
algorithms

Article

On a Nonsmooth Gauss–Newton Algorithms for
Solving Nonlinear Complementarity Problems

Marek J. Śmietański

Faculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Łódź, Poland;
marek.smietanski@wmii.uni.lodz.pl

Received: 25 June 2020; Accepted: 31 July 2020; Published: 4 August 2020
����������
�������

Abstract: In this paper, we propose a new version of the generalized damped Gauss–Newton
method for solving nonlinear complementarity problems based on the transformation to
the nonsmooth equation, which is equivalent to some unconstrained optimization problem.
The B-differential plays the role of the derivative. We present two types of algorithms
(usual and inexact), which have superlinear and global convergence for semismooth cases. These
results can be applied to efficiently find all solutions of the nonlinear complementarity problems
under some mild assumptions. The results of the numerical tests are attached as a complement of the
theoretical considerations.

Keywords: Gauss–Newton method; nonsmooth equations; nonsmooth optimization; nonlinear
complementarity problem; B-differential; superlinear convergence; global convergence

1. Introduction

Let F : Rn → Rn and let Fi, i = 1, ..., n denote the components of F. The nonlinear complementarity
problem (NCP) is to find x ∈ Rn such that

x ≥ 0, F(x) ≥ 0 and xT F(x) = 0. (1)

The ith component of a vector x is represented by xi. Solving (1) is equivalent to solving a
nonlinear equation G(x) = 0, where the operator G : Rn → Rn is defined by

G(x) =

 ϕ(x1, F1(x))
...

ϕ(xn, Fn(x))


with some special function ϕ. Function ϕ may have one of the following forms:

ϕ1(a, b) = min{a, b};
ϕ2(a, b) =

√
a2 + b2 − a− b;

ϕ3(a, b) = θ(|a− b|)− θ(a)− θ(b),

where θ : R→ R is any strictly increasing function with θ(0) = 0, see [1].
The (NCP) problem is one of the fundamental problems of mathematical programming,

operations research, economic equilibrium models, and in engineering sciences. A lot of interesting
and important applications can be found in the papers of Harker and Pang [2] and Ferris and Pang [3].
We can find the most essential applications in:

Algorithms 2020, 13, 190; doi:10.3390/a13080190 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-6557-6436
http://dx.doi.org/10.3390/a13080190
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/8/190?type=check_update&version=2

Algorithms 2020, 13, 190 2 of 11

• engineering—optimal control problems, contact or structural mechanics problems, structural
design problems, or traffic equilibrium problems,

• equilibrium modeling—general equilibrium (in production or consumption),
invariant capital stock, or game-theoretic models.

We borrow a technique used in solving some smooth problems. If g is a merit function of G,
i.e., g(x) = 1

2 G(x)TG(x), then any stationary point of g(x) is a least-squares solution of the equation
G(x) = 0. Then, algorithms for minimization are equivalent to algorithms for solving equations.
The usual Gauss–Newton method (known also as the differential corrections method), presented by
Ortega and Rheinboldt [4] in the smooth case, has the form

x(k+1) = x(k) −
[

G′(x(k))TG′(x(k))
]−1

G′(x(k))TG(x(k)). (2)

Local convergence properties of the Gauss–Newton method was discussed by Chen and Li [5],
but only for some smooth case. The Levenberg–Marquardt method is also considered, which is a
modified Gauss–Newton method, in some papers, e.g., [6] or [7]. Moreover, some comparison of
semismooth algorithms for solving (NCP) problems has been made in [8].

In practice, we may also consider the damped Gauss–Newton method

x(k+1) = x(k) −ωk

[
G′(x(k))TG′(x(k)) + λk I

]−1
G′(x(k))TG(x(k)) (3)

with parameters ωk and λk. Parameter ωk may be chosen to ensure suitable decrease of g. If λk is
positive for all k, then the inverse matrix in (3) always exists because G′(x(k))TG(x(k)) is a symmetric
and positive semidefinite matrix. The method (3) has the important advantage: the search direction
always exists, even if G′(x) is singular. Naturally, in the case of nonsmooth equations, some additional
assumptions are needed to allow the use of some line search strategies and to ensure the global
convergence. Because, in some cases, a function G is nondifferentiable, so the equation G(x) = 0 will
be nonsmooth, whereby the method (3) may be useless. Some version of the Gauss–Newton method for
solving complementarity problems was also introduced by Xiu and Zhang [9] for generalized problems,
but only for linear ones. Thus, for solving nonsmooth and nonlinear problems, we propose two new
versions of a damped Gauss–Newton algorithm based on B-differential. The usual generalized
method is a relevant extension of the work by Subramanian and Xiu [10] for a nonsmooth case.
In turn, an inexact version is related to the traditional approach, which was widely studied, e.g.,
in [11]. In recent years, various versions of the Gauss–Newton method were discussed, although most
frequently for solving nonlinear least-squares problems, e.g., in [12,13].

The paper is organized as follows: in the next section, we review some notions needed, such as
B-differential, BD-regularity, semismoothness, etc. (Section 2.1). Next, we propose a new optimization
problem-based methods for the NCP, transforming the NCP into an unconstrained minimization
problem by employing a function ϕ3 (Section 2.2). We state its global convergence and superlinear
convergence rate under appropriate conditions. In Section 3, we present the results of numerical tests.

2. Materials and Methods

2.1. Preliminaries

If F is Lipschitz continuous, the Rademacher’s theorem [14] implies that F is almost everywhere
differentiable. Let the set of points, where F is differentiable, be denoted by DF. Then, the B-differential
(the Bouligand differential) of F at x (introduced in [15]) is

∂BF(x) =
{

lim
x(n)→x

F′
(

x(n)
)

, x(n) ∈ DF

}
,

Algorithms 2020, 13, 190 3 of 11

where F′(x) denotes the usual Jacobian of F at x. The generalized Jacobian of F at x in the sense of
Clarke [14] is

∂F(x) = conv∂BF(x)

We say that F is BD-regular at x, if F is locally Lipschitz at x and if all V ∈ ∂BF(x) are nonsingular
(regularity on account of B-differential). Qi proved (Lemma 2.6, [15]) that, if F is BD-regular at x, then
a neighborhood N of x and a constant C > 0 exist such that, for any y ∈ N and V ∈ ∂BF(y), V is
nonsingular and ∥∥∥V−1

∥∥∥ ≤ C.

Throughout this paper, ‖·‖ denotes the 2-norm.
The notion of semismoothness was originally introduced for functionals by Mifflin [16].

The following definition is taken from Qi and Sun [17]. A function F is semismooth at a point x,
if F is locally Lipschitzian at x and

lim
V∈∂F(x+th′),h′→h,t↓0

Vh′

exists for any h ∈ Rn. F is also said semismooth at x, if it is directionally differentiable at x and

Vh− F′ (x, h) = o (‖h‖) .

Scalar products and sums of semismooth functions are still semismooth functions.
Piecewise smooth functions and maximum of a finite number of smooth functions are also semismooth.
The semismoothness is the almost usually seen assumption on F in papers dealing with nonsmooth
equations because it implies some important properties for convergence analysis of methods in
nonsmooth optimization.

If for any V ∈ ∂F(x + h), as h→ 0

Vh− F′ (x, h) = O
(
‖h‖1+p

)
,

where 0 < p ≤ 1, then we say F is p-order semismooth at x. Clearly, p-order semismoothness implies
semismoothness. If p = 1, then the function F is called strongly semismooth. Piecewise C2 functions
are examples of strongly semismooth functions.

Qi and Sun [17] remarked that, if F is semismooth at x, then, for any h→ 0

F(x + h)− F(x)− F′(x; h) = o (‖h‖) ,

and, if F is p-order semismooth at x, then for any h→ 0

F(x + h)− F(x)− F′(x; h) = O
(
‖h‖1+p

)
.

Remark 1. Strong semismoothness of the appropriate function usually implies quadratic convergence of method
instead of the superlinear one for semismooth function.

In turn, Pang and Qi [18] proved that semismoothness of F at x implies that

sup
V∈∂F(x+h)

{F(x + h)− F(x)− Vh} = o (‖h‖) .

Moreover, if F is p-order semismooth at x, then

Algorithms 2020, 13, 190 4 of 11

sup
V∈∂F(x+h)

{F(x + h)− F(x)− Vh} = O
(
‖h‖1+p

)
.

2.2. The Algorithm and Its Convergence

Consider nonlinear equation G(x) = 0 defined by ϕ3. The equivalence of solving this equation
and problem (NCP) is described by the following theorem:

Theorem 1 (Mangasarian [1]). Let θ be any strictly increasing function from R into R, that is,
a > b⇔ θ(a) > θ(b), and let θ(0) = 0. Then, x solves the complementarity problem (1) if and only if

θ(|Fi(x)− xi|)− θ(Fi(x))− θ(xi) = 0, i = 1, 2, ..., n. (4)

For the convenience, denote

Gi(x) := θ(|Fi(x)− xi|)− θ(Fi(x))− θ(xi) (5)

for i = 1, 2, ..., n.

We assume that the function θ in Theorem 1 has the form

θ(ξ) = ξ |ξ| .

Let G(x) be the associated function. We define function g in the following way:

g(x) =
1
2
‖G(x)‖2 ,

which allows for solving system G(x) = 0 based on solving the nonlinear least-square problem

min
x

g(x). (6)

Let us note that x∗ solves G(x) = 0 if and only if it is a stationary point of g. Thus, from Theorem 1,
x∗ solves (1).

Remark 2. On the other hand, the first-order optimality conditions for problem (6) are equivalent to the
nonlinear system

∇g(x) = G′(x)TG(x) = 0,

where ∇g is the gradient of g, provided G is differentiable and G′ is the Jacobian matrix of G.

The continuous differentiability of the merit function g for some kind of nonsmooth functions
was established by Ulbrich in the following lemma:

Lemma 1 (Ullbrich, [19]). Assume that the function G : Rn ⊃ D → Rn is semismooth, or, stronger, p-order
semismooth, 0 < p ≤ 1, then the merit function 1

2 ‖G(x)‖2 is continuously differentiable on D with gradient
∇g(x) = VTG(x), where V ∈ ∂G(x) is arbitrary.

Lemma 2. For any x ∈ Rn, let Ax = VT
x Vx, where Vx ∈ ∂BG(x). Suppose that ∇g(x) 6= 0. Then, given

λ > 0, the direction d given by

(Ax + λI)d = ∇g(x)

is an ascent direction for g. In particular, there is a positive w such that g(x−wd) < g(x).

Algorithms 2020, 13, 190 5 of 11

Proof. There exist constants β ≥ 0 and γ > 0 such that

β ‖h‖2 ≤ hTAxh ≤ γ ‖h‖2 for all h ∈ Rn,

because Ax defined as VT
x Vx is symmetric and positive semidefinite.

It follows that

(β + λ) ‖h‖2 ≤ hT(Ax + λI)h ≤ (γ + λ) ‖h‖2 for all h ∈ Rn.

Since ∇g(x) 6= 0, d 6= 0. If we take h = d, we obtain

dT∇g(x) ≥ (β + λ) ‖d‖2 > 0.

It follows that ∇g(x)d > 0 and that d is a ascent direction for g (Section 8.2.1 in [4]).

Now, we present the generalized version of the damped Gauss–Newton method for solving the
nonlinear complementarity problem.

Algorithm 1: The damped Gauss-Newton method for solving NCP

Let β, δ ∈ (0, 1) be given. Let x(0) be a starting point. Given x(k), the steps for obtaining x(k+1)

are:
Step 1: If ∇g(x(k)) = 0, then stop. Otherwise, choose any matrix Vk ∈ ∂BG(x(k)) and let
Ak = VT

k Vk.
Step 2: Let λk = g(x(k)).
Step 3: Find d(k) that is a solution of the linear system

(Ak + λkI)d(k) = ∇g(x(k)).

Step 4: Compute the smallest nonnegative integer mk such that

g(x(k) + βmd(k))− g(x(k)) ≤ −δβm∇g(x(k))Td(k)

and set

x(k+1) = x(k) + βmk d(k).

Remark 3. (i) In Step 2, letting λk = g(x(k)) is one of the simplest strategy because then {λk} converges to 0.
(ii) The line search step (Step 4) in the algorithm follows the Armijo rule.

Theorem 2. Let x(0) be a starting point and {x(k)} be a sequence generated by Algorithm 1. Assume that:

(a) supk ‖Vk‖ < ∞ for all Vk ∈ ∂BG(x(k));

(b) ∇g(x) is Lipschitzian with a constant Lg > 0 on the level set L =
{

x : g(x) ≤ g(x(0))
}

.

Then, the generalized damped Gauss–Newton method described by Algorithm 1 is well defined and either {x(k)}
terminates at a stationary point of g, or else every accumulation point of {x(k)}, if it exists, is a stationary point
of g.

Proof. The proof is almost the same as Theorem 2.1 in [10], providing appropriately modified
assumptions.

Algorithms 2020, 13, 190 6 of 11

For the nonsmooth case, the alternative condition may be considered instead of Lipschitz
continuity of ∇g(x) (similar as in [10]). Thus, we have the following convergence theorem:

Theorem 3. Let x(0) be a starting point and {x(k)} be a sequence generated by Algorithm 1. Assume that:
(a) the level set L =

{
x : g(x) ≤ g(x(0))

}
is bounded;

(b) G is semismooth on L.

Then, the generalized damped Gauss–Newton method described by Algorithm 1 is well defined and either {x(k)}
terminates at a stationary point of g, or else every accumulation point of {x(k)}, if it exists, is a stationary point
of g.

Now, we take up the rate of convergence of the considered algorithm. The following theorem
shows suitable conditions in various cases.

Theorem 4. Suppose that x∗ is a solution of problem (1), G is semismooth, and G is BD-regular at x∗.
Then, there exists a neighborhood N∗ of x∗ such that, if x(0) ∈ N∗ and the sequence {x(k)} is generated by
Algorithm 1, we have:
(i) x(k) ∈ N∗ for all k and the sequence {x(k)} is linear convergent to x∗;
(ii) if δ < 0.5, then the convergence is at least superlinear;
(iii) If G is strongly semismooth, then the convergence is quadratic.

Proof. The proof of similar theorem given by Subramanian and Xiu [10] is based on three lemmas,
which have the same assumptions as theorem. Now, we present these lemmas in versions adapted to
our nonsmooth case.

Lemma 3. Assume that dx is a solution of the equation

(Ax + λxI)dx = ∇g(x),

where
λx = g(x) and Ax = VT

x Vx

for some matrix Vx taken from ∂BG(x). Then, there is a neighborhood D1 of x∗ such that, for all x ∈ D1,

‖x− dx − x∗‖ = o (‖x− x∗‖) .

Lemma 4. There is a neighborhood D2 of x∗ such that, for all x ∈ D2,
(a) g(x) = 1

2 (x− x∗)TA∗(x− x∗) + o
(
‖x− x∗‖2

)
,

(b) g(x) = 1
2 (x− x∗)TAx(x− x∗) + o

(
‖x− x∗‖2

)
.

Lemma 5. Suppose that the conditions of Lemma 1 hold. Then, there is a neighborhood D3 of x∗ such that,
for all x ∈ D3,

g(x− dx)− g(x) +
1
2
∇g(x)Tdx ≤ o

(
‖x− x∗‖2

)
.

The proofs of Lemmas 5 and 6 are almost the same as in [10]; however, in the proof of Lemma 4,
we have to take into account the semismoothness and to use Lemma 1 to obtain the desired result.

At the same time, in a similar way, we may show a suitable rate of convergence.
Now, we consider the inexact version of the considered method, which computes an approximate

step, using the nonnegative sequence of forcing terms to control the level of accuracy.
For the above inexact version of the algorithm, we can state the analogous theorems which are

equivalents of Theorems 2–4. Based on our previous results, the proof can be carried out almost in the

Algorithms 2020, 13, 190 7 of 11

same way as that of theorems for the ’exact’ version of the method. However, the condition (7), implied
by inexactness given in Step 3 of Algorithm 2, has to be considered. Thus, we omit both theorems as
proofs here.

Algorithm 2: The inexact version of the damped Gauss-Newton method for solving NCP

Let β, δ, θ ∈ (0, 1) and ηk ∈ [0, 1) for all k given. Let x(0) ∈ Rn be a starting point. Given x(k),
the steps for obtaining x(k+1) are:

Step 1: If ∇g(x(k)) = 0, then stop. Otherwise, choose any matrix Vk ∈ ∂BG(x(k)) and let
Ak = VT

k Vk.
Step 2: Let λk = g(x(k)).
Step 3: Find d(k) that is a solution of the linear system∥∥∥(Ak + λkI)d(k) +∇g(x(k))

∥∥∥ ≤ ηk

∥∥∥∇g(x(k))
∥∥∥ . (7)

Step 4: If ∥∥∥∇g(x(k) + d(k))
∥∥∥ ≤ θ

∥∥∥∇g(x(k))
∥∥∥

then let

x(k+1) = x(k) + d(k)

and go to Step 1.
Step 5: Compute the smallest nonnegative integer mk such that

g(x(k) + βmd(k))− g(x(k)) ≤ −δβm∇g(x(k))Td(k)

and set

x(k+1) = x(k) + βmk d(k)

and go to Step 1.

3. Numerical Results

In this section, we present results of our numerical experiments, obtained by coding both
algorithms in Code:Blocks. We use double precision on an Intel Core i7 3.2 GHz running under
the Windows Server 2016 operating system. We applied the generalized damped Gauss–Newton
method to solve three nonlinear complementarity problems. In the following examples: N1 and N2

denote the number of performed iterations to satisfy the stopping criterion
∣∣∣x(k+1) − x(k)

∣∣∣ < 10−7 ,
using Algorithms 1 and 2, respectively. The forcing terms in Algorithm 2 were chosen as follows:
ηk = (10k)−1 for all k.

Example 1 (from Kojima and Shindo [20]). Let the function F : R4 → R4 have the form

F1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

F2(x) = 2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2,

F3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9,

F4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.

Algorithms 2020, 13, 190 8 of 11

Problem (NCP) with the above function F has two solutions:

x∗ = (1, 0, 3, 0)T and x∗∗ = (
√

6/2, 0, 0, 0.5)T

for which

F(x∗) = (0, 31, 0, 4)T and F(x∗∗) =

(
0, 2 +

√
6

2
, 0, 0

)T

.

Thus, x∗ is a non-degenerate solution of (NCP) because

L :=
{

i : x∗i = 0, Fi(x∗) = 0
}
= ∅,

but x∗∗ is a degenerate solution.
Depending upon the starting point, we obtained the convergence iteration process to both solutions (see

Table 1 or Figure 1).

Table 1. Results for Example 1.

x(0) N1 N2 Solution

(1, 0, 0, 0)T 9 11 x∗∗

(0, 0, 1, 0)T failed 18 x∗∗

(0, 0, 0, 1)T failed failed -
(1, 0, 1, 0)T 7 10 x∗

(1, 0, 0, 1)T 7 9 x∗∗

(1, 0, 1,−5)T 6 8 x∗∗

Figure 1. Number of iterations for various starting points (for Example 1).

Example 2. Let function F : R2 → R2 be defined as follows:

F(x) =

[
2x1 + x2

2 − 6
−x2

1 + 4x1 +
1
2 x2 − 3

]
.

Algorithms 2020, 13, 190 9 of 11

Then, problem (NCP) has two solutions:

- non-degenerate
x∗ = (0, 6)T for which F(x∗) = (30, 0)T

- degenerate
x∗∗ = (3, 0)T for which F(x∗∗) = (0, 0)T .

Similar to Example 1, we obtained the convergence iteration process for both solutions, depending on the starting
point (see Table 2 or Figure 2).

Table 2. Results for Example 2.

x(0) N1 N2 Solution

(0, 0)T 5 7 x∗

(1, 0)T 1 2 x∗∗

(0, 1)T 4 7 x∗

(1,−1)T 2 4 x∗∗

(−1, 1)T 4 7 x∗∗

(5, 5)T 3 5 x∗

(100, 100)T 3 6 x∗

Figure 2. Number of iterations for various starting points (for Example 2.)

Example 3 (from Jiang and Qi [21]). Let function F : Rn → Rn has the form F(x) = Mx + q, where

M =



4 −1 0 ... 0 0
−1 4 −1 ... 0 0
0 −1 4 ... 0 0
...
0 0 0 ... 4 −1
0 0 0 ... −1 4


, q = (−1, ...,−1)T .

Because F is strictly monotonic, the proper problem (NCP) has exactly one solution.
Calculations have been made for various n with one starting point x(0) = (0, ..., 0)T . For all tests, we

obtain the same number of iterations N1 = 3 and N2 = 4.

Algorithms 2020, 13, 190 10 of 11

4. Conclusions

We have given the nonsmooth version of the damped generalized Gauss–Newton method
presented by Subramanian and Xu [10]. The generalized Newton algorithms related to the
Gauss–Newton method are well-known important tools for solving nonsmooth equations, which
arise from various nonlinear problems such as nonlinear complementarity or variational inequality.
These algorithms are especially useful when the problem has many variables. We have proved that the
sequences generated by the methods are superlinearly convergent under mild assumptions. Clearly,
the semismoothness and BD-regularity are sufficient to obtain only a superlinear convergence of
methods, while strong semismoothness even gives quadratic convergence. However, if function G is
not semismooth or BD-regular or the gradient of g is not Lipschitzian, the Gauss–Newton methods
may be useless.

The performance of both methods was evaluated in terms of the number of iterations required.
The analysis of the numerical results seems to indicate that the methods are usually reliable for solving
semismooth problems. The results show that the inexact approach can produce a noticeable slowdown
by the number of iterations (compare N1 and N2 in Figures 1 and 2). In turn, an important advantage
is that the algorithms allow us to find various solutions to the problem (this can be observed in two
examples: the first and second one). However, if there are many solutions of the problem, then the
relationship between the starting point and the obtained solution may be unpredictable.

Clearly, traditional numerical algorithms aren’t the only method for solving the nonlinear
complementarity problems, regardless of the degree of nonsmoothness. Except for the methods
presented in the paper and mentioned in the Introduction, some computational intelligence algorithms
can be used to solve (NCP) problems, i.a., monarch butterfly optimization (see [22,23]), the earthworm
optimization algorithm (see [24]), the elephant herding optimization (see [25,26]), or the moth search
algorithm (see [27,28]). All of these approaches are bio-inspired metaheuristic algorithms.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Mangasarian, O.L. Equivalence of the complementarity problem to a system of nonlinear equations.
SIAM J. Appl. Math. 1976, 31, 89–92. [CrossRef]

2. Harker, P.T.; Pang, J.S. Finite-dimensional variational inequality and nonlinear complementarity problems:
A survey of theory, algorithms and applications. Math. Program. 1990, 48, 161–220. [CrossRef]

3. Ferris, M.C.; Pang, J.S. Engineering and economic applications of complementarity problems. SIAM Rev.
1997, 39, 669–713. [CrossRef]

4. Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press:
New York, NY, USA, 1970.

5. Chen, J.; Li, W. Local convergence of Gauss–Newton’s like method in weak conditions. J. Math. Anal. Appl.
2006, 324, 381–394. [CrossRef]

6. Fan, J.; Pan, J. On the convergence rate of the inexact Levenberg-Marquardt method. J. Ind. Manag. Optim.
2011, 7, 199–210. [CrossRef]

7. Yamashita, N.; Fukushima, M. On the Rate of Convergence of the Levenberg-Marquardt Method.
J. Comput. Suppl. 2001, 15, 227–238.

8. De Luca, T.; Facchinei, F.; Kanzow, C.T. A theoretical and numerical comparison of some semismooth
algorithms for complementarity problems. Comp. Optim. Appl. 2000, 16, 173–205. [CrossRef]

9. Xiu, N.; Zhang, J. A smoothing Gauss–Newton method for the generalized HLCP. J. Comput. Appl. Math.
2001, 129, 195–208. [CrossRef]

10. Subramanian, P.K.; Xiu, N.H. Convergence analysis of Gauss–Newton method for the
complemetarity problem. J. Optim. Theory Appl. 1997, 94, 727–738. [CrossRef]

11. Martínez, J.M.; Qi, L. Inexact Newton method for solving nonsmooth equations. J. Comput. Appl. Math.
1995 60, 127–145. [CrossRef]

http://dx.doi.org/10.1137/0131009
http://dx.doi.org/10.1007/BF01582255
http://dx.doi.org/10.1137/S0036144595285963
http://dx.doi.org/10.1016/j.jmaa.2006.01.032
http://dx.doi.org/10.3934/jimo.2011.7.199
http://dx.doi.org/10.1023/A:1008705425484
http://dx.doi.org/10.1016/S0377-0427(00)00550-1
http://dx.doi.org/10.1023/A:1022661202977
http://dx.doi.org/10.1016/0377-0427(94)00088-I

Algorithms 2020, 13, 190 11 of 11

12. Bao, J.F.; Li, C.; Shen, W.P.; Yao, J.C.; Guu, S.M. Approximate Gauss–Newton methods for solving
underdetermined nonlinear least squares problems. App. Num. Math. 2017, 111, 92–110. [CrossRef]

13. Cartis, C.; Roberts L. A derivative-free Gauss–Newton method. Math. Program. Comput. 2019, 11, 631–674.
[CrossRef]

14. Clarke, F.H. Optimization and Nonsmooth Analysis; John Wiley & Sons: New York, NY, USA, 1983.
15. Qi, L. Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res.

1993, 18, 227–244. [CrossRef]
16. Mifflin, R. Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim.

1977, 15, 142–149. [CrossRef]
17. Qi, L.; Sun, D. A nonsmooth version of Newton’s method. Math. Program. 1993, 58, 353–367. [CrossRef]
18. Pang, J.S.; Qi, L. Nonsmooth equations: Motivation and algorithms. SIAM J. Optim. 1993, 3, 443–465.

[CrossRef]
19. Ulbrich, M. Nonmonotone trust-region methods for bound-constrained semismooth systems of equations

with applications to nonlinear mixed complementarity problems. SIAM J. Optim. 2001, 11, 889–917.
[CrossRef]

20. Kojima, M.; Shindo, S. Extensions of Newton and quasi-Newton methods to systems of PC1-equations.
J. Oper. Res. Soc. Jpn. 1986, 29, 352–374. [CrossRef]

21. Jiang, H.; Qi, L. A new nonsmooth equations approach to nonlinear complementarity problems.
SIAM J. Control Optim. 1997, 35, 178–193. [CrossRef]

22. Feng, Y.; Wang, G.; Li, W.; Li, N. Multi-strategy monarch butterfly optimization algorithm for discounted 0–1
knapsack problem. Neural Comput. Appl. 2018, 30, 3019–3036. [CrossRef]

23. Feng, Y.; Yu, X.; Wang, G. A novel monarch butterfly optimization with global position updating operator
for large-scale 0–1 knapsack problems. Mathematics 2019, 7, 1056. [CrossRef]

24. Wang, G.; Deb, S.; Coelho, L.D. Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm
for global optimisation problems. Int. J. Biol. Inspired Comput. 2018, 12, 1–22. [CrossRef]

25. Wang, G.; Deb, S.; Coelho, L.D. Elephant herding optimization. In Proceedings of the 2015 3rd International
Symposium on Computational and Business Intelligence (ISCBI), Bali, Indonesia, 7–9 December 2015;
pp. 1–5.

26. Wang, G.; Deb, S.; Gao, X.; Coelho, L.D. A new metaheuristic optimisation algorithm motivated by elephant
herding behaviour. Int. J. Biol. Inspired Comput. 2016, 8, 394–409. [CrossRef]

27. Feng, Y.; Wang, G. Binary moth search algorithm for discounted 0-1 knapsack problem. IEEE Access
2018, 6, 10708–10719. [CrossRef]

28. Wang, G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.
Memet. Comput. 2018, 10, 151–164. [CrossRef]

c© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.apnum.2016.08.007
http://dx.doi.org/10.1007/s12532-019-00161-7
http://dx.doi.org/10.1287/moor.18.1.227
http://dx.doi.org/10.1137/0315061
http://dx.doi.org/10.1007/BF01581275
http://dx.doi.org/10.1137/0803021
http://dx.doi.org/10.1137/S1052623499356344
http://dx.doi.org/10.15807/jorsj.29.352
http://dx.doi.org/10.1137/S0363012994276494
http://dx.doi.org/10.1007/s00521-017-2903-1
http://dx.doi.org/10.3390/math7111056
http://dx.doi.org/10.1504/IJBIC.2018.093328
http://dx.doi.org/10.1504/IJBIC.2016.081335
http://dx.doi.org/10.1109/ACCESS.2018.2809445
http://dx.doi.org/10.1007/s12293-016-0212-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Preliminaries
	The Algorithm and Its Convergence

	Numerical Results
	Conclusions
	References

