh = (x1, ··, xp−1, 0, xp+1, ··, xn) ∈ H. (9)

The symmetrization approach based on this stochastic decomposition of the design space offers
two significant advantages:

Algorithms 2020, 13, 204 5 of 25

◦ Significant reduction of complexity in the high dimensional problem in a way as if we were
dealing with a 2D space with four directions.

◦ The symmetric chaos is more regular and more ergodic than the basic one (Figure 2).

(a) Henon map dynamic in 2D (200 iterations) (b) Symmetrized Henon map (200 iterations)

Figure 2. Illustration of symmetrisation approach in 2D.

Thanks to the stochastic decomposition (Equation (7)), CGS generates four symmetric chaotic
points using axial symmetries Sθ+D , Sθ+H (Figure 3):

Xi,1 = Xi, Xi,2 = Sθ+D(Xi,1),
Xi,3 = Sθ+H(Xi,2), Xi,4 = Sθ+D(Xi,3) = Sθ+H(Xi,1),

(10)

where the axial symmetries Sθ+D , Sθ+H are defined as follows:

Sθ+D(X) = Xd + (2θh − Xh) (11)

Sθ+H(X) = (2θd − Xd) + Xh (12)

IRn = D ⊕H

XSθ+H(X)

Sθ+H(X)

θ

θ +H

θ +D

H

Lh

Uh

D
UdLd

Xh

Xd2θd − Xd

2θh − Xh

||

−

−

•
ORn

Figure 3. Illustration of axial symmetries Sθ+D and Sθ+H.

In other words, ∀i ∈ {1, 2, 3}:

Xi,1 = Xi = Xi,d + Xi,h, Xi,2 = Xi,d + 2θh − Xi,h,
Xi,3 = 2θ − Xi,1, Xi,4 = 2θ − Xi,2.

(13)

At last, the best solution among these all generated chaotic points is selected as illustrated by
Figure 4.

Algorithms 2020, 13, 204 6 of 25

IRn = D ⊕H

Xi,1 = Xi

Xi,2

Xi,4

Xi,3

θ

θ +H

θ +D

H

Lh

Uh

D
UdLd

Xh

Xd2θd − Xd

2θh − Xh

||

−

−

•
ORn

Figure 4. Generation of chaotic variables by the symmetrization approach in CGS.

The code of CGS is detailed in Algorithm 2.

Algorithm 2 Chaotic global search (CGS).

1: Input: f , U, Z, Nc, k
2: Output: Xc
3: Y = +∞; θ = 1

2 (U + L)
4: for l = 1 to Nc
5: Generate 3 chaotic variables X1, X2, and X3 according to (Equations (4)–(6))
6: for i = 1 to 3
7: Select randomly an index p ∈ {1, · · · , n} and decompose Xi according to (Equation (8))
8: Generate the 4 corresponding symmetric points (Xi,j) 16j64 according to (Equation (10)–(13))
9: for j = 1 to 4

10: if Y > f (Xi,j)
11: Xc = Xi,j; Y = f (Xi,j)
12: end if
13: end for
14: end for
15: end for

2.2.2. Chaotic Local Search (CLS)

The CLS procedure is designed to refine the search by exploiting the neighborhood of the solution
ω found by the chaotic global search CGS. In fact, the search process is conducted near the current
solution ω within a local search area Sl whose radius is Rl = r ×R focused on ω (see Figure 5a),
where r ∼ U(0, 1) is a random parameter that corresponds to the reduction rate, andR denotes the

radius of the search zone S =
n
∏
i=1

[li, ui] such as:

R =
1
2
(U − L) =

(1
2
(u1 − l1), . . . ,

1
2
(un − ln)

)
(14)

The CLS procedure uses the following strategy to produce chaotic variables:

• Like the CGS, the CLS also involves a levelling approach by creating Nl chaotic levels focused
on ω. The local search process in each chaotic level η ∈ [[0, Nl − 1]], is limited to a local area Sl,η
focused on ω (see Figure 5b) characterized by its radiusRη defined by the following:

Rη = γη ×Rl = r× γη ×R, (15)

Algorithms 2020, 13, 204 7 of 25

where γη is a decreasing parameter through levels which we have formulated in this work as
follows:

γη =
10−2sη

1 + η
, s ∼ U(0, 1) (16)

Algorithms 2016, xx, x 7 of 27

The CLS procedure uses the following strategy to produce chaotic variables:

• Like the CGS, the CLS also involves a levelling approach by creating Nl chaotic levels focused
on ω. The local search process in each chaotic level η ∈ [[0, Nl − 1]], is limited to a local area Sl,η
focused on ω (see Fig. 5b) characterized by its radiusRη defined by the following:

Rη = γη ×Rl = r× γη ×R, (15)

where γη is a decreasing

γη =
10−2sη

1 + η
, s ∼ U(0, 1) (16)

!

ω +H

ω +D

θ

ORn

H

Lh

Uh

D
UdLd

ωh

ωd
||

−

−

Sl,0
Sl,1
Sl,2
Sl,3

(b) Zoom on current solution ω using
the levelling approach

•

•

•

4 chaotic
levels
f ocuses
on ω
}

• !

IRn = D ⊕Hω +H

ω +D
ω

Rl,h

Rl
Rl,d

θ

ORn

H

Lh

Uh

D
UdLd

ωh

ωd
||

−

−

Local search
area Sl

Search area S

(a) Illustration of local search area Sl

of radiusRl

R

Rd

Rh

•

•

Figure 5. Illustration of the CLS mechanism.

This levelling approach used by the CLS can be interpreted as a progressive zoom focus on the
current solution ω carried out through Nl chaotic levels, and γη is the factor indicating the speed
of this zoom process (γη↘ 0) (see Fig. 5b).

Rη

ω−Rη ω +Rη

ω + X1 ω + X2
L U

ω
|| | |

Figure 6. Selection of symmetric chaotic variables in CLS.

Furthermore, by looking for potential solutions relatively far from the current solution CLS
contributes also to the exploration of the decision space . Indeed, once the CGS provides an
initial solution ω, the CLS intensifies the search around this solution, through several chaotic
layers. After each CGS run, CLS carry out several cycles of local search (i.e. Ml) This way, the
CLS participates also to the exploration of neighboring regions by following the zoom dynamic
through the CLS cycles as shown in Fig. 7.

Figure 5. Illustration of the CLS mechanism.

This levelling approach used by the CLS can be interpreted as a progressive zoom focus on the
current solution ω carried out through Nl chaotic levels, and γη is the factor indicating the speed
of this zoom process (γη↘ 0) (see Figure 5b).

Furthermore, by looking for potential solutions relatively far from the current solution CLS
contributes also to the exploration of the decision space . Indeed, once the CGS provides an
initial solution ω, the CLS intensifies the search around this solution, through several chaotic
layers. After each CGS run, CLS carry out several cycles of local search (i.e., Ml) This way, the
CLS participates also to the exploration of neighboring regions by following the zoom dynamic
through the CLS cycles as shown in Figure 6.Algorithms 2016, xx, x 8 of 27

IRn = D ⊕H

×
×

×

×

×

×
×

×

× ×

×

××

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×
×

×

×
×

×

×

××

×

×

×

× ×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

× ×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

Figure 7. Illustration of exploration aspect in CLS with the zoom dynamic produced by many local
search cycles

• Moreover, in each chaotic level η, CLS creates two symmetric chaotic variables X1, X2 defined
as follows (Fig. 6):

X1 = Z×Rη , X2 = (1− Z)×Rη = Rη − X1 . (17)

By randomly choosing an index p ∈ {1, .., n} a stochastic decomposition of IRn is built given by:

IRn = D ⊕H, D = IR× ep, H = vect(ei)i 6=p. (18)

Based on this, a decomposition of each chaotic variable Xi,(i=1,2) is applied:

Xi = Xi,d + Xi,h. (19)

X1

X2X3

X4

X5 X6

!

ω +H

ω +Dωh

ωd

·
ORn

H

Lh

Uh

D
UdLd || | ||

−

−

−

Figure 8. Illustration of the generation of Np = 6 symmetric chaotic points in CLS.

Figure 6. Illustration of exploration aspect in CLS with the zoom dynamic produced by many local
search cycles.

Algorithms 2020, 13, 204 8 of 25

• Moreover, in each chaotic level η, CLS creates two symmetric chaotic variables X1, X2 defined as
follows (Figure 7):

X1 = Z×Rη , X2 = (1− Z)×Rη = Rη − X1 . (17)

Rη

ω−Rη ω +Rη

ω + X1 ω + X2
L U

ω
|| | |

Figure 7. Selection of symmetric chaotic variables in CLS.

By randomly choosing an index p ∈ {1, .., n} a stochastic decomposition of IRn is built given by:

IRn = D ⊕H, D = IR× ep, H = vect(ei)i 6=p. (18)

Based on this, a decomposition of each chaotic variable Xi,(i=1,2) is applied:

Xi = Xi,d + Xi,h. (19)

Finally, from each chaotic variable Xi, (i=1,2), Np symmetric chaotic points (Xi,j)16j6Np
are generated

using the polygonal model (Figure 8): polygonal model

Xi,j = ω + Xi = ω + cos(2π.j/Np)Xi,d + sin(2π.j/Np)Xi,h, (20)

Algorithms 2016, xx, x 8 of 27

IRn = D ⊕H

×
×

×

×

×

×
×

×

× ×

×

××

×

×

×

×

×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×
×

×

×
×

×

×

××

×

×

×

× ×

×

×

×

×
×

×

×

×

×

×

×

×

×

×

×

×

×

× ×

×

×

×

×

× ×

×

×

×

×

× ×

×

×

×

×

×

×

×

×

×

×
×

×

×

×

×
×

Figure 7. Illustration of exploration aspect in CLS with the zoom dynamic produced by many local
search cycles

• Moreover, in each chaotic level η, CLS creates two symmetric chaotic variables X1, X2 defined
as follows (Fig. 6):

X1 = Z×Rη , X2 = (1− Z)×Rη = Rη − X1 . (17)

By randomly choosing an index p ∈ {1, .., n} a stochastic decomposition of IRn is built given by:

IRn = D ⊕H, D = IR× ep, H = vect(ei)i 6=p. (18)

Based on this, a decomposition of each chaotic variable Xi,(i=1,2) is applied:

Xi = Xi,d + Xi,h. (19)

X1

X2X3

X4

X5 X6

!

ω +H

ω +Dωh

ωd

·
ORn

H

Lh

Uh

D
UdLd || | ||

−

−

−

Figure 8. Illustration of the generation of Np = 6 symmetric chaotic points in CLS.
Figure 8. Illustration of the generation of Np = 6 symmetric chaotic points in CLS.

Moreover, if ω is close enough to the borders of the search area S , the search process risks to leave
it and then may give an infeasible solution localized outside S .

Indeed, that particularly happens in case ofRη,i > dB(ωi) for at least one component ωi (Figure 9),
where dB(ωi) is the distance of the component ωi to borders li, ui defined as follows:

dB(ωi) = min(ui −ωi, ωi − li). (21)

Algorithms 2020, 13, 204 9 of 25

Rη,i > dB(ωi)

R̃η,i = dB(ωi)
ωi −Rη,i ωi +Rη,ili

ui

ωi• || | |

Figure 9. Illustration of overflow:Rη,i > dB(ωi).

To prevent this overflow, the local search radiusRη is corrected through the the following formula:

R̃η = min
(
Rη , dB(ω)), (22)

where dB(ω) = (dB(ω1), . . . , dB(ωn)). This ensures R̃η,i 6 dB(ωi), ∀i ∈ [[1, n]]. Hence,
Equation (17) become

X1 = Z×R̃η , X2 = (1− Z)×R̃η . (23)

Finally, the chaotic local search (CLS) code is detailed in Algorithm 3.

Algorithm 3 Chaotic Local Search (CLS).

1: Input: f , ω, L, U, Z, Nl , Np
2: Output: Xl : best solution among the local chaotic points
3: R = 1

2 (U − L); Rl = r×R;
4: X = ω;
5: Xl = ω; Y = f (ω);
6: for η = 0 to Nl − 1
7: Set Rη = γη ×Rl , and then compute R̃η = min

(
Rη , dB(ω)

)
8: Generate 2 symmetric chaotic variables X1, X2 according to (23)
9: for i = 1 to 2

10: Select an index p ∈{1, .., n} randomly and decompose Xi according to (19)
11: Generate the Np corresponding symmetric points Xi,j according to (20)
12: for j = 1 to Np
13: if Y > f (Xi,j) then
14: Xl = Xi,j ; Y = f (Xi,j);
15: end if
16: end for
17: end for
18: end for

2.2.3. Chaotic Fine Search (CFS)

The proposed CFS procedure aims to speed up the intensification process and refines the accuracy
of the search. Indeed, suppose that the solution X obtained at the end of CGS/CLS search processes is
close to the global optimum Xo with precision 10−p, p ∈ IN. That can be formulated as:

X = Xo + ε, ‖ε‖ < 10−p (24)

Then the challenge is how to go beyond the accuracy 10−p?
One can observe that the distance ε can be interpreted as a parasitic signal of the solution, which

is enough to filter in a suitable way to reach the global optimum, or it corresponds to the distance to
which is the global optimum of its approximate solution. Thus, one solution is to conducts a search in
a local area in which the radius adapts to the distance ε = X− Xo, component by component.

However, in practice, the global optimum is not known a priori. To overcome this difficulty, as
we know that, as the search process proceeds the resulting solution X is supposed to be close enough
to the global optimum, one solution is to consider instead of the relation (24) the difference between
the current solution X and its decimals fractional parts of order η, (η ∈ IN):

εη = |X− Xη |

Algorithms 2020, 13, 204 10 of 25

where Xη is the fractional of order η, i.e., the closest point of X to the precision 10−η formalised as :
Xη = 10−ηround(10ηX) (see Figure 10).

•X

•X0

Zoom with power 10 on X

0 1 2 3 4 5
0

1

2

3

4

5

• •X1

X

2.5 2.6 2.7 2.8 2.9 3
1.1

1.2

1.3

1.4

1.5

1.6

2.83 2.84 2.85 2.86 2.87 2.88
1.35

1.36

1.37

1.38

1.39

2

••X2

X

Zoom with power 102 on X

Figure 10. Illustration of the 10 power zoom via the successive fractional parts.

Furthermore, we propose to add a stochastic component in the round process in order to perturb
a potential local optima. Indeed, we consider the stochastic round [.]st defined by:

[X]st =

{
round(X) + P, i f mod(k, 2) = 0

round(X), otherwise
(25)

where P ∼ U(−1, 1)d is a stochastic perturbation operated on X alternatively through The Tornado
cycles. This way, the new formulation of the η−error of X is given by:

ε̃η(X) = |X− 10−η [10ηX]st)| (26)

The structure of the chaotic fine search CFS is similar to the CLS local chaotic search. Indeed,
it proceeds by levelling approach creating N f levels, except the fact that the local area of level η is
defined by its radiusRη based on the η−error η and given by:

Rη =
1

1 + η2 ε̃η , η ∈ [[0, N f − 1]] (27)

This way, the local area search in CFS is carried out in a narrow domain that allow a focus on the
current solution adapted coordinate by coordinate unlike the uniform local search in CLS as illustrated
in Figure 11. The modified radius R̃η is formulated as follows:

R̃η =

{
s× R · ε̃η , i f r > 0.5

T · R · ε̃η , otherwise
(28)

where r, s ∼ U(0, 1) and T ∼ U(0, 1)d.

Algorithms 2020, 13, 204 11 of 25

Algorithms 2016, xx, x 11 of 27

The structure of the chaotic fine search CFS is similar to the CLS local chaotic search. Indeed,
it proceeds by levelling approach creating N f levels, except the fact that the local area of level η is
defined by its radiusRη based on the η−error η and given by:

Rη =
1

1 + η2 ε̃η , η ∈ [[0, N f − 1]] (27)

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω8 ω9

ω10

(a) Illustration of the uniform local search area in CLS using uniform reduction factor

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

ω1
ω2

ω3

ω4

ω5

ω6

ω7

ω8 ω9

ω10

(b) Illustration of the coordinate adaptative local search area in CFS based on the fractionnal error

information εη

Figure 11. Illustration of the coordinate adaptative local search in CFS.

This way, the local area search in CFS is carried out in a narrow domain that allow a focus
on the current solution adapted coordinate by coordinate unlike the uniform local search in CLS as
illustrated in Fig. 11. The modified radius R̃η is formulated as follows:

R̃η =

{
s× R · ε̃η , i f r > 0.5

T · R · ε̃η , otherwise
(28)

Figure 11. Illustration of the coordinate adaptative local search in CFS.

The design of the radius Rη allows to zoom at an exponential rate of decimal over the levels.
Indeed, we have:

‖Rη‖ 6 ‖ε̃η‖.R < 10−η ×R (29)

As a consequence, the CFS provides an ultra fast exploitation of the neighborhood of the current
solution and allows in principle the refinement of the optimum with a good precision.

The Fine Chaotic Search (CFS) is described in Algorithm 4 and the Tornado algorithm is detailed
in Algorithm 5:

Algorithms 2020, 13, 204 12 of 25

Algorithm 4 Chaotic Fine Search (CFS).

1: Input: f , ω, L, U, Z, N f , Np
2: Output: Xl : the best solution among local chaotic points
3: R = 1

2 (U − L);
4: X = ω;
5: Xl = ω; Y = f (ω);
6: for η = 0 to Nl − 1 do
7: Compute the η−error ε̃η and then evaluate R̃η using Equations (27)−(29)
8: Generate two symmetrical chaotic variables X1, X2 according to (23)
9: for i = 1 to 2

10: Choose randomly p in {1, · · · , n} and decompose Xi using (19)
11: Generate Np symmetrical points Xi,j according to (20)
12: for j = 1 à Np
13: if Y > f (Xi,j) then
14: Xl = Xi,j ; Y = f (Xi,j);
15: end if
16: end for
17: end for
18: end for

Algorithm 5 Tornado Pseudo-Code.

1: Given : f , L, U, Z, M, Ml , Nc, Nl , N f , Np
2: Output : X, Y
3: k = 1; Y = +∞;
4: while k 6 M do
5: Xc = CGS (f , L, U, Zk, Nc)
6: if Y > f (Xc) then
7: X = Xc; Y = f (Xc);
8: end if
9: s = 1;

10: while s 6 Ml do
11: Xl = CLS (f , X, L, U, Zs+k, Nl , Np)
12: if Y > f (Xl) do
13: X = Xl ; Y = f (Xl);
14: end if
15: X f = CFS (f , X, L, U, Zs+k, N f , Np)
16: if Y > f (Xl) do
17: X = X f ; Y = f (X f);
18: end if
19: s = s + 1;
20: end while
21: k = k + 1;
22: end while

3. Scalarization-Based Chaotic Search

3.1. Tchebychev Scalarization Approaches

The aggregation (or weighted) method is one of the most popular scalarization method for the
generation of Pareto optimal solutions. It consists in using an aggregation function to transform a
MOP into a single objective problem (MOPλ) by combining the various objective functions fi into a
single objective function f generally in a linear way.

Algorithms 2020, 13, 204 13 of 25

The first proposed scalarization approach (Multi-Objective Fractal Decomposition Algorithm
Scalarization) uses the Tcheybycheff function [10,25]. It introduces the concept of ideal point or
reference point z∗i as follows:

Minimize max
i=1,...,k

[ωi(fi(x)− z∗i)]

Subject to x ∈ X
(30)

where z∗ = (z∗1 , ..., z∗k) is the reference point, and ω = (ω1, ..., ωk) is the weight vector.
There have been numerous studies of decomposition approaches to use different types of reference

points for providing evolutionary search directions. According to the position of reference point relative
to the true PF in the objective space, we consider here three Tchebychev approaches:

w1

w2

w3

w4

w5

w6

w7 f1

f2

Z
ide

(a) Tchebychev approach with
simple reference points

f1

f2

w1

w2

w3

w4

w5

w6

w7

w8

w9

z1

z2

z3

z4

z9z8z7z6zide(z5)

search directions

weight vectors

(b) Tchebychev approach with multiple

utopian reference points

Figure 12. Illustration of Tchebychev decomposition according to the choice of reference points

• The Standard Tchebychev approach (TS) that consider the utopian point as the reference point.
• The modified Tchebychev variant (TM) that consider multiple utopian reference points instead of

just one reference point [26] (see Figure 12).
• The augmented Tchebychev variant (AT) which is defined by the augmented Tchebychev function

defined as [27]:

Minimize max
i=1,...,k

[ωi(fi(x)− z∗i)] + ρ
m
∑

i=1
ωi|z∗i − fi(x)|

Subject to x ∈ X
(31)

3.2. X-Tornado Algorithm

By using N different weight vectors ω, we solves N different problems using the chaotic Tornado
approach, each generating one solution composing the final Pareto Front (PF). One of the downsides of
using scalarization methods is that the number of solutions composing the PF found by the algorithm
will be, at most, the same as the number of different weight vectors N. In certain cases, if two or more
weight vectors ω are too close, the algorithm might find the same solution.

4. Computational Experiments

The proposed algorithm X-Tornado is implemented on Matlab. The computing platform used
consists of an Intel(R) Core(TM) i3 4005U CPU 1:70 GHz with 4 GB RAM.

Algorithms 2020, 13, 204 14 of 25

4.1. Test Problems

In order to evaluate the performance of the proposed X-Tornado algorithm, 14 test problems are
selected from the literature. These functions will test the proposed algorithm’s performance in the
different characteristics of the Pareto front: convexity, concavity, discreteness, non uniformity, and
multimodality. For instance, the test problems KUR and ZDT3 have disconnected Pareto fronts; ZDT4
has too many local optimal Pareto solutions, whereas ZDT6 has non convex Pareto optimal front with
low density of solutions near Pareto front. The test problems and their properties are shown in Table 1.

Table 1. Benchmark Problems used in our experiments.

Problem Name n Bounds Objective Functions Comments

ine F1 ZDT1 30 [0, 1]n f1(x) = x1; f2(x) = g(x)(1−
√

x1/g(x)) Convex

g(x) = 1 + 9
n−1

n
∑

i=2
xi

F2 ZDT2 30 [0, 1]n f1(x) = x1; f2(x) = g(x)(1− (x1/g(x))2) Non Convex

g(x) = 1 + 9
n−1

n
∑

i=2
xi

F3 ZDT3 30 [0, 1]n f1(x) = x1; f2(x) = g(x)(1−
√

x1/g(x)− (x1/g(x)) sin(10πx1) Convex

g(x) = 1 + 9
n−1

n
∑

i=2
xi

F4 ZDT4 30 [0, 1]n f1(x) = x1; f2(x) = g(x)(1−
√

x1/g(x)) Convex

g(x) = 1 + 10(n− 1)
n
∑

i=2
x2

i − 10 cos(4πxi)

F5 ZDT6 30 [0, 1]n f1(x) = 1− exp(4x1) sin6(6πx1)); f2(x) = g(x)(1−
√

x1/g(x)) Convex

g(x) = 1 + 9
[1

n−1

n
∑

i=2
xi
]0.25

F6 POL 2 [−π, π]2 f1(x) = 1 + (A1 − B1)
2 + (A2 − B2)

2; f2(x) = (x1 + 3)2 + (x2 + 1)2 Convex
A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)
A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)
B1 = 0.5 sin(x1)− 2 cos(x1) + sin(x2)− 1.5 cos(x2)
B2 = 1.5 sin(x1)− cos(x1) + 2 sin(x2)− 0.5 cos(x2)

F7 MOP1 1 [−2, 2] f1(x) = −x1[−2,1](x) + (x− 2)1]1,3](x) + (4− x)1]3,4](x) Non Convex
+(x− 4)1]4,5](x); f2(x) = (x− 5)2

F8 No-Hole 2 [−1, 1]2 f1(x) = (t + 1)2 + a; f2(x) = (t− 1)2 + a Convex
F9 Hole 2 [−1, 1]2 f1(x) = (t + 1)2 + a + b exp[−c(t− d)2]; Non Convex

f2(x) = (t− 1)2 + a + b exp[−c(t + d)2]

F10 KUR 3 [−5, 5]3 f1(x) =
n
∑

i=2
(−10 exp(−0.2

√
x1

i + x2
i)); f2(x) =

n
∑

i=1
|xi|0.8 + 5 sin(x3

i) Convex

F11 SCH 1 [−10+3, 10+3] f1(x) = x2; f2(x) = (x− 2)2 Convex

F12 FON 3 [−4, 4]3 f1(x) = 1− exp
(
−

3
∑

i=1
(xi − 1√

3
)
)
; f2(x) = 1− exp

(
−

3
∑

i=1
(xi +

1√
3
)
)

Convex

F13 MUR 2 [0, 10]× f1(x) = 2
√

x1 ; f2(x) = x1(1− x2) + 5 Non Convex
[−10, 10]

F14 MSC 1 [−2, 2] f1(x) = exp(−x) + 1.4 exp(−x2); f2(x) = exp(x) + 1.4 exp(−x2) Non Convex

4.2. Parameters Setting

In X-Tornado, the parameters setting were set as follows:

• The number of CGS chaotic levels (Nc): Nc = 5.
• The number of CLS chaotic levels (Nl): Nl = 5.
• The number of CFS chaotic levels (N f): N f = 10.
• The number of CLS-CFS per cycle (Ml): Ml = 100.
• The number of subproblems resolved with the Tchebychev decomposition approach (Ns): Ns = 50.

4.3. Performances Measures

Due to the fact that the convergence to the Pareto optimal front and the maintenance of a diverse
set of solutions are two different goals of the multi-objective optimization, two performance measures
were adopted in this study: the generational distance (GD) to evaluate the convergence,and the
Spacing (S) to evaluate the diversity and cardinality.

Algorithms 2020, 13, 204 15 of 25

• The convergence metric (GD) measure the extent of convergence to the true Pareto front. It is
defined as:

GD =
1
N

N

∑
i=1

di, (32)

where N is the number of solutions found and di is the Euclidean distance between each solution
and its nearest point in the true Pareto front. The lower value of GD, the better convergence of the
Pareto front to the real one.

• The Spacing metric S indicates how the solutions of an obtained Pareto front are spaced with
respect to each other. It is defined as:

S =

√√√√ 1
N

N

∑
i=1

(di − d)2 (33)

4.4. Impact of the Tchebychev Scalarization Strategies

By adopting the three Tchebychev we have tested three X-Tornado variants as follows:

• X-Tornado-TS: denotes X-Torando with Standard Tchebychev approach.
• X-Tornado-TM: denotes X-Torando with Tchebychev variant involving multiple utopian reference

points instead of just one reference point.
• X-Tornado-ATS: denotes X-Torando with augmented Tchebychev approach.

The computational results in term of (GD, S) for 300000 function evaluations are shown in
Tables 2 and 3 respectively, according to the three variants of X-Tornado.

The analysis of the results obtained for the 14 selected problems show that X-Tornado-TM achieves
the best performance in term of the two considered metrics GD and S. Indeed, in term of convergence
X-Tornado-TM wins the competition on 6 problems, X-Tornado-TS wins on 5 problems whereas
X-Tornado-ATS wins on only 3 problems. In term of spacing metric, X-Tornado-TM releases clearly the
best performance by winning the competition on 8/14 whereas X-Tornado-TS and X-Tornado-ATS win
both only on three problems.

Based on this performance analysis, X-Tornado-TM variant seems to be the most promising
one and therefore, in the next section we will compare its performance against some state-of the-art
evolutionary algorithms. Moreover, it will be designed as X-Tornado for sake of simplicity.

Table 2. The Generationnal distance metric result for the three versions of X-Tornado on the 14 selected problems.

XTornado-TS XTornado-TM XTornado-ATS

Problem Mean Std Mean Std Mean Std

ine F1 1.27× 10−3 4.50× 10−7 2.38× 10−3 7.10× 10−7 1.27× 10−3 1.70× 10−6

F2 5.24× 10−4 6.09× 10−4 6.61× 10−4 4.42× 10−4 8.68× 10−4 1.08× 10−3

F3 2.91× 10−3 1.24× 10−4 2.45× 10−3 1.68× 10−4 2.52× 10−3 5.36× 10−4

F4 1.51× 10−3 3.81× 10−4 1.72× 10−3 3.61× 10−4 1.34× 10−3 1.88× 10−6

F5 5.76× 10−3 2.23× 10−3 3.88× 10−3 1.97× 10−3 9.57× 10−4 1.26× 10−4

F6 1.45× 10−3 1.08× 10−4 1.39× 10−3 3.41× 10−5 1.40× 10−3 8.18× 10−5

F7 1.27× 10−3 1.13× 10−6 2.38× 10−3 5.41× 10−7 1.27× 10−3 1.62× 10−6

F8 2.38× 10−3 1.01× 10−4 2.38× 10−3 1.23× 10−6 2.50× 10−3 2.41× 10−4

F9 3.06× 10−3 1.32× 10−4 2.16× 10−3 4.11× 10−4 2.67× 10−3 1.87× 10−4

F10 5.95× 10−4 1.17× 10−5 6.41× 10−4 5.50× 10−6 5.86× 10−4 6.20× 10−6

F11 2.07× 10−3 4.15× 10−10 2.38× 10−3 4.30× 10−10 2.07× 10−3 1.09× 10−9

F12 9.76× 10−4 9.33× 10−7 8.42× 10−4 1.43× 10−6 9.76× 10−4 5.03× 10−7

F13 8.76× 10−4 8.60× 10−11 7.80× 10−4 7.50× 10−13 8.76× 10−4 2.65× 10−13

F14 4.24× 10−4 1.37× 10−11 5.66× 10−4 1.02× 10−11 4.24× 10−4 3.47× 10−11

TS: Standard Tchebytcheff, TM: Tchebytcheff with multiple references points, ATS: Augmented Tchebytcheff.

Algorithms 2020, 13, 204 16 of 25

Table 3. Results of the Spacing metric (S) for the three versions of X-Tornado on the 14 selected
problems.

XTornado-TS XTornado-TM XTornado-ATS

Problem Mean Std Mean Std Mean Std

ine F1 1.42× 10−2 3.06× 10−5 1.14× 10−2 2.05× 10−7 1.43× 10−2 3.71× 10−6

F2 6.74× 10−3 8.33× 10−3 1.61× 10−2 1.08× 10−2 1.88× 10−2 2.89× 10−2

F3 5.64× 10−2 1.72× 10−3 4.69× 10−2 2.31× 10−3 5.61× 10−2 7.01× 10−3

F4 3.90× 10−2 4.27× 10−3 1.45× 10−2 2.25× 10−3 4.16× 10−2 3.39× 10−3

F5 7.47× 10−2 2.20× 10−2 6.46× 10−2 1.80× 10−2 1.53× 10−2 3.43× 10−3

F6 1.43× 10−2 2.36× 10−7 1.14× 10−2 3.23× 10−6 1.43× 10−2 9.73× 10−7

F7 1.43× 10−2 2.01× 10−6 1.14× 10−2 2.80× 10−6 1.43× 10−2 3.45× 10−6

F8 1.01× 10−2 4.76× 10−4 2.44× 10−2 3.36× 10−3 9.93× 10−2 2.92× 10−2

F9 5.95× 10−2 5.04× 10−3 4.94× 10−2 5.23× 10−3 5.68× 10−2 3.55× 10−3

F10 2.70× 10−1 1.68× 10−2 3.15× 10−1 2.61× 10−2 2.57× 10−1 1.49× 10−2

F11 9.03× 10−2 1.28× 10−8 1.14× 10−2 1.52× 10−6 9.03× 10−2 2.75× 10−8

F12 4.67× 10−3 8.65× 10−7 1.86× 10−2 4.59× 10−7 4.67× 10−3 2.88× 10−7

F13 1.48× 10−2 1.15× 10−12 4.46× 10−2 1.43× 10−11 1.48× 10−2 3.34× 10−12

F14 1.44× 10−1 1.14× 10−9 4.57× 10−2 8.71× 10−11 1.44× 10−1 2.13× 10−9

TS: Standard Tchebytcheff, TM: Tchebytcheff with multiple references points, ATS: Augmented Tchebytcheff.

4.5. Comparison with Some State-Of The-Art Evolutionary Algorithms

In this section, we choose three well-known multiobjective evolutionary algorithms NSGA-II,
PESA-II, and MOEA/D (MATLAB implementation obtained for the yarpiz library available at www.
yarpiz.com.). The Tchebychev function in MOEA/D was selected as the scalarizing function and
the neighborhood size was specified as 15% of the population size. The population size in the three
algorithms was set to 100, The size of the archive was set to 50 in PESA-II and MOEA/D.

Besides the 14 bi-objective considered problems in the previous section, 4 additional 3d objective
problems will be also tested, which are DTLZ1, DTLZ2, DTLZ3, DTLZ4. However, note that,
as the TM decomposition is not suitable in the 3d cases, those 3d problems will be tested with
X-Tornado-TS variant.

The computational results using the performance indicators (GD and S for 300000 function
evaluations are shown in Tables 4 and 5 respectively, according to all four algorithms: NSGA-II,
PESA-II, MOEA-D, and X-Tornado. The mean and variance of simulation results in 10 independent
experiments are depicted for each algorithm. The mean of the metrics reveals the average evolutionary
performance and represents the optimization results in comparison with other algorithms. The
variance of the metrics indicates the consistency of an algorithm. The best performance is represented
by bold fonts.

www.yarpiz.com
www.yarpiz.com

Algorithms 2020, 13, 204 17 of 25

Table 4. The Generational distance metric (GD) comparison result for the for algorithms on the 14
selected problems.

Nsga2 Pesa2 Moead Xtornado-TM

Fct Mean Std Mean Std Mean Std Mean Std

ine F1 6.69× 10−3 1.50× 10−3 5.87× 10−2 1.22× 10−2 2.74× 10−2 2.49× 10−2 2.38 × 10−3 7.10 × 10−7

F2 6.56× 10−3 1.43× 10−3 8.62× 10−2 5.97× 10−3 2.48× 10−1 1.04× 10−1 6.61 × 10−4 4.42 × 10−4

F3 1.15× 10−2 4.57× 10−3 4.20× 10−2 3.75× 10−3 3.27× 10−2 1.71× 10−2 2.45 × 10−3 1.68 × 10−4

F4 8.63× 10−2 8.00× 10−2 1.07× 10+1 2.87× 10−1 8.49× 10+0 2.04× 10+0 1.72 × 10−3 3.61 × 10−4

F5 1.54× 10−2 3.14× 10−2 4.37× 10−1 8.26× 10−3 6.62× 10−1 1.78× 10−1 3.88 × 10−3 1.97 × 10−3

F6 9.73 × 10−4 4.76 × 10−5 8.83× 10−2 2.49× 10−2 1.57× 10−3 1.31× 10−3 1.39× 10−3 3.41× 10−5

F7 6.96 × 10−5 6.44 × 10−6 9.26× 10+1 1.00× 10+1 5.66× 10−4 9.35× 10−4 2.38× 10−3 5.41× 10−7

F8 1.74 × 10−3 2.52 × 10−5 6.45× 10−2 5.93× 10−3 1.30× 10−3 2.12× 10−4 2.38× 10−3 1.23× 10−6

F9 4.08× 10−2 9.28× 10−3 3.75× 10−2 4.12× 10−3 1.88× 10−2 4.04× 10−3 2.16 × 10−3 4.11 × 10−4

F10 7.38× 10−4 8.84× 10−5 1.78× 10−1 1.08× 10−2 1.13× 10−2 1.26× 10−2 6.41 × 10−4 5.50 × 10−6

F11 4.51× 10−3 6.32× 10−4 1.82× 10+9 1.89× 10+8 4.59× 10+0 1.01× 10+1 2.38 × 10−3 4.30 × 10−10

F12 1.05× 10−3 1.27× 10−4 3.23× 10−2 1.03× 10−3 1.27× 10−3 4.30× 10−4 8.42 × 10−4 1.43 × 10−6

F13 8.29× 10−4 9.40× 10−5 6.28× 10−3 1.81× 10−3 2.04× 10−3 3.16× 10−3 7.80 × 10−4 7.50 × 10−13

F14 6.05× 10−4 6.94× 10−5 2.98× 10−4 1.79× 10−4 3.66× 10−4 8.88× 10−5 5.66 × 10−4 1.02 × 10−11

Table 5. The Spacing metric (S) comparison result for the four algorithms on the 14 selected problems.

Nsga2 Pesa2 Moead Xtornado-TM

Fct Mean Std Mean Std Mean Std Mean Std

ine F1 1.20× 10−2 4.19× 10−3 3.70× 10−1 3.51× 10−2 3.74× 10−2 1.79× 10−2 1.14 × 10−2 2.05 × 10−7

F2 7.75× 10−3 3.00× 10−3 5.28× 10−1 3.86× 10−2 1.06× 10−1 1.05× 10−1 1.61 × 10−2 1.08 × 10−2

F3 3.40 × 10−2 7.73 × 10−3 3.78× 10−1 2.14× 10−2 7.86× 10−2 9.79× 10−3 4.69× 10−2 2.31× 10−3

F4 3.21× 10−1 6.38× 10−1 2.38× 10+1 2.61× 10+0 1.04× 10+0 2.34× 10+0 1.45 × 10−2 2.25 × 10−3

F5 7.58× 10−2 1.36× 10−1 9.86× 10+0 1.72× 10+0 1.34× 10+0 1.39× 10+0 6.46 × 10−2 1.80 × 10−2

F6 2.44× 10+0 3.74× 10−3 1.90× 10+0 4.29× 10−1 1.43× 10−1 1.04× 10−1 1.14 × 10−2 2.17 × 10−7

F7 1.11× 10+0 1.10× 10−3 4.04× 10−1 9.21× 10−2 1.09× 10−1 8.63× 10−3 1.14 × 10−2 2.80 × 10−6

F8 4.76× 10−2 7.48× 10−3 2.53× 10−1 4.44× 10−2 4.19× 10−1 1.19× 10−1 2.44 × 10−2 3.36 × 10−3

F9 9.70× 10−2 3.24× 10−3 1.97× 10+0 3.43× 10−1 3.15× 10−1 2.19× 10−1 4.94 × 10−2 5.23 × 10−3

F10 1.79 × 10−1 1.11 × 10−2 3.67× 10+2 3.01× 10+1 5.10× 10−1 7.39× 10−1 3.15× 10−1 2.61× 10−2

F11 7.62× 10−2 1.25× 10−2 1.31× 10+0 2.05× 10−1 1.57× 10−1 2.18× 10−2 2.46 × 10−2 1.57 × 10−8

F12 1.47× 10−2 2.95× 10−3 4.26× 10+0 7.91× 10−1 6.99× 10−1 3.08× 10−1 1.86 × 10−2 4.59 × 10−7

F13 4.93× 10−2 8.37× 10−3 4.22× 10+4 1.54× 10+3 1.10× 10−1 1.16× 10−1 4.46 × 10−2 1.43 × 10−11

F14 1.44× 10−1 7.03× 10−3 1.45× 10−1 4.43× 10−2 2.43 × 10−2 3.54 × 10−3 4.57× 10−2 8.71× 10−11

By analysing the obtained results in Table 4, it is clear that the X-Tornado approach has the best
performance in term of convergence to the front. Indeed the proposed X-Tornado obtains the lowest
GD metric value for twelve out of the 18 test problems and with small standard deviation in almost
all problems. A low GD metric value of an algorithm on a problem is significant for accuracy of the
obtained Pareto front. That is to say, the proposed algorithm has a good accuracy and stability on the
performance of these problems.

In Table 5 X-Tornado outperforms all other algorithms on the mean of the spacing metric in almost
all test problems except in ZDT3, KUR, MSC and DTLZ4.

The next Tables 6 and 7 show the comparisons result in case of doubling the archive length used
by the three meta heuristics involved in the comparison with our X-Tornado method. Indeed, as w can
see, X-Tornado is still having slightly better performance among the compared methods. But, the most
interesting thing that had motived this additional simulation is to demonstrate the superiority of our
method over the classical approach adopting an archiving mechanism in term of Time execution. In
fact, in this kind of metaheuristics, an update of the archive of non dominated points is carried out
after each cycle of the algorithms. Therefore, if all the algorithms in comparison were adopting an

Algorithms 2020, 13, 204 18 of 25

archiving mechanism (which is often the case) the corresponding cost is usually not considered since
it has no sensitive effect in comparison. However, in our case, dislike the methods in comparisons,
X-Tornado don’t use an archiving mechanism, whereas on the other side doubling the archive has
considerably increased the execution time as can be observed in Table 8.

Table 6. The Generational distance metric (GD) comparison results for the for algorithms on the 8
selected problems.

Nsga2 cc Pesa2 cc Moead cc X-Tornado

Problem Mean Std Mean Std Mean Std Mean Std

ine F1 3.79× 10−3 7.68× 10−4 6.44× 10−2 1.31× 10−2 4.46× 10−3 7.26× 10−3 2.38 × 10−3 7.10 × 10−7

F2 3.97× 10−3 8.13× 10−4 8.72× 10−2 6.64× 10−3 1.05× 10−1 5.58× 10−2 6.61 × 10−4 4.42 × 10−4

F3 3.86× 10−3 1.07× 10−3 4.37× 10−2 2.78× 10−3 2.39× 10−2 7.76× 10−3 2.45 × 10−3 1.68 × 10−4

F4 8.82× 10−2 9.24× 10−2 1.11× 10+1 6.62× 10−1 3.31× 10+0 1.05× 10+0 1.72 × 10−3 3.61 × 10−4

F5 9.99 × 10−4 2.52 × 10−5 6.70× 10−2 0 8.52× 10−4 5.15× 10−5 3.88× 10−3 1.97× 10−3

F6 4.44 × 10−4 3.45 × 10−5 4.08× 10−1 0 2.72× 10−1 1.97× 10−1 1.39× 10−3 3.41× 10−5

F7 6.57 × 10−4 2.38 × 10−5 1.18× 10−1 0 6.86× 10−3 5.65× 10−3 2.38× 10−3 5.41× 10−7

F8 7.65× 10−3 1.38× 10−2 5.27× 10−2 0 1.00× 10−2 1.45× 10−3 2.38 × 10−3 1.23 × 10−6

Table 7. The Spacing metric (S) comparison results for the four algorithms on the 8 selected problems.

Nsga2 cc Pesa2 cc Moead cc X-Tornado

Problem Mean Std Mean Std Mean Std Mean Std

ine F1 8.07 × 10−3 2.61 × 10−3 3.77× 10−1 4.27× 10−2 2.18× 10−2 5.26× 10−3 1.14× 10−2 2.05× 10−7

F2 7.92 × 10−3 2.86 × 10−3 5.40× 10−1 4.55× 10−2 2.50× 10−2 3.55× 10−3 1.61× 10−2 1.08× 10−2

F3 2.65 × 10−2 2.40 × 10−3 3.95× 10−1 2.38× 10−2 4.76× 10−2 1.63× 10−2 4.69× 10−2 2.31× 10−3

F4 1.10× 10+0 1.29× 10+0 2.41× 10+1 1.12× 10+0 2.53× 10−1 1.92× 10−1 1.45 × 10−2 2.25 × 10−3

F5 1.75× 10+0 1.90× 10−3 8.78× 10+0 0 7.34× 10−1 7.85× 10−1 6.46 × 10−2 1.80 × 10−2

F6 7.38 × 10−3 5.43 × 10−4 2.54× 10+0 0 4.12× 10−2 2.34× 10−2 1.14× 10−2 2.17× 10−7

F7 1.25× 10−1 1.56× 10−3 3.97× 10+0 0 4.87× 10−1 3.68× 10−1 1.14 × 10−2 2.80 × 10−6

F8 6.13× 10−2 1.47× 10−2 1.90× 10+0 0 3.60× 10−1 2.61× 10−1 2.44 × 10−2 3.36 × 10−3

Table 8. Mean Time result for the four algorithms on problems F1 − F8.

Method F1 F2 F3 F4 F5 F6 F7 F8 ∑ Ti

ine Nsga2 328 327 318 333 338 339 342 336 2662
Pesa2 124 117 100 51 127 103 104 146 871
MOEAD 260 190 249 141 278 206 262 281 1866
XTornado 17 16 17 23 17 14 15 14 133

Moreover, the distribution of the non dominated points reflects automatically the regularity of the
Tchebychev decomposition and unlike the three other algorithms in comparison, a filtering mechanism
such as "crowding" is no longer required in our X-Tornado approach. The consequence of this important
advantage is that unlike the other methods in comparison, the capture of the front by the X-Tornado
method is more continuous and therefore more precise, as illustrated by the Figures 13–15. In addition,
the X-Tornado method is much faster (at least 5 times less expensive in CPU time) compared to other
methods as we can observe in Table 9.

Algorithms 2020, 13, 204 19 of 25

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZDT1 Problem (F1)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ZDT2 Problem (F2)

0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

ZDT3 Problem (F3)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ZDT4 Problem (F4)

0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ZDT6 Problem (F5)

2 4 6 8 10

2

4

6

8

10

12

14

16

18

20

22

Pol Problem (F6)

Figure 13. Pareto Front captured by X-Tornado for problems F1 − F6

Algorithms 2020, 13, 204 20 of 25

0 0.2 0.4 0.6 0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MOP1 Problem (F7)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5
No−Hole Problem (F8)

0 0.5 1 1.5 2 2.5 3 3.5

0

0.5

1

1.5

2

2.5

3

3.5
Hole Problem (F9)

−20 −19 −18 −17 −16 −15 −14
−12

−10

−8

−6

−4

−2

0

Kur Problem (F10)

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

SCH Problem (F11)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FON Problem (F12)

Figure 14. Pareto Front captured by X-Tornado for problems F7 − F12

Algorithms 2020, 13, 204 21 of 25

2 2.5 3 3.5 4
1

1.5

2

2.5

3

3.5

4

 Mur Problem (F13)

1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

MSC Problem (F14)

0

0.2

0.4

0

0.2

0.4

0

0.1

0.2

0.3

0.4

0.5

f

DTLZ1 problem (F15)

g

h

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

f

DTLZ2 problem (F16)

g

h

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

f

DTLZ3 Problem (F17)

g

h

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

f

DTLZ4 problem (F18)

g

h

Figure 15. Pareto Front captured by X-Tornado for problems F13 − F18

4.5.1. Application to Multi-Objective Structural Optimization Problem

In this section, we consider two applications: The first one is the four bar truss problem proposed
by Stadler in [28]. The goal is to find the optimal truss structure while simultaneously minimizing the
total mass and static displacement at point C. These two criteria are in conflict since minimizing the
mass of a structure tends to increase displacement. So the best solution is to find a trade off between
the two criteria. For this, we consider two cost functions to minimize. the total volume (f1 (cm3))) and
displacement (f2 (cm)). The four bar truss problem is shown in Figure 16.

Algorithms 2020, 13, 204 22 of 25

Table 9. Mean Time result for the four algorithms on the 14 selected problems.

Method F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 ∑ Ti

ine Nsga2 78 85 79 91 83 83 16 14 14 81 87 79 77 77 1023
Pesa2 77 74 60 35 83 64 157 200 105 78 43 60 96 66 1244
MOEAD 69 49 68 36 153 46 66 74 72 71 67 65 58 76 1042
Xtornado 17 16 17 23 17 14 15 14 15 17 12 17 14 12 233

L

L L

1

23

4
2F

F

F
min f1(x) = L(2x1 +

√
2x2 +

√
x3 + x4)

f2(x) = FL
E (2

x1
+ 2
√

2
x2
− 2
√

2
x3

+ 2
x4
)

s.t. (F/σ) ≤ x1, x4 ≤ 3(F/σ)
√

2(F/σ) ≤ x2, x3 ≤ 3(F/σ)√
2 ≤ x3 ≤ 3
1 ≤ x4 ≤ 3

Figure 16. Four-bar Truss Problem (TR4)

The second application is the two bar truss structure subjected to random Gaussian loading [29].
The two bar problem is a bi-objective problem where the areas of the two bars are decision variables
of the optimization. The left end of the bars is fixed while the other end is subjected to a mean plus
a fluctuating load. Two objectives are considered for the optimization problem: the mean and the
standard deviation of the vertical displacement. Figure 17 illustrates the two bar problem and further
technical details can be found in [29].

Algorithms 2016, xx, x 23 of 27

L

L L

1

23

4
2F

F

F
min f1(x) = L(2x1 +

√
2x2 +

√
x3 + x4)

f2(x) = FL
E (2

x1
+ 2
√

2
x2
− 2
√

2
x3

+ 2
x4
)

s.t. (F/σ) ≤ x1, x4 ≤ 3(F/σ)
√

2(F/σ) ≤ x2, x3 ≤ 3(F/σ)√
2 ≤ x3 ≤ 3
1 ≤ x4 ≤ 3

Figure 16. Four-bar Truss Problem (TR4)

The second application is the two bar truss structure subjected to random Gaussian loading [39].
The two bar problem is a bi-objective problem where the areas of the two bars are decision variables
of the optimization. The left end of the bars is fixed while the other end is subjected to a mean plus
a fluctuating load. Two objectives are considered for the optimization problem: the mean and the
standard deviation of the vertical displacement. Figure 17 illustrates the two bar problem and further
technical details can be found in [39].

L1

L2 F

θ
F

min F(S1, S2) = (µV(S1, S2), σV(S1, S2))
T

s.t. 22 < S1 < 200

50 < S2 < 100

Figure 17. Two-bar Truss Problem (TR2)

Table 10. Comparison Results obtained by the for methods for TR4 et TR2 problems

GD Spacing Spread CPU(s)
Problem Method Mean Std Mean Std Mean Std Mean

Nsga2 1,49E-03 5,08E-05 1,10E+01 1,06E+00 8,53E-01 9,00E-03 299,0
TR4 Pesa2 6,75E-03 1,40E-04 2,19E+01 6,18E+00 9,72E-01 4,37E-02 141,3

Problem MOEA/D 1,44E-02 8,43E-03 2,03E-18 3,52E-18 1,00E+00 0,00E+00 257,3
X-Tornado 2,27E-03 4,90E-05 1,63E+01 7,36E-01 3,74E-05 5,35E-08 15,8

Nsga2 1,09E-03 2,26E-05 1,45E-04 5,96E-06 9,95E-01 1,23E-04 324,9
TR2 Pesa2 7,50E+00 1,98E+00 3,05E-02 8,45E-03 1,09E+00 1,29E-02 189,0

Problem MOEA/D 1,80E-05 9,91E-06 2,14E-03 1,76E-06 1,01E+00 7,62E-06 294,5
X-Tornado 1,94E-03 5,09E-10 1,52E-04 2,45E-11 9,91E-01 1,02E-09 74,6

Table 10 show the comparison results for the four methods in comparisons in term of GD and
Spacing metrics for 300000 Fes. By analysing these results we observe that X-Tornado is performing
as well as Nsga2 in term of convergence and spacing metrics and outperforms Pesa2 and MOEA/D
for this two problems. Moreover, X-Tornado is much faster in comparison to the three algorithms.

Figure 17. Two-bar Truss Problem (TR2)

Table 10. Comparison Results obtained by the four methods for TR4 and TR2 problems.

GD Spacing Spread CPU(s)

Problem Method Mean Std Mean Std Mean Std Mean

ine Nsga2 1.49 × 10−3 5.08 × 10−5 1.10 × 10+1 1.06 × 10+0 8.53× 10−1 9.00× 10−3 299.0
TR4 Pesa2 6.75× 10−3 1.40× 10−4 2.19× 10+1 6.18× 10+0 9.72× 10−1 4.37× 10−2 141.3
Problem MOEA/D 1.44× 10−2 8.43× 10−3 2.03× 10−18 3.52× 10−18 1.00× 10+0 0 257.3

X-Tornado 2.27× 10−3 4.90× 10−5 1.63× 10+1 7.36× 10−1 3.74× 10−5 5.35× 10−8 15.8
ine Nsga2 1.09 × 10−3 2.26 × 10−5 1.45 × 10−4 5.96 × 10−6 9.95× 10−1 1.23× 10−4 324.9
TR2 Pesa2 7.50× 10+0 1.98× 10+0 3.05× 10−2 8.45× 10−3 1.09× 10+0 1.29× 10−2 189.0
Problem MOEA/D 1.80× 10−5 9.91× 10−6 2.14× 10−3 1.76× 10−6 1.01× 10+0 7.62× 10−6 294.5

X-Tornado 1.94× 10−3 5.09× 10−10 1.52× 10−4 2.45× 10−11 9.91× 10−1 1.02× 10−9 74.6

Table 10 show the comparison results for the four methods in comparisons in term of GD and
Spacing metrics for 300,000 Fes. By analysing these results we observe that X-Tornado is performing as
well as Nsga2 in term of convergence and spacing metrics and outperforms Pesa2 and MOEA/D for
this two problems. Moreover, X-Tornado is much faster in comparison to the three algorithms.

Algorithms 2020, 13, 204 23 of 25

In addition, Figures 18 and 19 illustrate the advantages of X-Tornado PF in term of convergence
and regularity over the other comparative algorithms.

Algorithms 2016, xx, x 24 of 27

In addition, Figures 19 and 18 illustrate the advantages of X-Tornado PF in term of convergence
and regularity over the other comparative algorithms. .

1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
PF captured by NSGA2 for TR4 problem

g

f
1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
PF captured by PESA2 for TR4 problem

f

g

1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

f

g

PF captured by MOEAD for TR4 problem

1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
PF captured by X−Tornado for TR4 problem

f

g

Figure 18. Obtained Pareto fronts by X-Tornado, NSGA-II, MOEA/D and PESA-II for the problem TR4.

1.585 1.59 1.595 1.6 1.605 1.61

0.14

0.14

0.1401

0.1402

0.1402

0.1402

0.1403
PF captured by NSGA2 for TR2 problem

f

g

1.585 1.59 1.595 1.6 1.605 1.61

0.14

0.14

0.1401

0.1402

0.1402

0.1402

0.1403

f

g

PF captured by PESA2 for TR2 problem

1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

f

g

PF captured by MOEAD for TR4 problem

1.585 1.59 1.595 1.6 1.605 1.61

0.14

0.14

0.1401

0.1402

0.1402

0.1402

0.1403
PF captured by X−Tornado for TR2 problem

f

g

Figure 19. Obtained Pareto fronts by X-Tornado, NSGA-II, MOEA/D and PESA-II for the problem TR2.
Figure 18. Obtained Pareto fronts by X-Tornado, NSGA-II, MOEA/D and PESA-II for the problem TR2.

1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
PF captured by NSGA2 for TR4 problem

g

f
1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
PF captured by PESA2 for TR4 problem

f

g

1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

f

g

PF captured by MOEAD for TR4 problem

1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045
PF captured by X−Tornado for TR4 problem

f

g

Figure 19. Obtained Pareto fronts by X-Tornado, NSGA-II, MOEA/D and PESA-II for the problem TR4.

Algorithms 2020, 13, 204 24 of 25

5. Conclusions and Future Work

In this paper, we have successfully developed the X-Tornado algorithm which is based on
Chaotic search.

The proposed X-Tornado algorithm was tested on various benchmark problems with different
features and complexity levels. The results obtained amply demonstrate that the approach is efficient
in converging to the true Pareto fronts and finding a diverse set of solutions along the Pareto front.
Our approach largely outperforms some popular evolutionary algorithms such as MOEA/D, NSGA-II,
and PESA-II in terms of the convergence, cardinality and diversity of the obtained Pareto fronts. The
X-Tornado algorithm is characterized by its fast and accurate convergence, and parallel independent
decomposition of the objective space.

We are investigating to develop new adaptive mechanism in order to extend X-Tornado to the
field of challenging constrained problems involving multi-extremal problems [30,31].

A massively parallel implementation on heterogeneous architectures composed of multi-cores
and GPUs is under development. It is obvious that the proposed algorithms have to be improved to
tackle many objective optimization problems. We will also investigate the adaptation of the algorithms
to large scale MOPs such as the hyperparameter optimization of deep neural networks.

Author Contributions: N.A. conceived the concept and performed the search. R.E. contributed to the designed
the experiments and revised the paper. T.E.-g. provides the instructions and contributed to the discussion and
analysis of the results. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Pinter, J.D. Global Optimization in Action; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1979.
2. Strongin, R.G.; Sergeyev, Y.D. Global Optimization with Non-convex Constraints: Sequential and Parallel

Algorithms; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000.
3. Paulavicius, R.; Zilinskas, J. Simplicial Global Optimization; Springer: NewYork, NY, USA, 2014.
4. Talbi, E.G. Metaheuristics: From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009.
5. Coello Coello, C.A. Multi-objective optimization. In Handbook of Heuristics; Martí, R., Pardalos, P.,

Resende, M., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 177–204.
6. Diehl, M.; Glineur, F.; Jarlebring, E.; Michiels, W. Recent Advances in Optimization and Its Applications in

Engineering; Springer: Berlin/Heidelberg, Germany, 2010.
7. Battaglia, G.; Di Matteo, A.; Micale, G.; Pirrotta, A. Vibration-based identification of mechanical properties

of orthotropic arbitrarily shaped plates: Numerical and experimental assessment. Compos. Part Eng.
2018, 150, 212–225. [CrossRef]

8. Di Matteo, A.; Masnata, C.; Pirrotta, A. Simplified analytical solution for the optimal design of Tuned Mass
Damper Inerter for base isolated structures. Mech. Syst. Signal Process. 2019, 134, 106337. [CrossRef]

9. Jaimes, A.L.; Martınez, S.Z.; Coello Coello, A.C. An introduction to multiobjective optimization techniques.
In Optimization in Polymer Processing; Nova Science Publishers: New York, NY, USA, 2011; pp. 29–58.

10. Miettinen, K.; Ruiz, F.; Wierzbicki, P. Introduction to Multiobjective Optimization, Interactive Approaches.
In Multiobjective Optimization: Interactive and Evolutionary Approaches; Springer: Heidelberg, Germany, 2008;
pp. 27–57.

11. Liefooghe, A.; Basseur, M.; Jourdan, L.; Talbi, E.G. ParadisEO-MOEO: A Framework for Evolutionary
Multi-objective Optimization. In International Conference on Evolutionary Multi-Criterion Optimization; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 386–400.

12. Qingfu, Z.; Hui, L. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans.
Evol. Comput. 2007, 11, 712–731. [CrossRef]

13. Gauvain, M.; Bilel, D.; Liefooghe, A.; Talbi, E.G. Shake them all!: Rethinking selection and replacement in
MOEA/D. In International Conference on Parallel Problem Solving from Nature; Springer: Berlin/Heidelberg,
Germany, 2014; pp. 641–651

http://dx.doi.org/10.1016/j.compositesb.2018.05.029
http://dx.doi.org/10.1016/j.ymssp.2019.106337
http://dx.doi.org/10.1109/TEVC.2007.892759

Algorithms 2020, 13, 204 25 of 25

14. Li, B.; Jiang, W. Chaos optimization method and its application. J. Control. Theory Appl. 1997, 14, 613–615.
15. Wu, L.; Zuo, C.; Zhang, H.; Liu, Z.H. Bimodal fruit fly optimization algorithm based on cloud model learning.

J. Soft Comput. 2015, 21, 1877–1893. [CrossRef]
16. Yuan, X.; Dai, X.; Zhao, J.; He, Q. On a novel multi-swarm fruit fly optimization algorithm and its application.

J. Appl. Math. Comput. 2014, 233, 260–271. [CrossRef]
17. Hang, Y.; Wu, L.; Wang, S. UCAV Path Planning by Fitness-Scaling Adaptive Chaotic Particle Swarm

Optimization. J. Math. Probl. Eng. 2013, 2013, 147–170.
18. Shengsong, L.; Min, W.; Zhijian, H. Hybrid Algorithm of Chaos Optimization and SLP for Optimal Power

Flow Problems with Multimodal Characteristic. IEEE Proc. Gener. Transm. Distrib. 2003, 150, 543–547.
[CrossRef]

19. Tavazoei, M.S.; Haeri, M. An optimization algorithm based on chaotic behavior and fractal nature. J. Comput.
Appl. Math. 2007, 206, 1070–1081. [CrossRef]

20. Hamaizia, T.; Lozi, R. Improving Chaotic Optimization Algorithm using a new global locally averaged
strategy. In Emergent Properties in Natural and Artificial Complex Systems; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2011; pp. 17–20.

21. Hamaizia, T.; Lozi, R.; Hamri, N. Fast chaotic optimization algorithm based on locally averaged strategy and
multifold chaotic attractor. J. Appl. Math. Comput. 2012, 219, 188–196. [CrossRef]

22. Yang, D.; Li, G.; Cheng, G. On the efficiency of chaos optimization algorithms for global optimization.
Chaos Solitons Fractals 2007, 34, 1366–1375. [CrossRef]

23. Li, B.; Jiang, W. Optimizing complex function by chaos search. J. Cybern. Syst. 1998, 29, 409–419.
24. Al-Dhahir, A. The Henon map. Faculty of Applied Mathematics; University of Twente: Enschede, Netherlands, 1996.

25. Ma, X.L.; Zhang, Q.F.; Tian, G.; Yang, J.; Zhu, Z. On Tchebycheff Decomposition Approaches for
Multiobjective Evolutionary Optimization. IEEE Trans. Evol. Comput. 1983. 22, 226–244. [CrossRef]

26. Lin, W.; Lin, Q.; Zhu, Z.; Li, J.; Chen, J.; Ming, Z. Evolutionary Search with Multiple Utopian Reference
Points in Decomposition-Based Multiobjective Optimization. Complex. J. 2019, 2019 1–22. [CrossRef]

27. Steuer, R.E.; Choo, E. An interactive weighted Tchebycheff procedure for multiple objective programming.
J. Math. Program. 1983. 26, 326–344. [CrossRef]

28. Stadler, W.; Duer, J. Multicriteria optimization in engineering: A tutorial and survy. In Structural Optimization:
Status and Future; American institute of Aeronautics and Astronautics: Reston, VA, USA, 1992; pp. 209–249.

29. Zidani, H.; Pagnacco, E.; Sampaio, R.; Ellaia, R.; Souza de Cursi, J.E. Multi-objective optimization by a new
hybridized method: Applications to random mechanical systems. Eng. Optim. 2013, 45, 917–939. [CrossRef]

30. Gaviano, D.E.; Kvasov, D.; Lera, Y.D.; Sergeyev. Software for Generation of Classes of Test Functions with Known
Local and Global MINIMA for global Optimization; TOMS 29; ACM: New York, NY, USA, 2003; pp. 469–480.

31. Grishagin, V.A.; Israfilov, R.A. Multidimensional Constrained Global Optimization in Domains with
Computable Boundaries. In Proceedings of the CEUR Workshop Proceedings, Turin, Italy, 28–29
September 2015; pp. 75–84.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00500-015-1890-3
http://dx.doi.org/10.1016/j.amc.2014.02.005
http://dx.doi.org/10.1049/ip-gtd:20030561
http://dx.doi.org/10.1016/j.cam.2006.09.008
http://dx.doi.org/10.1016/j.amc.2012.05.062
http://dx.doi.org/10.1016/j.chaos.2006.04.057
http://dx.doi.org/10.1109/TEVC.2017.2704118
http://dx.doi.org/10.1155/2019/7436712
http://dx.doi.org/10.1007/BF02591870
http://dx.doi.org/10.1080/0305215X.2012.713355
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Tornado Chaotic Search Algorithm
	Chaotic Optimization Algorithm: Recall
	Tornado Principle
	Chaotic Global Search (CGS)
	Chaotic Local Search (CLS)
	Chaotic Fine Search (CFS)

	Scalarization-Based Chaotic Search
	Tchebychev Scalarization Approaches
	X-Tornado Algorithm

	Computational Experiments
	Test Problems
	Parameters Setting
	Performances Measures
	Impact of the Tchebychev Scalarization Strategies
	Comparison with Some State-Of The-Art Evolutionary Algorithms
	Application to Multi-Objective Structural Optimization Problem

	Conclusions and Future Work
	References

