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Abstract: Dimension reduction is often used for several procedures of analysis of high dimensional
biomedical data-sets such as classification or outlier detection. To improve the performance of such
data-mining steps, preserving both distance information and local topology among data-points could
be more useful than giving priority to visualization in low dimension. Therefore, we introduce
topology-preserving distance scaling (TPDS) to augment a dimension reduction method meant to
reproduce distance information in a higher dimension. Our approach involves distance inflation
to preserve local topology to avoid collapse during distance preservation-based optimization.
Applying TPDS on diverse biomedical data-sets revealed that besides providing better visualization
than typical distance preserving methods, TPDS leads to better classification of data points in reduced
dimension. For data-sets with outliers, the approach of TPDS also proves to be useful, even for purely
distance-preserving method for achieving better convergence.

Keywords: dimension reduction; distance preserving; local topology; multidimensional scaling (MDS)

1. Introduction

Dimension reduction of high dimensional data is an important problem in a wide variety of
domains. Whether it is the field of genomics, proteomics or medical informatics, dimension reduction
always poses a challenge to extract meaningful information in low dimension for visualization,
classification and other down-stream analysis. Traditionally, three different kinds of approaches
are used for dimension reduction which try to preserve one of three factors: distances between
data points, local topology, or the overall information in the data. While principal component
analysis is an information preserving method, multidimensional scaling (MDS) and Sammon mapping
preserve distance [1], whereas methods such as t-SNE [2] and Locally-Linear embedding (LLE) [3]
are nonlinear dimension-reduction techniques which aim to preserve local structure of data [4].
These methods of dimension reduction have their own criteria and cost-function which they try to
minimize. Sammon mapping tries to minimize the squared difference among scaled distances in
high and low dimension normalised by the original distance in the high-dimensional space. One of
the popular methods of dimension reduction, t-SNE aims to minimize cost function similar to SNE
(stochastic neighbor embedding). SNE cost function [5] is based on Kullback-Leibler divergences
between the conditional probabilities of neighborhood based on Gaussian distribution. The SNE
cost function does not allow the collapse of similar data-points and it emphasizes local distances
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which often leads to loss of information about the global topology. A class of non-linear dimension
reduction methods such as Self organising map (SOM) focuses on assigning (or collapsing) data-points
to predefined coordinates (lattice). SOM is often used to make an initial prediction of manifold [6].
Even though SOM tends to provide visualization of local neighborhood among groups of data-points,
it is not able to properly represent heterogeneity-based local topology or global distance information.

Methods which are mainly designed for local topology-based visualization [2,7,8] often lose
information needed for other downstream analysis. On the other hand, preserving global topology
of distances has its own importance in dimension reduction, especially for downstream analysis
steps such as clustering, phylogenetic analysis, or regression. However, while optimization of cost
function of MDS, most often large distance dominate and cause a collapse of data-points [9] which
have some similarity among each-other but are distinct. Given recent trends in biological data-set,
the collapse of data-points in lower dimensions could lead to loss of valuable and useful information.
Single-cell transcriptome and proteome data-sets are meant to highlight differences among between
cell-groups as well as heterogeneity among every cell so that the gradient of cell-states can be
studied [10,11]. Similarly, while studying a cohort of individuals, we would like to visualise a large
difference between diseased and normal cases as well as exploit heterogeneity among patients for
stratification. Hence there is need for a method which can preserve distance information as well as local
topology. Biomedical data analysts could benefit from such methods which could avoid artefact due
to outlier effect of large distances as well as avoid collapse of data-points while preserving distances
needed for downstream procedures such as clustering and machine learning. Hence we developed an
approach to extend pre-existing distance preserving dimension reduction method, MDS, such that
local topology can also be preserved to desirable extent to tackle its above mentioned weaknesses.

We call our method as Topology preserving distance scaling (TPDS). TPDS uses the approach of
distance shrinkage before using the method of non-metric MDS. The objective of TPDS is not only to
improve visualization such as t-SNE, but represent data in low dimension such that other procedures
such as classification could be made more efficient. Here we first provide the description about TPDS
then explain the cost function involved in learning its parameters. Then in result section, we describe
results for four different kinds of data-sets. Later we discuss a few strengths and weaknesses of TPDS.

2. Methods

We follow the approach of distance scaling so that even if a distance preservation-based method
is used, the local topology remains intact. In our approach, the MDS method tries to preserve the
distances; however due to warping (shrinkage) of distances among data-points, the local topology
could also be preserved. However, for this purpose, some prior guess of manifold and local topology
is needed. Therefore, we first use self organising map (SOM) to get a rough estimate of groups and
initial prediction of the manifold. The grouping of data-points by SOM need not to be necessarily
correct, but it provides an estimate of neighborhood to be used by TPDS. Moreover, if the number of
features is too large, one can first perform singular value decomposition (SVD) of data and use singular
vectors with SOM. After a rough estimation of manifold and neighborhood, we scale the distance
between the data-points using their belonging-ness to different groups and distance between group
means. Notice that SOM has its own neighbourhood function which is shrunk during optimization.
However, SOM is constrained by its geometry which often causes the collapse of data-points and
loss of distances information. Therefore we do not need to be totally dependent on SOM but derive
likelihood of proximity using output from SOM so that distance and local topology can be represented
well. Therefore scaling function used by TPDS consists of an attractive and a repulsive component. For
this purpose we define mi j as likelihood of proximity between two data-points i and j belonging to two
different SOM clusters with centers ci and c j as

mi j = e−dist(ci,c j)
2/ρ. (1)
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Here dist(ci, c j) is the normalised distance between cluster centers ci and c j to which data-points i
and j belong. The spread factor ρ is just like the variance in Gaussian distribution. The centre of every
SOM clusters is calculated by averaging its data-points. The dist(ci, c j) is normalised by division with
mean of all distances between cluster centers. If data-points i and j belong to same SOM cluster the
value of mi j is calculated using distance di j between them

mi j = e−δd
2
i j/ρ (2)

Notice that variable ρ is the same as in Equation (1) and δ is a multiplying factor less than 1.
The purpose of δ is to inflate local distances wherever the data-points lie in the same cluster so that we
can avoid their collapse. Thus, using two different ways of calculating mi j depending on whether two
data-points belong to same SOM cluster or not, helps in maintaining local topology for data-points
belonging to same SOM cluster. We calculate the scaling factor for the distance between data-points xi
and x j using the formula.

Si j =
1

1 + mi j − 1/(1 + mi j) + e−5 (3)

Here e−5 is a pseudo-count to stop the scaling factor to go to infinity.
After calculating the scaling factor, the distance between data-points are scaled using the formula

d̂i j = di jSi j (4)

The matrix of scaled distances d̂i j is then used with the non-metric MDS method to reduce the
dimension. Please note that the value of the denominator in scaling factor defined in Equation (3)
is controlled by the likelihood of proximity which itself becomes very small for large distances.
The scaling factor is made such that it enhances the effect of the likelihood of proximity. When the
likelihood of proximity mi j is low the scaling factor Si j increases and inflates the distance, hence it
behaves like a repulsive force. However, when the likelihood mi j is high and reaches closer to 1, the
value of Si j decrease to create an attractive force to shrink the distance di j. Thus, we inflate and shrink
distances according to the likelihood of proximity between data-points or their centres of clusters.
Also notice that the likelihood is calculated in two different ways, depending on the condition whether
two data-points belong to same SOM cluster or not. If data-points belong to same SOM cluster, the
likelihood of their proximity is decreased so that the distances between them are inflated slightly.
Such inflation of distances of data-points belonging to the same cluster, helps to avoid crowding and
collapse while optimising for distance preservation-based dimension reduction.

2.1. Adjusting Spread Factor for Balance between Distance-Stress and Local Topology

The spread factor ρ in Equation (1) indirectly controls the level of scaling of distances. If the value
of ρ is low, the likelihood of proximity for larger distances become negligible and the local topology
neighborhood is also small. Whereas if the value of ρ is high, larger distances are not ignored while
scaling and lead to preservation of global structure of distances but may suppress local topology
information. Hence optimization for ρ is an important step for TPDS. For optimization of ρwe use a
combination of two well-known costs, namely distance-stress and a local-topology preserving strain.
TPDS chooses the value of spread factor ρwhich minimizes the cost function, which is defined as

CF = C + λE (5)

where λ is the Lagrange multiplier, C is distance-based stress which measures the preservation of
global distances pattern, and E is a local-topology preserving constraint. TPDS uses a default value of
λ = 1; however, a different value of λ could also be used. Please note that we do not differentiate the
cost function mentioned in Equation (5) to learn ρ but perform a grid search with a fixed step size to
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find the value of ρ at which CF is lowest. The grid search is done through use of a multiplying factor
multiplied to standard deviation of distance matrix as explained in Algorithm-1. It is just meant to
choose the correct scaled distance matrix to be provided to the non-metric MDS method for dimension
reduction. Thus, TPDS also provides flexibility in choosing the level of preservation of local topology
through λ.

Distance-based stress is the cost function used by MDS, which can be defined as the sum of
differences among distances in high dimension and reduced dimension

Ci j =
∑
i, j

[di j − d′i j]
2 (6)

Here di j is the distance between two data-points xi and x j in higher dimension space and d′i j is
distance in reduced dimension. The cost represented in Equation (5) is often called at distance stress,
which we term here as MDS-cost.

The strain of local topology preservation could be formulated using different approaches based
on hard KNN or smooth neighborhood preservation [12,13]. To test our model, we have used the
cost function associated with symmetric SNE. As proposed by Lauren et al. [2] symmetric-SNE
is a modification of SNE-based approach. The symmetric-SNE cost function consists of single
Kullback–Leibler divergence between a joint probability distribution, P, in the high-dimensional space
and a joint probability distribution, Q, in the low-dimensional space

E = KL(P|Q) =
∑

i

∑
j

pi jlog
pi j

qi j
(7)

where pii and qii is set to zero. Here it is called symmetric SNE because pi j = p ji and qi j = q ji as these
pair wise similarities are defined as

p j|i =
exp(−||xi − x j||

2/2σ2
i )∑

k,i exp(−||xi − xk||
2/2σ2

i )
(8)

and

pi j = (p j|i + pi| j)/2n (9)

in a higher dimension. Here n is the number of data-points. We keep the value of σi at perplexity =

15 [2].
In the lower dimension, the likelihood of distances is determined as

qi j =
exp(−||yi − y j||

2∑
k,i exp(−||yi − yk||

2)
(10)

Here yi and y j represent coordinates of data-points in lower dimension.
Overall the algorithm used by TPDS can be written as
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Algorithm 1: The algorithm of TPDS

Use SOM to get winner node (clusters) of data-points ;
Calculate mean for SOM clusters ;
Calculate distances between cluster means (centers) as dist;
Calculate distances between data-points as d ;
Calculate standard deviation(sd) of distances between data-points ;
Initialize a multiplying factor mult f ;
while mult f < limit do

increase mult f by a factor ;
calculate ρ = sd x mult f ;
for every pair of data-points (i, j) do

if cluster ci = c j then
use distance between data-points di j;
Calculate likelihood of proximity mi j using eq(1)

else
use distance between cluster means dist(ci, c j) ;
Calculate likelihood of proximity mi j using eq(2)

end
calculate spread factor Si j using eq(3) ;
Calculate modified distance d̂i j by multiplcation with spread factor using eq(4) ;

end
Use non-metric MDS with modified distance;
Estimate cost function CF using output from non-metric MDS with eq(5);
Store CF and low-dimension coordinates ;

end
Result: Report low-dimension coordinates with lowest CF

2.2. Optimization of Parameters

Most of the internal parameters used by TPDS were tuned to provide satisfactory performance.
Such parameters which do not need optimization include the number of iterations and step size
to search the value of spread factor to minimize Equation (5) (see Algorithm 1). The grid search
method used for different data-set here was done using 5–10 values for spread factor ρ, however TPDS
also allows more step size in case if it is needed. However, TPDS is dependent on two important
external parameters which can influence the quality of results. The first external parameter is Lagrange
multiplier λ shown in Equation (5). As explained above, the value of λ helps in calculation of spread
factor. The second external parameter is grid size of SOM. The grid size of SOM should be kept
according to the expected number of classes for better visualization; however, it is not necessary for
downstream analysis methods such as supervised classification or machine learning. if the value of
grid-size is large (above 50), TPDS can still produce a satisfactory result. Here we have kept the value
of grid-size between 20–60 for the data-sets used for evaluation.

2.3. Experimental Setup

We compared the performance of TPDS with two types of dimension reduction methods which
were proven to be efficient on different kinds of data-sets. Moreover, target of TPDS is not exactly
the same as t-SNE, i.e., to improve only visualization of data. Therefore for evaluation, we used
four data-sets which could represent the application of dimension reduction in different branches of
Biomedical data analysis. We used two data-sets with physiological features, one protein-expression
profile and a large single-cell gene-expression matrix for evaluation. One of the physiological data-sets
used here, consisted of features derived from the speech of normal individuals and Parkinson’s
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disease [14]. Every replicate for an individual was considered as a data-point. The other physiological
data-set called SCADI (Self-Care Activities Dataset based on ICF-CY) is based on ICF-CY ( International
Classification of Functioning, Disability and Health for Children and Youth) [15]. The SCADI data-set
contains self-care attributes of 70 children with physical and motor disability based on ICF-CY. A protein
expression data-set was also used to evaluate TPDS. This protein expression data-set consists of the
expression levels of 77 proteins/protein modifications using samples from the nuclear fraction of cortex
of mouse [16]. We also used a data set of single-cell expression profile which contained RNA-seq
read-counts from cells belonging to seven cell-lines [17]. Single-cell expression data set had outliers
which added a new dimension of evaluation of the robustness of different dimension reduction
methods. Thus, all the data sets used here had class labels which helped in evaluating the performance
of clustering after dimension-reduction. To evaluate the usability of dimension reduction methods
we have used two different approaches of clustering namely k-means and DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) [18].

3. Results

To evaluate TPDS we used have data sets where both classification and visualization are
needed for making a useful inference. The first data set used here for evaluation was generated by
Naranjo et al. [14], and it consists of feature extracted from speech recording of normal individuals and
Parkinon’s disease patients. For every patient or individual, there are 4 replicate of data points which
have 44 features. In the original manuscript, authors have used supervised classification approach
to classify the normal and Parkison’s cases. We applied our unsupervised method of reducing the
dimension.

As shown in Figure 1 for Naranjo et al.’s data set [14] the data-points belonging to normal
and Parkinson’s disease are shown with two colours. Sammon mapping, non-metric MDS and
t-SNE are not able to show separability of data-points belonging to two classes. However, TPDS
revealed clear separability between Parkinson’s and normal cases and had lower MDS-cost than t-SNE.
Furthermore, we performed k-mean clustering (k = 2) on the output from TPDS and other tested
methods. We calculated clustering purity using the adjusted Rand index (ARI) and normalized mutual
information (NMI). K-mean clustering on output from TPDS had the highest purity as the ARI and
NMI scores were almost 1.7–2 times greater than other method used (tSNE, non-metric MDS and
Sammon mapping) (see Figure 1). We also checked clustering purity after applying DBSCAN to cluster
data-points in low-dimension. Even with DBSCAN-based classification, TPDS provided best clustering
purity among tested methods (see Table 1).

Table 1. Result of clustering purity after applying DBSCAN

Data-Set TPDS t-SNE Non-Metric MDS Sammong Mapping

Parkinson’s ARI: 0.43 ARI: 0 ARI: 0.0 ARI: 0.0
Naranjo et al. NMI: 0.33 NMI: 0 NMI: 0.0 NMI: 0.0

Mouse Protein ARI: 0.133 ARI: 0 ARI: 0.004 ARI: 0.002
Higuuera et al. NMI: 0.23 NMI: 0 NMI: 0.078 NMI: 0.068

SCADI ARI: 0.288 ARI: 0 ARI: 0.058 ARI: 0.002
Zarachi et al. NMI: 0.355 NMI: 0 NMI: 0.060 NMI: 0.068

single cell Expression ARI: 0.027 ARI: 0.0022 ARI: 0 ARI: 0
Li et al. NMI: 0.068 NMI: 0.024 NMI: 0 NMI: 0
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Figure 1. Dimension reduction of Parkinson’s data set by Naranjo et al. [14] using four different
methods. The distance stress-based cost is represented here as MDS-cost.

The second data sets we used for evaluation consist of the expression levels of 77 proteins/protein
modifications from the nuclear fraction of cortex of mouse [16]. This data set of protein expression was
generated using 38 control mice and 34 trisomic mice with Down syndrome. There are 15 replicates
per sample/mouse such that control mice, there are 38 × 15, or 570 measurements, and for trisomic
mice, there are 34 × 15, or 510 measurements. In the original manuscript authors recommended to
consider each replicate as a separate sample. The mice themselves belonged to eight different groups
depending on genotype, behaviour and treatment. Using genotype mice could group separately as
control or trisomic [16].

According to behaviour, the mice could be grouped as stimulated or non-stimulated to learn the
context-shock. Similarly, mice could be grouped as treated with drug or untreated. First, we visualised
data points with reduced dimension, using different colours for eight different groups. Visually, it
was non-trivial to judge about which method performed better. The t-SNE method avoided crowding
but spread out samples too much to cause mixing between different groups. With TPDS there seem
to be crowding among some samples but for the majority of samples, co-localization was according
to group (Figure 2). On the other hand, Sammon mapping and non-metric MDS caused data-points
to be localised as highly overlapping strata according to eight groups. Using K-means clustering
and calculating purity of classification provided higher NMI and ARI score for TPDS compared to
other tested methods (Figure 2). We confirmed the improvement provided by TPDS in clustering
using DBSCAN (see Table 1). However, the mixing of classes hinted towards unknown co-variates.
Therefore we again used TPDS to represent the high dimensional protein expression data set using
three dimensions. When data was reduced to three dimension, the 3D scatter plot of TPDS could
show clear separability between trisomic and normal mice. Whereas other methods could not provide
comparable separability, such as TPDS (Figure 3). Overall, with mouse cortex protein expression data
set, we realised that TPDS has better potential to reduce dimension to align similar class data-points
together and provide separability between non-similar groups.
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Figure 2. Dimension reduction of mouse protein data set. Visualization of reduction to two dimensions.
The distance stress-based cost is represented as MDS-cost. The neighborhood proximity of data-points
belonging to same class is better in TPDS output than t-SNE.

Figure 3. Visualization of mouse protein data set after reduction to three dimensions. The trisomic and
normal mice data-points are shown with two different colors. TPDS is able to show clear separation
between trisomic and normal mice data-points.

The third data set we used for evaluation is the SCADI data set [15] which was also downloaded
from UCI machine learning repository. The SCADI data set contains 206 attributes of 70 children with
physical and motor disability. The data-points are divided into seven classes based on the behaviour
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of children [15]. Applying our approach and other three methods revealed clear separability for a
few classes in reduced dimension (Figure 4). However, evaluating the separability after dimension
reduction of SCADI data set, revealed that the classification of TPDS output resulted in substantially
higher clustering purity than other tested methods (see Figure 4 and Table 1).

Figure 4. Dimension reduction of SCADI data set.The adjusted Rand Index and Normalized mutual
information (NMI) were calculated after performing k-mean clustering using k = 7.

Finally, we used single-cell expression data to evaluate the potential of TPDS. The single-cell
expression data set used here was published by Li et al. [17]. This data set consists of read-count of more
than 57,242 genes as features and 562 cells as data-points. For dimension reduction of such data-sets
with such large features, principal component decomposition (or SVD) are often used, especially in
case of t-SNE. Therefore we provided loading on top 30 principal components to all the methods.
The single-cell data-sets used here had labels for each cell and they could be categorised to 7 cell-types
which we took as classes. The visualization of t-SNE and TPDS outputs showed distinguishable
loci for cells belonging to different types (classes). In terms of clustering purity using k-means and
DBSCAN, TPDS had better performance than other distance preserving methods (Sammon mapping,
non-metric MDS) (see Figure 5). Notice that at different values of perplexity the performance of t-SNE
changes. Nevertheless, TPDS, which uses MDS function, also has comparable performance to t-SNE for
single-cell expression data-set. Surprisingly, for single-cell data-set, the distance stress cost (MDS-cost)
for TPDS was lower than other tested methods despite decent visualization through the preservation
of local topology among cells. It hints about possible convergence issue of Sammon mapping and
non-metric MDS method due to outlier cells. In Figure 5, it is clearly visible that a few cells (represented
by red color) are outliers which caused the collapse of locations of other cell types with Sammon
mapping and non-metric MDS. Notice that, even if TPDS uses non-metric MDS method as the last step,
the collapse of data-points do not happen due to distance scaling to preserve local topology. Thus,
TPDS seem to have avoided local minima by providing less weightage to large distances of outlier
data-point.
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Figure 5. Dimension reduction of single-cell expression data. The 7 types of cells are shown with
different colors. The adjusted Rand Index (ARI) and Normalized mutual information (NMI) were
calculated after k-mean clustering (k = 7). The outlier cells (shown in red color) seem to have different
effect with each dimension reduction method. For demonstration purpose perplexity was set to 4 for
t-SNE. The performance of TPDS is substantially better than Sammon mapping and non-metric MDS
even in terms of MDS-cost minimization.

4. Discussion

Various procedures of analysis of large data-sets such as classification, regression, and anomaly
detection can be improved using dimension reduction techniques. Given the diversity of Biomedical
data-set, there could be multiple factors which influence classification. Hence techniques meant only
for visualization just as t-SNE may not be optimal for improving the performance of analysis and
classification for most of the data-sets. Preserving distance during dimension reduction could have its
own advantage in terms of providing clear separability among dissimilar data-points. The success of
TPDS in achieving low MDS-cost (distance stress), decent visualization and better clustering purity for
tested data-sets hint that having a balance between local-topology and distance preservation could be
useful for other analysis procedures also.

The approach of TPDS to scale the distances to preserve some information about local topology can
also help in better convergence of MDS-like methods. It could be explained as such: the larger distances
among data-points could act as outliers and cause hurdle in convergence. The smaller distances among
data-points with in the same group could be large in number, so giving them more weightage lead to a
better reduction of overall MDS-cost. In this process, some information about local topology could also
be preserved for better visualization. Influence of outliers on other distance-preserving methods is so
strong that it causes a collapse of data-points and more computation time in convergence. Thus, TPDS
shows a clear advantage over the typical distance-preserving method by giving less weightage to
outliers. Another important feature in results of TPDS is that besides separability among data-points of
different classes they have tighter co-localization among data-points of same classes, that too without
the collapse of their location. Such result caused substantially higher classification purity for TPDS
results by DBSCAN which exploit such tight co-localization for density-based clustering. Hence TPDS
could be used as an alternative dimension reduction method to support such density-based clustering
approach also. Besides being robust to outliers and having the potential to provide better classification
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results, TPDS is not so slow (see supplementary Table S1). However, we are trying to optimise it
further for better speed.

Here we used SOM to learn preliminary estimation of the manifold. Other methods generally use
KNN or a modified version of it [3,19,20] for the same purpose. We also evaluated the effect of the
geometry of SOM on TPDS performance. By default, TPDS uses rectangular geometry, where every
node has four neighbors. However, we also tested hexagonal geometry of SOM. The results with
hexagonal geometry of SOM was almost similar to default mode (supplementary Figure S1). SOM
provides neighborhood information about the cluster of data-points, hence in comparison to KNN,
SOM results could be less influenced by noise because of the averaging effect. Such as with protein
expression data set it can be seen that data-points belonging to the same class were closer to each other
in TPDS due to averaging effect while calculating proximity likelihood. On other other hand t-SNE
was not efficient in estimating the likelihood of proximity for data-points in protein expression data,
probably due to noise or sample-specific artefacts.

For visualization with TPDS, one needs to provide a guess about the number of SOM clusters
(grid size), which could have the least effect on downstream analysis steps such as supervised
classification and regression. Other methods, such as t-SNE and Sammon mapping, are also dependent
on parameters. t-SNE is dependent on perplexity parameter, whereas Sammon mapping used lambda
as the initial value of the step size during optimization. Hence TPDS is not an exception in terms
of dependency on one or two parameters. Overall, we have presented an approach to improve the
existing method for distance preservation-based dimension reduction by resolving multiple issues
so that information of heterogeneity among data-points is not lost and overall classification can also
be improved.
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