
algorithms

Article

Machine Learning-Guided Dual Heuristics and New
Lower Bounds for the Refueling and Maintenance
Planning Problem of Nuclear Power Plants †

Nicolas Dupin 1,* and El-Ghazali Talbi 2

1 Laboratoire de Recherche en Informatique (LRI), CNRS UMR 8623, Department of Computer Science,
Université Paris-Saclay, 91190 Saint-Aubin, France

2 Department of Computer Science, University of Lille, CNRS UMR 9189-Centre de Recherche en
Informatique Signal et Automatique de Lille (CRIStAL), F-59000 Lille, France; el-ghazali.talbi@univ-lille.fr

* Correspondence: nicolas.dupin@universite-paris-saclay.fr
† This paper is an extended version of our paper published in Matheuristics 2016, Sixth International

Workshop on Model-based Metaheuristics, 4–7 September 2016, Brussels, Belgium.

Received: 15 June 2020; Accepted: 21 July 2020; Published: 30 July 2020
����������
�������

Abstract: This paper studies the hybridization of Mixed Integer Programming (MIP) with dual
heuristics and machine learning techniques, to provide dual bounds for a large scale optimization
problem from an industrial application. The case study is the EURO/ROADEF Challenge 2010, to
optimize the refueling and maintenance planning of nuclear power plants. Several MIP relaxations
are presented to provide dual bounds computing smaller MIPs than the original problem. It is proven
how to get dual bounds with scenario decomposition in the different 2-stage programming MILP
formulations, with a selection of scenario guided by machine learning techniques. Several sets of
dual bounds are computable, improving significantly the former best dual bounds of the literature
and justifying the quality of the best primal solution known.

Keywords: operations research; mixed integer programming; stochastic optimization; dual bounds;
dual heuristics; hybrid heuristics; matheuristics; machine learning; EURO/ROADEF Challenge 2010;
maintenance planning; nuclear power plants: power generation

1. Introduction

Hybridizing heuristics with mathematical programming and Machine Learning (ML) techniques is
a prominent research field to design optimization algorithms, these techniques having complementary
advantages and drawbacks [1]. Matheuristics, hybridizing mathematical programming and heuristics,
use the modeling facilities of mathematical approaches for industrial optimization problems, possibly
highly-constrained ones which are usually difficult for meta-heuristics, with a good scalability to face
large size instances, which is a characteristic of meta-heuristics and the bottleneck for exponential
methods like Branch&Bound (B&B) tree search [2].

Usually, hybrid algorithms compute primal solutions of optimization problems as in [3], rare
works use such hybridization to improve dual bounds. Using dual heuristics for Mixed Integer
Linear Programming (MILP) is mentioned in [4]: “In linear programming based branch-and-bound
algorithms, many heuristics have been developed to improve primal solutions, but on the dual side we
rely solely on cutting planes to improve dual bounds”. Until the 2000s, many efforts on improving the
quality of dual bounds relied on improving cut generation to speed up B&B approaches [5] or using
Lagrangian bounds like the Danzig–Wolfe reformulation [6]. In the 2000s, primal heuristics inside
B&B search improved exact MILP solving, having earlier good primal solutions in the B&B search

Algorithms 2020, 13, 185; doi:10.3390/a13080185 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-3775-5629
https://orcid.org/0000-0003-4549-1010
http://dx.doi.org/10.3390/a13080185
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/8/185?type=check_update&version=2

Algorithms 2020, 13, 185 2 of 28

allows for pruning earlier nodes and to converge faster [7]. However, heuristics might be considered
as the “dark side” of MILP solving [7].

In practice, heuristics and matheuristics are useful to design heuristic separation or pricing in
Branch &Cut (B&C) or Branch& Price (B&P) methods: finding quickly and heuristically a violated
constraint or a negative reduced cost column speeds up exact algorithms [8]. In such cases, heuristics
are useful for a quicker computation of the bounds given by exact approaches. Dual heuristics may
furnish quicker dual bounds with an additional gap to the optimal values or mathematical relaxations.
Surrogate relaxations guide the search of primal solution with dual heuristics [9,10]. Aggregation and
disaggregation techniques provide also dual and primal bounds, used in network flow models [11] or
scheduling problems [12]. We note that surrogate optimization and aggregation techniques have a
recent interest in nonlinear optimization [13].

This paper investigates the interest of hybridizing ML and matheuristics to provide dual heuristics
for a highly constrained optimization problems from a real life industrial problem. The case study is the
EURO/ROADEF Challenge 2010, to optimize the refueling and maintenance planning of nuclear power
plants [14]. The best primal solutions were mainly obtained with a local search approach [15]. It was
an open question after the Challenge to have dual bounds for this large scale problem. The first dual
bounds used optimal computations of very relaxed problems [16]. Our preliminary works improved
these dual bounds with aggregation and reduction techniques to have tractable MILP computations of
dual bounds [17]. New dual bounds are provided in this paper, illustrating the interest of hybridizing
exact methods, heuristics, and ML techniques.

This paper is organized as follows. Section 2 gives an overview of the problem constraints.
Section 3 presents the state-of-the art of the solving approaches. Section 4 presents MILP relaxations
and pre-processing reduction to compute dual bounds with smaller MILP. Section 5 analyzes how
dual bounds are provided using different scenario decomposition and how ML techniques guide the
choice of appropriate dual bounds. The computational results are analyzed in Section 6. Conclusions
and perspectives are drawn in Section 7.

2. Problem Statement

Planning the maintenance of nuclear power plants is not a pure scheduling problem: the
impact of maintenance decisions is calculated with the expected production cost to fulfill the power
demands. Maintenance operations for nuclear power plants imply an outage, a null production
phase during several weeks. Planning the outages is crucial in the overall production costs: the part
of nuclear production in the French power production is around 60–70%, and the marginal costs
of nuclear production are lower than the ones of other thermal power plants [18,19]. Furthermore,
maintenance planning must imply the feasibility of low-level technical constraints for productions and
fuel levels. The optimization problem was formulated using 2-stage stochastic programming in [14].
Power demands, production capacities, and costs are uncertain and modeled using discrete stochastic
scenarios. Refueling and maintenance decisions for nuclear power plants are taken, as a tactical level.
The operational level optimizes production plans implied by the previous decisions for each stochastic
scenario, to minimize the average production cost. Notations are presented in Table 1 for the sets and
indexes and in Table 2.

Table 1. Definitions and notations—the sets and indexes.

c ∈ CCT with CT ∈ [[14, 21]] Scheduling constraints denoted CT14 to CT21 in [14].
i ∈ I = [[1, I]] Nuclear power plants (Type 2, T2).
j ∈ J = [[1, J]] Flexible (Type 1, T1) power plants.
k ∈ K = [[0, K]] Cycles related to T2 units, k = 0 for initial conditions.
s ∈ S = [[1, S]] Stochastic scenarios.
t ∈ T = [[1, T]] Production time steps, index t denotes period [t, t + 1]
w ∈ W = [[1, W]] Weekly time steps to plan outage dates.
Wc Subset of time periods involved in constraint c.
Zc Subset of outages involved in constraint c.

Algorithms 2020, 13, 185 3 of 28

Table 2. Definitions and notations—the input parameters.

Ai,k Maximal fuel level remaining in cycle k to process outage k + 1.
Boi,k Fuel level “Bore O” of cycle k
Cend

i,s Proportional cost to the final remaining fuel levels for scenario s.
Cr

i,k Proportional cost to the refueled quantity at outage k.
Cp

j,s,t Production costs for T1 unit j at time period t and scenario s.
Ds,t Power demands at time step t for the scenario s.
Dai,k Outage duration for maintenance and refueling at cycle k.
Ft = F Conversion factor between power and fuel in time step t, constant in the data.
Ic,w Maximal offline T2 power at week w for CT21 constraint c.
Li,k,c Latency in the resource requirement in CT19 constraint c for outage i, k.
Nc,w Maximal number of outages under maintenance at week w for CT20 constraint c.
πs Probability of scenario s.
Pminj,s,t Minimal power for T1 unit j at time period t and scenario s.
Pmaxj,s,t Maximal power for T1 unit j at time period t and scenario s.
Pmaxi,t Maximal generated power at time step t .
Qi,k Proportion of fuel that can be kept during reload in cycle k at plant i
R19

c Maximal quantity of resource in CT19 constraint c.
Rmini,k Minimal refueling at outage k.
Rmaxi,k Maximal refueling at outage k.
Sc Spacing/overlapping value defined by CT14-CT18 constraints.
Smaxi,k Maximal fuel level at production cycle k.
tw Index of the first time step of week w.
Tai,k Last possible beginning week for outage k of T2 plant i.
Toi,k First, possible outage week for cycle k.
Tui,k,c Length of the resource usage in CT19 constraint c for outage i, k.
wt Week of the production time step t.
Xii Initial fuel stock of T2 plant i.

2.1. Production Assets

To generate electricity, two kinds of power plants are distinguished. On one hand, Type-1 (shortly
T1, denoted j ∈ J) power plants can be supplied in fuel continuously without inducing offline periods.
On the other hand, Type-2 (shortly T2, denoted i ∈ I) power plants have to be shut down for refueling
and maintenance regularly. T2 units correspond to nuclear power plants. The production planning for
a T2 unit is organized in a succession of cycles, an offline period (called outage) followed by an online
period (called production campaign). Cycles are indexed with k ∈ K = [[0, K]], each T2 unit i having
possibly K maintenance checks scheduled in the time horizon. The number of maintenance checks
planned in the time horizon may be inferior to K. Cycle k = 0 denotes initial conditions, the current
cycle at w = 0. For units on maintenance at w = 0, cycle k = 0 considers the remaining duration of the
outage. For units on production at w = 0, notations and constraints are extended considering a fictive
cycle k = 0, with a null duration.

2.2. Time Step Discretization

The time horizon is discretized with two kinds of homogeneous time steps. On one hand, outage
decisions are discretized weekly and indexed with w ∈ W = [[1; W]]. On the other hand, production
time steps for T1 and T2 units are discretized with t ∈ T , hourly time periods from 8 h to 24 h. This fine
discretization is used to consider fluctuating demands in hourly periods [20,21].

2.3. Decision Variables and Objective Function

Maintenance, refueling, and production decisions are optimized conjointly. The variables for
outage dates and refueling levels are related to T2 units, whereas the production variables concern T1
and T2 units. There is another heterogeneity of maintenance and production decisions: production
decisions are considered for a discrete set of scenarios s ∈ S to model uncertainty on power demands

Algorithms 2020, 13, 185 4 of 28

and production capacities, whereas outage and refueling decisions are common for all the scenarios,
and must guarantee the feasibility of a production planning for each scenario. The objective function
minimizes the average value of the production costs considering all the scenarios. T1 Production
costs are proportional to the generated power. T2 production costs are proportional to the refueling
quantities over the time horizon, minus the expected stock values at the end of the period to avoid
end-of-side effects.

2.4. Description of the Constraints

There are 21 sets of constraints in the Challenge, numbered from CT1 to CT21 in the
specification [14]. CT6 and CT12 are relaxed in our study; this is possible as we compute dual
bounds relaxing these two sets of constraints. Table 3 describes precisely the constraints.

Constraints CT1 to CT12 concern the production and fuel constraints in the operational level
whereas CT13 to CT21 are scheduling constraints in the strategic level. Constraints CT1 couple the
production of the T1 and T2 plants with power demands. Constraints CT2 and CT3 define the bounds
for T1 productions. Constraints CT4 to CT5 describe the production possibilities for T2 units depending
on the fuel stock with outages during the maintenance periods. Constraints CT7 to CT11 involve fuel
constraints for T2 units: bounds on fuel stocks, on fuel refueling, and relations between remaining fuel
stocks and production/refueling operations.

Constraints CT13 impose Time Windows (TW) for the beginning weeks of outages, and it can
impose some maintenance dates. With CT13 constraints, the maintenance checks follow the order of
set k ∈ K without skipping maintenance checks: if an outage k + 1 is processed in the time horizon, it
must follow the production cycle k. Constraints CT14 to CT21 may be unified in a common format
with generic resources. These constraints express minimal spacing/ maximal overlapping constraints
among outages, and minimum spacing constraint between coupling/decoupling dates, resource
constraints for maintenance using specific tools or manpower skills, and limitations of simultaneous
outages with a maximal number of simultaneous outages or maximal T2 power offline.

Table 3. Description of the constraints, with their references in the specification [14].

CT1: for all production time step t ∈ T and all scenario s ∈ S , the total production of T1 and T2 power plants
must equalize the demands Ds,t.

CT2: for all production time step t ∈ T and all scenario s ∈ S , the production domain of T1 plant j ∈ J
describes exactly the continuous domain [Pminj,s,t, Pmaxj,s,t]

CT3: the productions of T2 power plants are null during the Dai,k weeks of outage (i, k).

CT4-CT5: for each period t ∈ T and each scenario s ∈ S , the production domain of T1 plant j ∈ J describes
exactly the continuous domain [0, Pmaxi,t] when its fuel level is superior to Boi,k.

CT7: the refueling level for outage k of T2 plant i describes the continuous domain [Rmini,k, Rmaxi,k]

CT8: the initial fuel stock for T2 unit i is Xii, known and common for all scenario s.

CT9: the fuel stock variation during a production campaign of a cycle (i, k) between t and t+ 1, is proportional
to the power produced by i at time step t, with a proportional factor −Ft.

CT10: during an outage, the fuel stock variation is the sum of the refueling level and a certain amount of
unspent fuel, calculated with a proportional loss with factor Qi,k < 1 to the residual fuel before refueling.

CT11: the fuel level is in [0, Smaxi,k] for cycle k of T2 unit i. The fuel level must be lower than Ai,k+1 to
process outage k + 1.

CT13: outage (i, k) must begin between weeks Toi,k and Tai,k. The maintenance checks follow the order of set
k ∈ K without skipping maintenance: if outage k + 1 is processed, it must follow the cycle k.

Algorithms 2020, 13, 185 5 of 28

Table 3. Cont.

CT14: For all constraint c ∈ C14, a subset of outages, Zc have to be spaced by at least Sc weeks: for Sc > 0, it
is a minimal spacing from the beginning of a previous outage to the beginning of a next outage, for Sc 6 0, it
is a maximal number of weeks where two outages can overlap.

CT15: CT15 are similar to CT14 with sets C15,Zc and parameters Sc, applying only on a time intervalWc.

CT16: for each constraint c ∈ C16, a subset of outages Zc have to be spaced by at least Sc > 0 weeks from the
beginning of the previous outage to the beginning of the next outage.

CT17: for each constraint c ∈ C17, a subset of outages Zc have to be spaced by at least Sc > 0 weeks from the
end of the previous outage to the end of the next outage.

CT18: for each constraint c ∈ C18, a subset of outages Zc have to be spaced by at least Sc > 0 weeks from the
end of the previous outage to the beginning of the next outage.

CT19: for each constraint c ∈ C19, a subset of outages (i, k) ∈ Zc shares a common resource (which can be a
single specific tool or maintenance team) with forbid simultaneous usage of this resource. Li,k,c and Tui,k,c
indicate respectively the start and the length of the resource usage and R19

c the maximal quantity of the
resource.

CT20: for each constraint c ∈ C20, at most Nc,w outages among a subset Zc overlap in weeks w ∈ Wc.

CT21: for each constraint c ∈ C21, a time periodWc is associated where the offline power of T2 plants Ic ⊂ I
due to maintenance operations must be lower than Ic,w.

3. Related Work

This section describes the solving approaches for the problem, focusing on the dual bounds
possibilities. We refer to [22] for a general survey on maintenance scheduling in the electricity industry,
and to [23,24] for specialized reviews on the approaches for the EURO/ROADEF Challenge 2010.

3.1. Solving Methods

Three types of approaches were designed for the EURO/ROADEF Challenge 2010 competition.
MILP-based exact approaches used MILP models to tackle a simplified and reduced MIP problem
before a reparation procedure to build solutions for the original problem, as in [25–27]. Frontal local
search approaches used neither simplification nor decomposition in local search approaches. These
were the most efficient primal heuristics for the Challenge with outstanding results compared to
the other approaches. An unpublished simulated annealing approach had most of the best primal
solutions for the challenge [28]. An aggressive local search, LocalSolver’s forebear [29], provided
most of the reactualized best primal solutions [15]. Heuristic decomposition approaches separate the
maintenance and refueling planning decisions from the production optimization, and computes
productions independently for each scenario s, as in [30–33]. Such approaches are less efficient. This is
explained by [24].

3.2. Reductions by Pre-Processing

Facing the large size of the instances, most of the approaches competing in the EURO/ROADEF
Challenge 2010 reduced the problem with pre-processing strategies. Fixing implied or necessarily
optimal decisions is a valid pre-processing to compute dual bounds. Heuristic pre-processing strategies
were also commonly used. Most of the previous approaches reduced instances using aggregation
techniques. Firstly, the power productions are discretized with many time steps t ∈ T , and may be
aggregated to their weekly average value, so that production and maintenance decisions have the
same granularity. Under some hypotheses, it is proven such aggregation induces lower bounds of the
original problem [17]. Secondly, many approaches used computations reduced on single scenarios,
aggregating the scenarios into one average deterministic scenario as in [27], or using decomposition

Algorithms 2020, 13, 185 6 of 28

as in [25,26,30–33]. It is proven that lower bounds of the EURO/ROADEF Challenge 2010 can be
guaranteed with S single scenario computations [17].

TW constraints CT13 can be tightened exactly, and we refer to [34] for the most detailed
presentation of such pre-processing. Minimal lengths for production campaigns are implied by the
initial fuel levels defined in CT8 constraints, maximal T2 productions with CT5 constraints, maximal
stock before refueling with CT11 constraints. Such minimal lengths for production cycles imply that
TW constraints can be tightened by induction. Tightening TW constraints, some outages can be
removed when their earliest completion time exceed the time horizon. In the problem specification,
there is no maximal length for a production cycle, and it is possible to have a null production phase
when the fuel is consumed. However, such null production phases are not economically profitable
as T2 production costs are lower than T1 production costs. Adding maximal lengths for production
cycles is a heuristic pre-processing that was proven efficient for primal heuristics [26].

Exact pre-processing applies also for T1 production variables. Once the T2 production is given,
optimizing T1 production is equivalent to solve independently knapsack problems for each time step.
A greedy algorithm computes optimal T1 production by sorting the marginal costs. T1 units can be
aggregated within one unit with piecewise linear costs as in the greedy optimization of T1 production.
The most costly T1 units (or equivalently the last points of the piecewise linear cost function) may be
removed when the production levels that are not reached considering the demands in power.

3.3. Dual Bounds for the Euro/Roadef Challenge 2010

The first dual bounds for the EURO/ROADEF Challenge 2010 were published by [16] and
designed independently from their primal heuristic. Two methods were investigated, computing
optimal solutions of relaxations. A first method relaxes power profile constraint (CT6), as well as all
fuel level tracking (CT7 to CT12) and outage scheduling constraints (CT13 to CT21). The remaining
computation to optimality can be processed greedily assigning the production levels to the cheapest
power plants for all scenarios. A second method uses a flow network relaxation which considers outage
restrictions (CT13) as well as fuel consumption in an approximate fashion (CT7 to CT12) to deduce a
tighter lower bound of the objective function than the simple greedy approach. The computational
effort to compute the bounds differs dramatically: while the greedy bounds are computed in less than
10 s, solving the flow-network for all scenarios takes up to an hour for the biggest instances.

A preliminary work for that paper improved significantly the previous lower bounds [17]. Using
an MILP formulation relaxing only constraints CT6 and CT12, single scenario computations and
possibly aggregation of production time steps, it is tractable to compute dual bounds for all the
instances given for the Challenge allowing one hour per MILP computation. For the most difficult
instances, a dual heuristic using an additional surrogate MILP relaxation improves the results [17].

None of the exact methods used to design primal heuristics for the Challenge published
dual bounds, and some reasons will be analyzed in the next section. We note that Semi-Definite
Programming (SDP) relaxations were investigated to compute dual bounds for the problem [35].
However, the large size of the instances is still a bottleneck for such SDP approaches [35,36].

3.4. Milp Formulations

Several competing approaches for the Challenge were based on MILP formulations.
Many constraints have indeed a linear formulation in the specification [14]. There were three types
of MILP solving: straightforward B&B based on a compact formulation, a Bender’s decomposition,
and an extended formulation for a Column Generation (CG) approach.

Several works noticed that scheduling constraints from CT14 to CT21 are modeled efficiently
with MILP formulations using time indexed formulation of constraints [25,26]. Straightforward MILP
solving is efficiently modeling only CT14 to CT21 constraints [25]. We note that a preliminary work
designed a compact MILP model with an exact description of all the constraints (including the CT6
and CT12 ones) but with too many binary variables to hope for a practical efficiency [37].

Algorithms 2020, 13, 185 7 of 28

Only one exact method did not aggregate the stochastic scenarios in a Bender’s decomposition [26].
Relaxing constraints CT6 and CT12, an MILP formulation is designed with binary variables only for
the outage decisions. Bender’s master problem concerns the maintenance dates and the refueling
quantities, whereas independent Bender’s sub-problems are defined for each stochastic scenario with
continuous variables for productions and fuel levels. Even with the weekly aggregation of production
time steps, limitations in memory usage and computation time do not allow for deploying entirely
the Bender’s decomposition algorithm. The heuristic of [26] computes the LP relaxation exactly
using Bender’s decomposition, a cut and branch approach repairs integrity, branching on binary
variables without adding new Bender’s cuts, and solutions are repaired considering CT6 and CT12
constraints. The resulting matheuristic approach was efficient for the small instances, and difficulties
and inefficiencies occur for the real size instances. Knowing that the time step aggregation keeps dual
bounds thanks to [17], dual bounds can be computed after the LP relaxation and the cut and branch
phase. However, no such dual bounds are reported by [26].

An exact formulation of CT6 constraints was considered in a CG approach dualizing coupling
constraints among units and aggregating the stochastic scenarios to the average one [27]. Production
time steps were also aggregated weekly. These two reductions are not prohibitive to compute dual
bounds, contrary to a third one: the production domains are discretized to solve CG subproblems by
dynamic programming. This is a heuristic reduction of the feasible domain, and it does not provide
dual bounds for the original problem. A CG approach was also investigated to complexify the model
after the Challenge in [19], with a robust and multi-objective extension searching considering delays
in the maintenance operations, as in [38]. In the recent work [19], CG computations are tractable
restricting computations to horizons of 2–3 years, instead of the 5-year time horizon of the Challenge.

4. Mathematical Programming Relaxations

This section presents MILP formulations and reduction techniques that allow to compute dual
bounds for the EURO/ROADEF Challenge 2010.

4.1. Relaxing Only Constraints CT6 and CT12

Relaxing CT6 and CT12 constraints, an MILP formulation can be designed with binary variables
only for the outage decisions, similar to [26]. The binaries xi,k,w in [26] are equal to 1 if and only if
the beginning week for cycle (i, k) is exactly w. Similar to [20], we define the binaries di,k,w as “step
variables” with di,k,w = 1 if and only if the outage beginning week for the cycle k of the unit i is before
the week w. We extend the notations with di,k,w = 0 for k > K,di,0,w = 1 for w < 0, di,k,w = 0 for w < 0
and k > 0. CT13 constraints, imposing that maintenance operations (i, k) begin between weeks Toi,k
and Tai,k, reduce the definition of variables with di,k,w = 0 for w < Tai,k and di,k,w = 1 for w > Tai,k.

The other variables have a continuous domain: refueling quantities ri,k for each outage (i, k), T2

power productions pi,k,t, fuel stocks at the beginning of campaign (i, k) (resp at the end) xinit
i,k , x f in

i,k , T1
power productions pT1

j,s,t, and fuel stock xend
i,s at the end of the optimizing horizon. We note that T2

power productions pT2
i,k,s,t are duplicated for all cycle k to have a linear model, pT2

i,k,s,t = 0 if t is not
included in the production cycle k. These variables are gathered in Table 4.

Table 4. Definition of the variables for the MILP formulation relaxing only constraints CT6 and CT12.

di,k,w ∈ {0, 1} Binaries to indicate the beginning week for maintenance checks k of T2 unit i.
pT2

i,k,s,t > 0 Power production of T2 unit i at cycle k at t for scenario s, 0 if t is not in cycle k.
pT1

j,s,t > 0 Power production of T1 unit j at time step t for scenario s.
ri,k > 0 Refueling quantity for outage k of T2 unit i.
xend

i,s > 0 Fuel stock of T2 unit i at the end of the optimizing horizon at scenario s.
xinit

i,k,s > 0 Fuel level at the beginning of production cycle k of T2 unit i .

x f in
i,k,s > 0 Fuel level before the refueling k + 1 of T2 unit i, after production cycle k.

Algorithms 2020, 13, 185 8 of 28

Relaxing constraints CT6 and CT12, we have following MILP relaxation, denoted LB.

LB = min
d∈{0,1}N ,r,p,x>0

∑
i,k

Cr
i,kri,k + ∑

j,s,t
πsCp

j,s,tFt pT1
j,s,t −∑

i,s
πsCend

i,s xend
i,s (1)

∀i, k, w, di,k,w−1 6 di,k,w (2)

∀i, k, di,k,Toi,k−1 6 0 (3)

∀i, k, di,k,Tai,k
> 1 (4)

∀s, t, ∑
i,k

pT2
i,k,s,t + ∑

j
pT1

j,s,t = Ds,t (5)

∀j, s, t, Pmins
j,t 6 pT1

j,s,t 6 Pmaxs
j,t (6)

∀i, k, s, t, pT2
i,k,s,t 6 Pmaxi,t(di,k,wt−Dai,k

− di,k+1,wt) (7)

∀i, k, Rmini,k di,k,W 6 ri,k 6 Rmaxi,k di,k,W (8)

∀i, s, xinit
i,0,s = Xii (9)

∀i, k, s, x f in
i,k,s = xinit

i,k,s −∑
t

Ft pT2
i,k,s,t (10)

∀i, k, s, xinit
i,k,s − Boi,k = ri,k +

Qi,k−1
Qi,k

(x f in
i,k−1 − Boi,k−1) (11)

∀i, k, s, xinit
i,k,s 6 Smaxi,k (12)

∀i, k, s, x f in
i,k,s 6 Ai,k+1 + (Smaxi,k −Ai,k+1)(1− di,k+1,W) (13)

∀i, k, s, xend
i,s 6 x f in

i,k,s + Si(1− di,k,W + di,k+1,W) (14)

∀c ∈ C14, ∀w ∈ W , ∑
(i,k)∈Zc

(di,k,w − di,k,w−max(0,Dai,k+Sc)) 6 1 (15)

∀c ∈ C15, ∀w ∈ Wc, ∑
(i,k)∈Zc

(di,k,w − di,k,w−max(0,Dai,k+Sc)) 6 1 (16)

∀c ∈ C16, ∀w ∈ Wc, ∑
(i,k)∈Zc

(di,k,w − di,k,w−Sc) 6 1 (17)

∀c ∈ C17, ∀w ∈ Wc, ∑
(i,k)∈Zc

(di,k,w−Dai,k
− di,k,w−Dai,k−S−c) 6 1 (18)

∀c ∈ C18, ∀w ∈ Wc, ∑
(i,k)∈Zc

(di,k,w − di,k,w−Sc + di,k,w−Dai,k
− di,k,w−Dai,k−Sc) 6 1 (19)

∀c ∈ C19, ∀w ∈ Wc, ∑
(i,k)∈Zc

(di,k,w−Lc
i,k
− di,k,w−Lc

i,k−Tuc
i,k
) 6 R19

c (20)

∀c ∈ C20, ∀w ∈ Wc, ∑
(i,k)∈Zc

(di,k,w − di,k,w−Dai,k
) 6 Nc,w (21)

∀c ∈ C21, ∀w ∈ Wc, ∑
i,k

(
∑

t:wt=w
Pmaxi,t

)
(di,k,w − di,k,w−Dai,k

) 6 Ic,w (22)

Constraints (2) are required with definition of variables d. Constraints (3) and (4) model CT13
time windows constraints: outage (i, k) is operated between weeks Toi,k and Tai,k. Constraints (5)
model CT1 demand constraints. Constraints (6) model CT2 bounds on T1 production. Constraints (7)
model CT3, CT4, and CT5 bounds on T2 production. Constraints (8) model CT7 refueling bounds,
with a null refueling when outage i, k is not operated, i.e., di,k,W = 0. Constraints (9) write CT8 initial
fuel stock. Constraints (10) write CT9 fuel consumption constraints on stock variables of cycles k
xinit

i,k,s, x f in
i,k,s. Constraints (11) model CT10 fuel losses at refueling. Constraints (12) write CT11 bounds

on fuel stock levels only on variables xinit
i,k,s which are the maximal stocks level over cycles k, thanks

to (10). Constraints (13) model CT11 minimum fuel stock before refueling, these constraints are active

Algorithms 2020, 13, 185 9 of 28

for a cycle k only if the cycle is finished at the end of the optimizing horizon, i.e., if di,k+1,W = 1,
which enforces having disjunctive constraints where case di,k+1,W = 0 implies trivial constraints
thanks to (12). Constraints (14) are linearization constraints to enforce xend

i,s to be the fuel stock at

the end of the time horizon. xend
i,s is indeed the x f in

i,k,s such that di,k,W = 1 and di,k+1,W = 0, for the
disjunctive constraints (14) that write trivial constraints in the other cases thanks to (12), defining
Si = maxk Smaxi,k. Constraints (15)–(22) have a common shape as scheduling and resource constraints,
as presented in [24]. The common format for constraints (15)–(19) may be seen as clique cuts, as
written in [25,26]. Equivalently, using an additional and unitary fictive resource for each CT14–CT18
constraint that is consumed in the specific spacing/overlapping phases among outages, CT14–CT18
are written (15)–(19) as noticed by [37]. We note that the constraints (15) and (16) are not activated
if Dai,k + Sc < 0 for a given i, k, c, so that the generic equation is also valid using max(0, Dai,k + Sc)

operations. CT19–CT21 are also resource constraints, with a non unitary quantity, which is written
similarly in Equations (20)–(22).

LB is a dual bound for the original problem, relaxing only constraints CT6 and CT12, requiring
less binary variables than the formulation of [37]. Each dual bound proven for LB is thus a dual
bound for the EURO/ROADEF Challenge 2010. To face the resolution limits to calculate LB and its
continuous relaxations, more relaxations are considered.

4.2. Parametric Surrogate Relaxations

To reduce the number of variables in the MILP relaxation LB, a parametric surrogate relaxation
considers only the outages with an index k 6 k0 with the previous MILP formulation only for cycles
k 6 k0, and an aggregation of cycles k > k0 in one production cycle without outages. This gives
rise to the following MILP formulation where constraints Mordo

k0 d > bordo
k0 gather the truncated

constraints (CT14–CT21) considering only variables di,k,w with index k 6 k0. We define quantities
∆′i = maxk>k0(Boi,km

i
− Boi,k0) to ensure that, for all k > k0, Boi,km

i
− Boi,k0 6 ∆′i.

LB(k0) = min
d∈{0,1}N ,r,p,x>0

∑
i,k

Cr
i,kri,k + ∑

j,s,t
πsCp

j,wFt pT1
j,s,t −∑

i,s
πsCend

i,s xend
i,s (23)

∀i, k, di,k+1 6 di,k (24)

∀i, k 6 k0, di,k = di,k,W (25)

Mordo
k0 d > bordo

k0 (26)

∀i, k, Rmini,k di,k 6 ri,k 6 Rmaxi,k di,k (27)

∀i, s, xinit
i,0,s = Xii (28)

∀i, s, k 6 k0 xinit
i,k,s 6 Smaxi,k (29)

∀i, s, k 6 k0, w x f in
i,k,s = xinit

i,k,s −∑
t

Ft pT2
i,k,s,t (30)

∀i, s, k < k0, x f in
i,k,s 6 Ai,k+1 + (Smaxi,k −Ai,k+1) (1− di,k+1,W) (31)

∀i, s, k 6 k0 xinit
i,k,s − Boi,k = ri,k +

Qi,k−1
Qi,k

(x f in
i,k−1,s − Boi,k−1) (32)

∀i, s, k 6 k0 x f in
i,s 6 x f in

i,k,s + Si(di,k,W − di,k+1,W) (33)

∀t, j, s, Pmins
j,t 6 pT1

j,s,t 6 Pmaxs
j,t (34)

∀t, i, k 6 k0, s, pT2
i,k,s,t 6 Pmaxs

j,t(di,k,wt−Dai,k
− di,k+1,wt) (35)

∀s, t, ∑
i,k6k0

pT2
i,k,s,t + ∑

j
pT1

j,s,t = Ds,t (36)

∀i, k 6 k0, s, xend
i,s 6 xinit

i,k,s −∑t Ft pi,k,t + Smaxi,k (1 + di,k+1 − di,k) (37)

∀i, s, xend
i,s 6 ∆′i + xinit

i,k0,s + ∑k>k0 ri,k −∑t Ft pi,k0,t + Smaxi,k (1− di,k0) (38)

Algorithms 2020, 13, 185 10 of 28

As mentioned and proven in [17], this MILP formulation gives lower bounds for the
EURO/ROADEF Challenge 2010:

Proposition 1. For all k0 ∈ K, LB(k0) 6 LB. Hence, each dual bound for LB(k0) is a dual bound for the
EURO/ROADEF Challenge 2010.

4.3. Preprocessing Reductions and Dual Bounds

This section aims to reduce the size of the MILP computation to provide dual bounds. The crucial
point is to prove that the pre-processing reductions are exact processing operations, valid for
optimal solutions of LB or LB(k) relaxations, or guarantee to provide lower bounds for LB or LB(k).
Firstly, we mention the results proven in [17] that, under some conditions, time step aggregations
applied to problems LB or LB(k) provide dual bounds for LB and LB(k). Therefore, we denote the
following MILP as a general expression for LB or LB(k):

v = min
x,y

cxx + ∑
t

Ftctyt

s.t : T1x + ∑t FtW1yt > h1

∀t, T2
t x + W2yt > h2

t

(39)

Here, yt > 0 denotes the time-indexed variables, i.e., the production variables pT2
i,k,s,t and pT1

j,s,t,

whereas x denotes the vector of the other variables. A first important point is to notice that W1, W2 do
not depend on t in the MILP equations defining LB and LB(k). Two additional hypotheses are crucial.

Firstly, Ft is constant over time, and we denote F = Ft in that context. Secondly, we have to
suppose that T1 production costs are constant over weeks, defining cw quantities:

∀w ∈ W , ∀(t, t′), wt = wt′ =⇒ ct = ct′ = cw (40)

To define the time step aggregated version of (39), we define α = F/128, representing the
proportion of a time period in a weekly period, and the aggregations T2

w = ∑
t,wt=w

αT2
t , h2

w = ∑
t,wt=w

αh2
t .

Defining weekly production variables yw, which represent yw = ∑t,wt=w αyt, we have the following
aggregated version of MILP (39):

vagg = min
x,y>0

cxx + ∑
w

Fcwyw

s.t : T1x + ∑w FW1yw > h1

∀w, T2
wx + W2yw > h2

w

(41)

Proposition 2. If the hypothesis (40) is valid, aggregating production time steps to weeks provide a dual bound
for the disaggregated problem: vagg 6 v. Dual bounds for the EURO/ROADEF Challenge 2010 can be computed
from the time -step aggregated versions of LB and LB(k) under the hypothesis that (40) is fulfilled.

We mention and prove now two propositions allowing for dealing with less variables in
the previous MILP computations giving dual bounds for the EURO/ROADEF Challenge 2010.
Propositions 3 and 4 are exact pre-processing results, allowing for deleting some variables in the
MILP computations.

Proposition 3. Denoting Li,k =
⌈

W
T

Rmini,k−Ai,k
F Pi

⌉
with Pi = maxt Pmaxi,t, Toi,k and Tai,k can be

strengthened in T̃oi,k and T̃ai,k with induction relations:

∀i ∈ I , k > 0, T̃oi,k = max(Toi,k, T̃oi,k−1 + Dai,k−1 + Li,k) (42)

∀i ∈ I , k < K, T̃ai,k = min(Tai,k, T̃oi,k+1 −Dai,k − Li,k) (43)

Algorithms 2020, 13, 185 11 of 28

T̃oi,k are first tightened by induction with k increasing, and then T̃ai,k are computed using T̃oi,k values.

Proof. Li,k =
⌈

W Rmini,k−Ai,k
FTPi

⌉
is a first lower bound for the length of production cycle (i, k). Indeed, it

considers a minimum refueling and a maximal fuel consumption: the maximal fuel consumption is
given by a bounds of maximal power and the minimum fuel level after refueling is at least the minimal
refueling Rmini,k with the positivity constraint CT11. Denoting Wi,k = ∑w(1− di,k,w) the week when
outage (i, k) begins, we have relations Wi,k+1 > Wi,k + Dai,k + Li,k. Wi,k+1 > T̃oi,k + Dai,k + Li,k. This
minoration is valid for all feasible solutions, taking the lower bound of the LHS induces: T̃oi,k+1 >
T̃oi,k + Dai,k + Li,k. (42) is thus a valid pre-processing to tighten values of T̃oi,k. From relations Wi,k+1 >
Wi,k +Dai,k + Li,k, we also have T̃ai,k+1 > Wi,k +Dai,k + Li,k and then T̃ai,k+1 > T̃oi,k +Dai,k + Li,k. (43)
is thus a valid pre-processing to tighten values of T̃ai,k.

Proposition 4. Denoting for all (m, n) ∈ K, qm,n = ∏n
l=m

Qi,l−1
Qi,l

, we have following relations which allow

for delete variables xinit
i,k,s, x f in

i,k,s:

xinit
i,k,s = q1,kXii +

k−1

∑
l=0

ql+2,k

(
ri,l+1 − ql+1,l+1

(
∑

t
Ft pi,l,s,t − Boi,l

))
(44)

x f in
i,k,s = q1,kXii +

k−1

∑
l=0

ql+2,k

(
ri,l+1 − ql+1,l+1

(
∑

t
Ft pi,l,s,t − Boi,l

))
−∑

t
Ft pT2

i,k,s,t (45)

Proof. We notice that Equations (10) and (11) induce a linear system of equalities considering xinit
i,k,s, x f in

i,k,s
as variables. A recursion formula can be deduced for xinit

i,k,s where the initial condition is xinit
i,0,s = Xii:

xinit
i,k,s − Boi,k = ri,k +

Qi,k − 1
Qi,k

(xinit
i,k−1,s −∑

t
Ft pi,k−1,s,w − Boi,k−1)

This is an induction formula xinit
i,k,s = ai,k−1,sxinit

i,k−1,s + bi,k−1,s with ai,k,s =
Qi,k+1−1

Qi,k+1
and

bi,k,s = ri,k+1 −
Qi,k+1−1

Qi,k+1

(
∑t Ft pT2

i,k,s,t − Boi,k

)
. Lemma 1 (proven by induction in [23]) allows also to

compute xinit
i,k,s as linear expressions of the variables ri,k′ and pi,k′ ,s,t for k′ < k. x f in

i,k,s are also linear
expressions of the variables ri,k′ and pi,k′ ,s,t for k′ < k. reporting last inequality in (10).

Lemma 1. Let (un)n∈N be defined by induction with un+1 = anun + bn, an, bn ∈ R. We have:

un =

(
n−1

∏
l=0

al

)
uo +

n−1

∑
l=0

(
n−1

∏
m=l+1

am

)
bl (46)

5. Dual Bounds by Scenario Decomposition

In this section, we face another bottleneck for an efficient MILP solving: the number of scenarios.
In the preliminary work [17], it was proven that a decomposition scenario by scenario allows for
computing a valid dual bound for the original stochastic problem using S independent computations
with the size of the deterministic problem. This section extends these results, so that a fixed maximal
number of scenario can be chosen to group sub-computations. It is proven that generalized scenario
decomposition improves the previous decomposition scheme from [17]. Numerical interest in the way
of partitioning scenarios is also discussed in this section.

Algorithms 2020, 13, 185 12 of 28

We define the following MILP as a general expression for an MILP furnishing dual bounds for the
EURO/ROADEF Challenge 2010:

vsto = min
x∈X,y>0

cxx + ∑
s

csys

s.t : Ax > a
∀s, Tx + Wys > hs

(47)

Here, x denotes the refueling and maintenance planning variables, i.e., di,k,w, ri,k, whereas ys > 0
gather the other continuous variables indexed by scenarios. Note that matrices A, W, and T do not
depend from s. Let S0 ⊂ S . Let vS0 be the restriction of the MILP vsto to the subset of scenarios
S0 ⊂ S :

vS0 = min
x∈X,y>0

∑
s∈S0

πscxx + ∑
s∈S0

csys

s.t : Ax > a
∀s ∈ S0, T1x + Wy > h1

s

(48)

Lemma 2. Let S0 ⊂ S , let S0
n for n ∈ [[1; N]] be a partition of S0, i.e., S0 =

⋃N
n=1 S0

n with S0
n being disjoint

subsets. We have
N

∑
n=1

vS0
n
6 vS0 .

Proof. We reformulate vS0 duplicating variables x introducing xs = x for all s ∈ S0. Let s1 ∈ S0
1 ,

s2 ∈ S0
2 , . . . , sN ∈ S0

N , and we write such constraints xs = xsn(= x) for all n ∈ [[1; N]] and s ∈ S0:

vS0 = min
xs∈X,ys>0

∑
s∈S0

πscxxs + ∑
s∈S0

πscsys

s.t : Ax > a

∀s ∈ S0, ∀n ∈ [[1; N]] xsn = xs

∀s ∈ S0, Axs > a

∀s ∈ S0, Txs + Wys > h1
s

We get a lower bound for vS0 relaxing constraints xsn = xs for all n ∈ [[1; N]] and s ∈ S0 such that
s /∈ S0

n. This relaxation implies decoupled and independent sub-problems for each subset S0
n:

vS0 > min
xs ,ys

∑
s∈S0

πscxxs + ∑
s∈S0

πscsys =
N

∑
n=1

min
xsn ,ys

∑
s∈S0

n

πscxxsn + ∑
s∈S0

n

πscsys

s.t : ∀s ∈ S0, Axs > a s.t : Axsn > a

∀n ∈ [[1; N]], ∀s ∈ S0
n, xs = xsn Txsn + ∑

w
Wys > h1

s

∀s ∈ S0, Txs + ∑w Wys > h1
s

The last decoupled optimization problems are vS0
n
, so that we have

N

∑
n=1

vS0
n
6 vS0 .

Lemma 2 guarantees that dual bounds from vsto can be computed with a fixed number of scenarios,
extending the preliminary results from [17]:

Proposition 5. Let Sn for n ∈ [[1; N]] be a partition of S . We have :
S

∑
s=1

v{s} 6
N

∑
n=1

vSn 6 vsto. In other words,

dual bounds for the original problem can be obtained computing dual bounds with a restricted number of scenarios.
Considering several scenarios improves the scenario decomposition from [17].

Algorithms 2020, 13, 185 13 of 28

Proof. ∑N
n=1 vSn 6 vsto is proven using Lemma 2 with S0 = S , and the partition (Sn), using vsto = vS

and ∑s∈S πs = 1. Using Lemma 2 for all n ∈ [[1; N]] with S0 = Sn and with the partition of Sn

into singletons Sn =
⋃

s∈Sn{s}, we have ∑s∈Sn v{s} 6 vSn . Summing these N inequalities, we have:
S

∑
s=1

v{s} =
N

∑
n=1

∑
s∈Sn

v{s} 6
N

∑
n=1

vSn 6 vsto = vS .

In [17], only inequality
S

∑
s=1

v{s} 6 vsto was proven. Having
S

∑
s=1

v{s} 6
N

∑
n=1

vSn with Proposition 5

allows for computing better dual bounds considering a restricted number of scenarios. The point is
here to maximize the expected dual bound ∑N

n=1 vSn with an appropriate choice of the partition Sn.
Supposing that MILP computations of vSn are tractable for a given number of scenarios M > 1,

we focus now on how to choose a partition Sn with at most M scenario per subset, while trying to
maximize the dual bound ∑N

n=1 vSn . Considering conjointly M identical scenarios, vSn computes the
optimal maintenance and refueling planning for each scenario, it is the same optimal response for each
scenario. Grouping the scenario in (48) induces the same optimal response, and the same dual bound,
and it is an equality case in Lemma 2. Similarly, there may exist a very good solution x common for
all the scenarios when similar scenarios are considered, implying a little gap in the inequalities from
Lemma 2. To maximize the quality of dual bounds, it is thus preferable to have the most diversified
scenarios. Hence, we partition the scenarios in subsets of size at most M, while maximizing the
diversity among each subset of scenario.

Clustering problems maximizes the similarity inside clusters. To use clustering algorithms,
with cardinality constrained versions, we should define a “distance” between scenarios s, s′ such that
ds,s′ is higher than scenarios s, s′ are similar. Here, we prefer using a distance to measure the similarity
of clusters, with ds,s = 0, and thus maximizing the diversity in the selected subsets of scenarios.
To define such distance, we use the following measure:

∀s, s′ ∈ S , ds,s′ = ∑
t∈T

∣∣Ds,t −Ds,t′
∣∣ (49)

We use only the power demands to define the dissimilarity between scenarios, assuming it
has the most influence in the costs of maintenance planning. The maximal number of scenario per
cluster is denoted M > 0. Then, N =

⌈
S
M

⌉
is the maximal number of clusters. We define binary

variables xn,s ∈ {0, 1}, such that xn,s = 1 if and only if scenario s ∈ S is included in cluster n ∈ [[1; N]].
Maximizing the total distance intra-clusters, we have the following mathematical programming
formulation of the maximal diversity in clusters:

max ∑
n,s,s′

ds,s′xn,sxn,s′ (50)

∀n, ∑s xn,s 6 M (51)

∀s, ∑n xn,s = 1 (52)

∀n, s, xn,s ∈ {0, 1} (53)

Objective (50) maximizes the total distance intra-clusters, using a quadratic function in variables
xn,s. Contraints (51) bound the cardinal of each subset, to deal with at most M scenarios. Contraints (52)
impose that each scenario is assigned to exactly one subset, to define a partition of the number of
scenarios. To solve this last partitioning problem with an MILP solver, we use a standard linearization
techniques for quadratic optimization problems with binary variables, introducing new binaries yn,s,s′ ,
such that yn,s,s′ = xn,sxn,s′ , to have a linear formulation in the space of variables x, y:

Algorithms 2020, 13, 185 14 of 28

max
xn,s ,yn,s,s′∈{0,1}

∑
n,s,s′

ds,s′yn,s,s′

∀n, ∑s xn,s 6 M
∀s, ∑n xn,s = 1
∀n, s, s′ yn,s,s′ 6 xn,s

∀n, s, s′ yn,s,s′ 6 xn,s′

∀n, s, s′ yn,s,s′ > xn,s′ + xn,s − 1

(54)

Such formulation may be inefficient for a straightforward MILP solving with B&B solvers.
Here, we need to have a good solution in a reasonable time. When the optimization problem (54) is
not easily solvable with an MILP solver, one can design a matheuristic Hill–Climbing (HC) local search.
Starting from an initial solution, one consider the optimization problem (54) in local re-optimizations
with at most 2M scenarios and two clusters. One can operate the N(N − 1)/2 = O(N2) optimizations
considering all pairs of clusters to define one HC iteration. It is indeed an HC heuristic, each local
optimization of (54) furnishing at least the same solution as the current one.

Algorithm 1 describes precisely such HC matheuristic. To define an initial partition of scenarios
for the local search, one can consider subsets {1, .., M}, {M + 1, .., 2M}, . . . , {(N − 1)M + 1, .., S},
defining trivially a partition of S in at most N subsets containing at most M scenarios. A better
initialization gathers scenarios using a one-dimensional, dispersion problem. Sorting firstly the
scenarios of S such that the cumulated demands Ds =

1
T ∑t Ds,t is increasing, i.e., s′ > s =⇒ Ds′ > Ds,

we can define an initial partition with Sn = {saN+n|a ∈ N, aN + n 6 S}.

Algorithm 1 Partitioning HC matheuristic to maximize the diversity of scenarios.

Input:
- M < S the maximal number of scenario in a subset of the partition;
- ds,s′ , the matrix for distances between scenarios s and s′;
- nbIter, maximal number of hill climbing iterations;

Initialization:
- compute Ds =

1
T ∑t Ds,t, N =

⌈
S
M

⌉
;

- re-index the scenarios such that s′ > s =⇒ Ds′ > Ds;
- set Pn = S ∩ (NZ+ n) for n ∈ [[1; N]] defining an initial partition of S ;

for it from 1 to nbIter:
for n = 1 to N − 1 :

for n′ = n + 1 to N :
reoptimize subsets Pn,Pn′ solving (54) in Pn ∪ Pn′ with M = 2

end for
end for
if no improvement was provided in the last N(N − 1)/2 MILP resolutions then break

end for

return the partition of S : (Pn)n∈[[1;N]]

Designing and implementing Algorithm 1, some remarks are of interest:

• Calling local optimization (54) with Pn ∪ Pn′ and M = 2, the current assignment is a feasible
solution for the MILP (54), which is useful to speed up MILP solving.

• The local optimization may be stopped before the optimality proof, only the improvement of a
feasible solution in a given time limit is on interest. In such case, it is important to implement

Algorithms 2020, 13, 185 15 of 28

the warmstart previously mentioned, to ensure having a steepest descent heuristic: the local
optimization will improve or keep the current solution given as warmstart.

• In the loop re-optimizing (54) with Pn ∪Pn′ with M = 2 for all n < n′, many local reoptimizations
are independent dealing with independent sub-sets, which allows for designing a parallel
implementation.

• One may wonder why the classical k-means algorithm is not used instead of Algorithm 1.
A first reason is that cardinality constraints are not provided in the standard k-means algorithm.
One may try to repair the cardinality constraints after standard k-means iterations. Even in
such scheme, k-means was not designed to partition the points in many subsets N with few
elements, usually, k-means works fine with N � M. On the contrary, the numerical property
M � N is favorable to an Algorithm 1 matheuristic. A second reason to prefer Algorithm 1 is
that the objective function is a straightforward indicator of the data. Using a clustering algorithm,
one may wish to minimize a dissimilarity. Considering dissimilarity indicators like 1/d− s, s′, it is
a deformation of the input data, and this is not a mathematical distance with a triangle inequality
which also makes the clustering procedure non standard.

Lastly, we note that this section illustrates a reciprocal interest of hybridizing matheuristic and ML
techniques. On one hand, ML partitioning techniques are used to improve the expected dual bounds
with Proposition 5. On the other hand, a matheuristic methodology is used in Algorithm 1 to solve the
specific partitioning problem for a non standard clustering application case.

6. Computational Results

This section presents the computational results. Before analyzing the quality of the different dual
bounds, we report the characteristics of the datasets, the conditions for our computational experiments,
and the solving capabilities for the different MILP formulations.

6.1. Computational Experiments and Parameters

MILP and LP problems are solved using Cplex version 12.9, using the ILOG CPLEX Optimization
Studio (OPL) interface to model linear optimization problems. The OPL script is used to solve
iteratively linear optimization problems. MILP computations of dual bounds are obtained with
the OPL method getBestObjValue(). Note that, if the B&B algorithm terminates with the default
parameter epgap = 10−4, the dual bound is given with a gap of 0.01% to the best primal solution
found is given. The gap results are presented in our results with a granularity of 0.01%, so that we set
parameter epgap = 10−5. Another stopping criterion for Cplex computations is to compute the LP
relaxation, denoted LP in the results, or to stop the resolution when branching is necessary, denoted
LP+cuts. LP+cuts computations show the influence of the cutting planes at the root node, using
OPL parameter nodelim = 1 in the MILP solving mode. LP dual bounds are also provided using
the MILP solving mode without cutting planes using parameters cutpass = −1 and nodelim = 1,
which activates pre-processing for integer variables [39]. Using the LP mode of Cplex implies larger
computation times than using the truncated MILP mode, the MILP pre-processing reduces considerably
the number of variables for the LP relaxation. Using the integral pre-processing allows also to improve
slightly the lower bounds given by the LP mode of Cplex, pre-processing variable fixing being like
valid cuts.

Without any specific precision, the time limit for LP and MILP computations is M × 1800 s
where M is the number of scenarios, so that the maximal overall computation time with Cplex is at
most S× 1800 s. Computation times measures the sequential iterative computation of partial dual
bounds. Scenario decomposition induces independent computations of MILP dual bounds and an
easy parallelization in a distributed environment like Message Passing Interface (MPI). Dealing with
S0 6 S independent computations, the computations can be processed in a distributed way with
MPI using S0 machines with a single coordination operation at the end of the MILP computations:

Algorithms 2020, 13, 185 16 of 28

a reduction operation to sum the dual bounds given by each sub-problem. The clock time using
distributed computations would be similar to the maximal solving time of the S0 sub-problems.

Two different computers were used for the computational experiments, denoted Machine A and
Machine B. Machine A is a quad-core desktop computer with processor Intel(R) Core(TM) i7-4790,
3.20 GHz, running Linux Lubuntu 18.04, with 16 GB of RAM memory. Without specific precision, tests
are reported on Machine A. When larger computation power is required, Machine B is used. Machine
B is a working station with a bi-processor Intel(R) Xeon(R) CPU E5-2650 v2, 2.60 GHz with 32 CPU
cores, 64 GB of RAM memory, and running Linux Ubuntu 18.04.

Lastly, we note that the parameters for Algorithm 1 are M 6= 1 and M 6= S. In Algorithm 1,
two iterations of the HC matheuristic are processed, ie nbIter = 2. Computing of dual bounds,
the maximal number of considered scenarios is M = 10. It implies MILP computations of the
optimization problem (54) with at most 20 scenarios. For such MILP computations, warmstarting was
activated and the maximal solving time for Cplex was set to 10 s by precaution, optimal computations
often converged much faster.

6.2. Data Characteristics

Three datasets were provided for the EURO/ROADEF Challenge 2010. These datasets are
now non-confidential and available online [36]. The data characteristics are provided in Table 5.
Dataset A is composed of five small instances given for the qualification phase. Production time
steps are discretized daily for the instances of dataset A, in a horizon of five years, with 10 to 30 T2
units having six production cycles, and 10 to 30 stochastic scenarios. Instances B and X are more
representative of real-world size instances. Production time steps are discretized with 8h time steps
to analyze the impact of daily variability of power demands, in a horizon of five years, with 20 to
30 T1 units, around 50 T2 units, and 50 to 120 stochastic scenarios. Dataset X was secret for the
challenge, it had to be similar to dataset B. This is not the case looking to the number of binaries,
i.e., the cumulated amplitude of TW, given in in the column nbVar0 of Table 5. Instances B8 and B9
induce more binary variables, with very few TW constraints for cycles k > 3. Actually, instances B8
and B9 are the most realistic for the real life application [24].

Table 5. Characteristics of the instances of the EURO/ROADEF Challenge 2010: values of I,J,K,S,T,W
as defined in Table 1, nbVar0 and nbVar2 are respectively the total number of variables without and
with pre-processing of Proposition 3, i.e., the total amplitude of the time windows, nbVar1 and nbVar3
are respectively the remaining variable after Cplex pre-processing with and without pre-processing of
Proposition 3. Gaps show the improvements due to Proposition 3.

Data I J K S T W nbVar0 nbVar1 Gap nbVar2 nbVar3 Gap

A1 10 11 6 10 1750 250 3892 463 88.10% 483 424 12.22%
A2 18 21 6 20 1750 250 7889 961 87.82% 892 761 14.69%
A3 18 21 6 20 1750 250 8162 875 89.28% 841 698 17.00%
A4 30 31 6 30 1750 250 17,465 1798 89.71% 1998 1493 25.28%
A5 28 31 6 30 1750 250 15,357 2797 81.79% 2750 2494 9.31%

B6 50 25 6 50 5817 277 24,563 3466 85.89% 3467 3054 11.91%
B7 48 27 6 50 5565 265 35,768 6435 82.01% 9052 5846 35.42%
B8 56 19 6 121 5817 277 69,653 22,482 67.72% 30,626 20,763 32.20%
B9 56 19 6 121 5817 277 69,306 25,351 63.42% 35,307 23,675 32.95%
B10 56 19 6 121 5565 265 29,948 4236 85.86% 5084 3790 25.45%

X11 50 25 6 50 5817 277 20,081 3478 82.68% 3499 3216 8.09%
X12 48 27 6 50 5523 263 27,111 4348 83.96% 5321 4035 24.17%
X13 56 19 6 121 5817 277 30,154 4697 84.42% 4403 4104 6.79%
X14 56 19 6 121 5817 277 30,691 5378 82.48% 6088 4879 19.86%
X15 56 19 6 121 5523 263 27,233 3992 85.34% 4372 3618 17.25%

Algorithms 2020, 13, 185 17 of 28

To compare different lower bounds on an instance i, we use for each instance i the cost of the best
primal solution known (BKS), denoted BKS(i). The BKS are mainly the one reported by [15] allowing
10 h computation time per instance, except for A1, A2, A3 given by [32] and for instance B6 where the
BKS obtained for the Challenge had not been improved since, and is available at [28]. We compare

lower bounds using the gap indicator: gapi =
| v(i)− BKS(i) |

BKS(i)
, where v(i) denotes the considered

lower bound for instance i.

6.3. Branch & Bound Solving Characteristics

We note that Table 5 analyzes also the impact of pre-processing strategies. The specific
pre-processing of Proposition 3 is not redundant with the generic MILP pre-processing of Cplex [39],
and the gain in MILP reduction is significant, especially for the difficult instances B7, B8, and B9.
Pre-processing of Proposition 3 has a positive impact influence in our computations of complex
MILP models to reach the most advanced phases of the B&B algorithm with memory limitations.
Proposition 4 reduces the number of continuous variables that will be decisive, reaching memory
limits. In the following analyzes, pre-processing of Propositions 3 and 4 are always enabled.

With Cplex 12.5, dual bounds can be computed for each instance with a single scenarios and
weekly production time steps in less than one hour for the LP and LP+cuts modes, the B&B convergence
characteristics are detailed using Cplex 12.5 in [17], and reactualized results with Cplex 12.8 are
available in [24]. We note that 1 hour resolution time was not enough to solve the LP relaxations of
such problems for instances B8 and B9 with Cplex 12.3 [23]. Computations LB(k) are quicker than LB
computations, reaching more advanced phases of the B&B convergence.

The number of continuous variables is decisive for solving capabilities. Indeed, there are the same
number of binary variables with disaggregated or aggregated time steps for production variables,
and the computation capabilities differ dramatically. If aggregated computations on a single scenario
are tractable, disaggregated computations are tractable only for dataset A, and instances from datasets
B and X induce a prohibitive memory consumption. Similarly, considering several stochastic scenarios
does not change the number of binary variables, but limits are reached in terms of memory resources.
This seems paradoxical, exponential complexity for MILP comes with integer variables. In this problem,
increasing the number of continuous variables makes polynomial algorithms intractable. We note
furthermore that this occurs also for the MILP relaxation with lighter CT6 constraints presented in [24].
Such formulation considers the same number of binary variables, but the MILP solving capability is
also not efficient for the instance sizes of the Challenge. This highlights the interest of Proposition 4,
in reducing the number of continuous variables to increase the MILP solving capability. With the
recent versions of Cplex, dual bounds can be computed with truncated MILP solving considering up
to 10 scenarios for LB(k) and LB problems, with aggregated time steps for all the instances, and with
disaggregated for the instances from the dataset A.

Lastly, we note that the variable definition has an influence in the efficiency of the branching
quality. Variables di,k,w 6 di,k,w+1 imply better branching and B&B convergence than using binaries
xi,k,w = di,k,w − di,k,w−1 as in [26] with constraints ∑w xi,k,w 6 1. These results are coherent with [20],
and the standard branching on variables implemented in Cplex induces for di,k,w variables well
balanced B&B trees. However, using variables xi,k,w was slightly better for the search of primal
solutions. To design a primal heuristic in [26], and using few branching, variables x are relevant for
the primal heuristic in [26], whereas, in our application, only the quality of dual bounds matters and
choosing step variables di,k,w is more efficient.

6.4. Lower Bounds for Dataset A

For none of the instance of dataset A, the hypothesis (40) holds to guarantee dual bounds with
time step aggregation and Proposition 2. However, computations with disaggregated time steps are
tractable with few stochastic scenarios, and dual bounds are computable using Proposition 5. Table 6

Algorithms 2020, 13, 185 18 of 28

compares the dual bounds for the EURO/ROADEF Challenge 2010, computing dual bounds of LB
with LP and LP+cut relaxations, and MILP computations truncated in 30 min, to the bounds obtained
with surrogate relaxations LB(k) with k = 4 and k = 5.

Table 6. Dual bounds for the dataset A, comparison of former dual bounds of the literature with the
dual bounds LB(k0) with k0 > 3 and LB without aggregation of production time steps and scenario
decomposition. M indicates the maximal number of scenarios in sub-problems. MILP computation
of dual bounds are stopped after 2400×M seconds using Machine B. Bold values denote stopped
computations with optimal dual bounds in the 0.001% tolerance for MILP computations. LP and
LP + cuts are also the terminating values, no additional gap is implied by the time limit.

[16].1 [16].2
LB(4) LB(5) LB LB LB LB LB LB
MILP MILP LP LP + cuts MILP MILP MILP MILP
M = 1 M = 1 M = 1 M = 1 M = 1 M = 2 M = 3 M = 5

A1 5.09% 2.31% 0.54% 0.08% 0.29% 0.09% 0.03% 0.02% 0.02% 0.01%
A2 10.83% 4.09% 1.42% 0.33% 0.64% 0.35% 0.24% 0.22% 0.21% 0.21%
A3 10.72% 3.77% 1.85% 0.71% 1.06% 0.48% 0.36% 0.35% 0.34% 0.33%
A4 26.07% 8.22% 3.36% 2.38% 2.82% 1.93% 1.33% 1.27% 1.27% 1.22%
A5 24.22% 9.70% 4.25% 3.24% 3.46% 2.80% 2.38% 2.16% 2.01% 2.14%

Total 14.20% 5.24% 2.11% 1.19% 1.49% 1.00% 0.77% 0.71% 0.68% 0.69%

In Table 6, it is preferable to compute LB bounds instead of LB(k) bounds for the dataset A.
Indeed, dual bounds are computable with LB bounds, avoiding the additional gaps to the primal
solutions with approximations LB(k). For instances A1, A2 and A3, LB bounds are computable to
MILP optimality with up to 10 scenarios. It induces lower bounds of a very good quality for these
instances. For instances A4 and A5, the computation times do not allow for converging to optimality
with MILP computations of LB in the defined time limits. Furthermore, the memory space is limiting,
and computations with 3600 s per scenario are too much memory-consuming. We note that, for the A5
instance, it is preferable to optimize conjointly by groups of 3 instead of 5. This is due to the stopped
MILP computation, and it is preferable to reach more advanced phases of the B&B algorithm with three
scenarios rather than using more scenarios and stopping earlier than the B&B algorithm. Otherwise,
increasing the number of scenarios increases the quality of the dual bounds in Table 6, and some
relations were proven thanks to lemma 2 with optimal computations. This holds also empirically for
the stopped computations on instance A4.

Computation times are not reported in Table 6. Using Machine A, 6395 s (i.e., more than 1 h 45 min)
are measured to solve to optimality LB with the 10 scenarios of instance A1, but the time printed by
Cplex is only 1014 s (less than 20 min). With three scenarios, the total time measuring the iterated
MILP computations using Machine A, compared to the sum of the Cplex solving time are:

• for instance A1: we measure 1191 s (nearly 20 min) for the total MILP computations, and summing
Cplex time we find nearly 135 s (2 min 15 s).

• for instance A2: we measure 10,385 s (nearly three hours) for the total MILP computations, and
summing Cplex time we find 2100 s (i.e., 35 min).

• for instance A3: we measure 11,835 (more than three hours) for the total MILP computations, and
summing Cplex time we find 2418 s (i.e., nearly 40 min).

The differences are not due to Algorithm 1, very quick and not counted in these reported
time measures. The differences correspond to the loading time of MILP matrix, before the MILP
pre-processing. We note that using Machine B instead of Machine A for the results in Table 6 solves this
problem. With Machine B, most of the computation time is devoted to the B&B solving, and loading
the MILP models was around 10% of the total computational time. To explain the difficulty met with
Machine A, huge matrices are stored by Cplex, before removing many variables and constraints with
MILP pre-processing. Using OPL and having to define variables with rectangular multi-indexes arrays,

Algorithms 2020, 13, 185 19 of 28

all the variables di,k,w and pT2
i,k,s,t are initialized firstly before pre-processing operations detect that

constraints (3), (4) and (7) allow for deleting most of the variables di,k,w and pT2
i,k,s,t. Production variables

pT2
i,k,s,t have the most impact on these difficulties. One way to reduce the MILP loading time would be

an implementation using Cplex API to define only the required variables di,k,w and pT2
i,k,s,t taking into

account constraints (3), (4) and (7), so that Cplex will load a smaller matrix before the MILP solving.
In Table 6, the improvements with partial scenario decomposition are significant, but not so

important to close the gap to the optimal dual bounds. For instance A1, we have the optimal values of
best and the worst lower bounds of LB with scenario decomposition from Proposition 5: any scenario
decomposition implies a gap to the BKS between 0.04%, the worst bound with M = 1, and 0.01%,
the best bound with M = 10. The little impact of scenario decomposition is explained with Figure 1,
showing the demand curves for each scenario in instance A5. The stochastic scenarios are distributed
with a tube structure related to the meteorological seasonality, which is highly correlated to the power
demands. It explains that few improvements are observed, the scenarios are relatively close, and
induce optimal maintenance dates in similar zones of the time horizon. One may find, for any subset
of scenarios, a good compromise in the dates of maintenance operations for each considered scenario.
It induces also that choosing badly partitions of scenarios in Proposition 5 may induce very few
differences with the scenario decomposition with M = 1. The significant gap improvements show the
interest of a careful partitioning procedure with Algorithm 1.

Power demands
(power unit is unknown and obfuscated in the Challenge datasets)

time steps

Figure 1. Demand profiles for the 30 stochastic scenarios of instance A5.

6.5. Lower Bounds for Datasets B and X

The hypothesis (40) is valid for datasets B and Proposition 2 ensures that the aggregation of
production time steps provides dual bounds of LB for datasets B and X. In this section, we always
aggregate production time steps, comparing the impact of choosing LB or LB(k) formulations and
analyzing the impact of the scenario decomposition. The huge loading times required by Cplex
mentioned for the instances of the dataset A is not so significant for the datasets B and X. It is due to the
aggregation of production time steps which reduces drastically the number of continuous variables.

6.5.1. Dual Bounds Computable in Less Than One Hour

In this section, we focus on dual bounds that can be obtained in less than one hour for datasets B
and X, as in [16]. One hour is reasonable for the real-life application, we note that computing separately
dual bounds from a primal heuristic is helpful to detect that primal solutions have a prohibitive cost.

Algorithms 2020, 13, 185 20 of 28

Using MILP formulations LB(k0) with k0 6 2, one obtain our quickest computations of dual
bounds with MILP sub-problems dealing with a single scenario (M = 1). Such bounds and the
computation times are reported in Tables 7 and 8 with respectively LP+cuts and MILP computations.
With k0 = 0 and M = 1, LB(k0) problems are solved to optimality as MILPs, and the solving time is,
on average, around 200 s for the total measured time. Such lower bounds have a comparable quality
to the best bounds from [16]. However, the computation times are not reported precisely in [16]. It is
only mentioned that solving the flow-network for all scenarios takes up to an hour for the biggest
instances. The quickest lower bounds from [16] are reported with the column [16].1 in Tables 7 and 9
and have a poor quality, but the solving times are computed in less than 10 s. Our approaches cannot
provide dual bounds in such restricted times with sequential implementations, using MILP distributed
computations with MPI, the dual bounds in Tables 7 and 8 with LB(0), and M = 1 can be computed in
less than 20 s.

Table 7. Comparing with [16] the dual bounds using LP+cuts computations of LB(k0) with k0 < 3.

[16].1 [16].2 LB(1) LB(1) LB(2) LB(2) LB(3) LB(3)
Gap Gap t(s) Gap t(s) Gap t(s) Gap

B6 56.44% 16.58% 99 14.95% 210 11.74% 419 11.67%
B7 52.86% 15.58% 86 13.40% 310 11.18% 954 11.16%
B8 65.32% 23.60% 811 20.34% 4485 17.37% 17.1k 16.92%
B9 63.30% 21.72% 911 18.78% 4415 15.83% 19k 15.36%
B10 60.92% 18.03% 283 16.47% 650 13.43% 1308 13.42%

X11 57.81% 15.40% 116 12.91% 257 11.18% 472 11.07%
X12 52.65% 14.22% 118 12.29% 257 10.30% 574 10.28%
X13 66.20% 18.53% 315 16.01% 832 14.28% 1662 14.11%
X14 64.67% 17.21% 344 14.95% 926 13.23% 1761 13.11%
X15 61.76% 16.83% 376 16.13% 756 13.52% 1378 13.49%

Total 60.15% 17.80% 3458 15.64% 7.6k 13.22% 42.6k 11.65%

Table 8. Comparing with [16] the dual bounds using MILP computations of LB(k0) with k0 < 3.

[16].1 [16].2 LB(0) LB(0) LB(1) LB(1) LB(2) LB(2)
Gap Gap t(s) Gap t(s) Gap t(s) Gap

B6 56.44% 16.58% 82 18.12% 124 14.89% 356 11.67%
B7 52.86% 15.58% 66 15.34% 181 13.39% 991 11.16%
B8 65.32% 23.60% 221 23.12% 1215 20.20% 218k 16.92%
B9 63.30% 21.72% 282 21.73% 1776 18.71% 218k 15.36%
B10 60.92% 18.03% 224 18.64% 573 16.46% 1030 13.42%

X11 57.81% 15.40% 92 14.44% 436 12.84% 1267 11.07%
X12 52.65% 14.22% 117 13.90% 496 12.27% 1137 10.28%
X13 66.20% 18.53% 261 17.90% 424 15.86% 1701 14.11%
X14 64.67% 17.21% 270 16.84% 861 14.87% 3887 13.11%
X15 61.76% 16.83% 421 18.03% 1528 16.10% 6931 13.49%

Total 60.15% 17.80% 2036 17.84% 13k 15.58% 453k 13.07%

Table 7 shows that LB(1) lower bounds with M = 1 and MILP computations outclass significantly
the dual bounds from [16], requiring less than one hour computations. Tables 7 and 8 illustrate
that computation times differ among the different instances. B8 and B9 are also the most difficult
instances for the computations of LB(k0) with k0 6 3. B6,B7, X10, and X11 instances have the quickest
computation time, and this is due to their minimal number of stochastic scenarios, as shown in
Table 5. Generally, the LP+cuts computations of root node of the B&B tree, as in Table 9, induce a little
degradation of the lower bounds with full MILP computations presented in Table 7, for a significant
speed up comparing the computational times in both result tables. In a defined time limit, it is more
efficient to increase the value k than reaching more advanced phases in the B&B algorithm.

Algorithms 2020, 13, 185 21 of 28

This induces results of Table 9, considering in our computational experiments only the results
having a total computational time inferior to one hour, which corresponds to some LP and LP+cuts
computations. We note that we did not optimize the results obtained in one hour.

Table 9. Comparison of our best dual bounds for datasets B and X allowing at most 1 h total
computation to the ones from [16].

Primal [16] Gap Our Duals Gap t(s) Model Cuts M

B6 83,424.7 M 69,592 M 16.58% 79,179.4 M 5.09% 3202 LB(5) yes 10
B7 81,099.7 M 68,528 M 15.58% 76,139.8 M 6.20% 3529 LB(5) yes 5
B8 81,899.7 M 62,594 23.60% 67,352.4 M 17.79% 1521 LB(2) no 1
B9 81,689.5 M 63,991 21.72% 68,566.3 M 16.13% 1602 LB(2) no 1
B10 77,767.0 M 63,747 18.03% 72,213.9 M 7.14% 2040 LB(5) yes 2

∑ B 405,880.6 M 328,452 M 19.11% 363,452 M 10.49%

X11 79,007.6 M 66,931 15.40% 74,431.2 M 5.92% 1209 LB(5) yes 2
X12 77,564.0 M 66,558 14.22% 72,819.4 M 6.15% 3449 LB(5) yes 10
X13 76,288.5 M 62,155 18.53% 70,236.7 M 7.93% 1735 LB(5) no 1
X14 76,149.8 M 63,045 17.21% 70,279.3 M 7.71% 1741 LB(5) no 1
X15 74,388.4 M 61,866 16.83% 68,624.8 M 7.75% 3045 LB(5) yes 3

∑ X 383,531.7 M 320,555 M 16.42% 35,639 M 7.08%

Total 789,572.7 M 649,007 M 17.80% 719,843.6 M 8.83%

The results of Tables 7–9 show a graduation of lower bounds with an increasing quality when
computation times increase. Having the computation times of the lower bounds [16] or other dual
bounds, one can compare the quality of lower bounds in equivalent computational times using
equivalent hardware. Our dual bounds are very scalable, and, if a total computation time is allowed,
one can divide this total solving time by the number of clusters of scenarios, in order to define a time
limit for each MILP sub-problem. In particular, the lower bounds for instances B8 and B9 should be
significantly improved allowing one hour total computations and LP+cuts truncated computations.

6.5.2. Dual Bounds Decomposing Scenario by Scenario

Computations of dual bounds LB are tractable for each instance from datasets B and X with LP
computations or truncated MILP computations for one scenario and time step aggregation. Table 10
compares the dual bounds of [16] with one resulting from LB(4), LB(5), and LB formulations with LP,
LP+cuts, and MILP truncated computations.

Table 10. Dual bounds for datasets B and X, computing LB(k0) with k0 > 3 and LB bounds with M = 1
scenario decomposition, using truncated LP, LP+cuts, and MILP computations.

[16] LB(4) LB(4) LB(4) LB(5) LB(5) LB(5) LB LB
LP LP + cuts MILP LP LP + cuts MILP LP + cuts MILP

B6 16.58% 7.24% 7.06% 6.84% 5.67% 5.48% 5.31% 5.48% 5.07%
B7 15.58% 7.68% 7.54% 7.23% 6.82% 6.68% 6.34% 7.99% 7.55%
B8 23.60% 13.86% 13.68% 13.52% 12.75% 12.41% 12.22% 16.16% 16.16%
B9 21.72% 12.70% 12.55% 12.40% 11.96% 11.72% 11.51% 15.81% 15.81%
B10 18.03% 8.53% 8.41% 8.33% 7.52% 7.39% 7.32% 7.53% 7.01%

X11 15.40% 7.95% 7.81% 7.64% 6.33% 6.17% 6.04% 5.66% 5.36%
X12 14.22% 7.58% 7.50% 7.42% 6.81% 6.73% 6.68% 6.88% 6.49%
X13 18.53% 10.74% 10.37% 10.12% 8.65% 8.31% 8.14% 7.82% 7.46%
X14 17.21% 10.00% 9.81% 9.62% 8.27% 8.06% 7.91% 8.10% 7.76%
X15 16.83% 10.21% 10.11% 10.02% 9.06% 9.16% 8.99% 9.11% 8.82%

Total 17.80% 9.65% 9.49% 9.32% 8.40% 8.21% 8.05% 9.09% 8.79%

Algorithms 2020, 13, 185 22 of 28

We note that, contrary to computations in the average scenario presented in [17,24], the B&B
convergence of LB computations was less advanced for each scenario in the computations of Table 10,
and the average scenario seems to be favorable for the efficiency of the B&B search with Cplex.
In addition to Tables 7 and 9, Table 10 presents the gaps obtained using formulations LB(k0) with
k0 varying. Table 10 extends some empirical results mentioned for Tables 7 and 9. The LP+cuts
computations of root node of the B&B tree induce a few degradation of the lower bounds compared
with the full MILP computations of the same model, for a significant speed up in the computational
times when computations are stopped at the root node. In a defined time limit, it is more efficient
to increase the value k to compute LB(k) bounds. Computation times are not reported in Table 10,
and the MILP computations reach the defined time limits, 1800 s by sub-problem. Such quality of
dual bounds can thus be obtained in about 1800 s in clock time, distributing the S computations of
sub-problems in a cluster of S computers with MPI distributed implementation.

In Table 10, it is interesting to compare the columns related to LB(5) and LB dual bounds. For
most of the instances, computing LB dual bounds induces slightly better bounds, LB outclasses LB(5)
computations by more than 0.5% only for X11 and X13 instances. Contrary to Table 6, the lower bounds
obtained with LB(5) dual heuristics may be better than the exact formulation. This is the case for most
difficult instances B7, B8, and B9 as highlighted in Table 5. This situation seems paradoxical, and we
know that LB(5) 6 LB with Proposition 1. Figure 2 illustrates these situations.

For the easier instance B6, LB lower bounds are always better than LB(5) lower bounds. This
situation will continue until the curves converge to the optimal values of LB and LB(5). For the
more difficult instance B7, the LB(5) lower bounds are always better than LB lower bounds, which
seems paradoxical as in the convergence state we have LB(5) 6 LB with Proposition 1. Considering
reasonable computational times for our application, it is more efficient to use LB(5) formulation to
compute partial lower bounds or the most difficult instances. For many instances, LB(5) dual heuristics
are better than LB with the LP+cuts stopping criterion, as shown in Table 10. Having smaller MILPs
with lB(5), more efficient cuts are generated, and it is decisive for the dual bound quality with LP+cuts
computations. Good primal solutions generally plan four or five outages for each T2 unit. Hence, a
6th outage induces more costs as T2 production is cheaper than T1 production. It explains that LB(5)
dual bounds are good approximations, and the major approximation is due to the approximation
of the penalization costs fore the remaining fuel. The possibility to have a 6th outage induces more
binaries and continuous variables, which is highly penalizing for the cutting planes generation and
MILP solving capacities of LB dual bounds. For instances B10, X12, and X14, the LP+cuts dual bounds
are better with LB(5) and allowing branching allows for having better dual bounds with LB relaxation.

This illustrates the concept of dual heuristics: relaxations are parametrized to lead to few
degradation quality of the dual bounds, but improving significantly the solving capacities. Our first
motivation was to have dual bounds for larger sizes of instances than using only exact formulations,
and to have a better scalability in computation times with the parametric surrogate relaxations.
The notable point here is that dual heuristics LB(5) may also improve the dual bounds LB, with
approximation helping the MILP solvers to focus on a specific crucial part of the problem and relaxing
a part of constraints that has little impact on the value of the objective function. This approach is
similar to primal heuristics when some constraints have little influence on design solutions of good
quality. In such applications, the expert knowledge of the problem and numerical properties are crucial
to identify the most important constraints, variables, and difficulties of the problem.

Algorithms 2020, 13, 185 23 of 28

Lower bounds LB and LB(5) for an MILP sub-problem of instance B6

computation time (in seconds)

Lower bounds LB and LB(5) for an MILP sub-problem of instance B7

computation time (in seconds)

Figure 2. Comparison of dual bound convergence using MILP computation of LB and LB(5)
formulations for instance B6 (relatively easy) and for difficult instance B7.

6.5.3. Dual Bounds with Partial Scenario Decomposition

Table 11 compares the dual bounds for datasets B and X using LB(5) and LB formulations with
LP+cuts computations varying M the maximal number of scenarios in each sub-problem.

Like in Table 6, the impact of partial scenario decomposition is significant in Table 11, but not
so important to close the gap to the optimal dual bounds. The distribution of stochastic scenarios
illustrated in Figure 1 holds also for datasets B and X, and this is related to the industrial application.
Badly partitioning the scenarios in Proposition 5 also induces few differences from the scenario
decomposition with M = 1. The gap improvements with M increasing are significant, and it shows
the interest of Algorithm 1.

Algorithms 2020, 13, 185 24 of 28

Table 11. Dual bounds for datasets B and X, computing of dual bounds LB(5) and LB with LP+cuts
computations, aggregation of production time steps and scenario decomposition varying M the
maximal number of scenarios in each sub-problem.

[16] LB(5) LB LB(5) LB LB(5) LB
M= 1 1 2 2 3 3

B6 16.58% 5.48% 5.48% 5.26% 5.30% 5.19% 5.26%
B7 15.58% 6.68% 7.99% 6.37% 7.81% 6.28% 7.79%
B8 23.60% 12.41% 16.16% 12.13% 16.23% 12.05% 16.14%
B9 21.72% 11.72% 15.81% 11.47% 15.76% 11.39% 15.70%
B10 18.03% 7.39% 7.53% 7.14% 7.33% 7.05% 7.25%

X11 15.40% 6.17% 5.66% 5.92% 5.42% 5.83% 5.34%
X12 14.22% 6.73% 6.88% 6.43% 6.58% 6.31% 6.50%
X13 18.53% 8.31% 7.82% 8.03% 7.53% 7.93% 7.44%
X14 17.21% 8.06% 8.10% 7.76% 7.81% 7.66% 7.73%
X15 16.83% 9.06% 9.11% 8.74% 8.78% 8.62% 8.69%

Total 17.80% 8.21% 9.09% 7.94% 8.90% 7.84% 8.83%

[16] LB(5) LB LB(5) LB LB(5) LB
M= 1 1 5 5 10 10

B6 16.58% 5.48% 5.48% 5.13% 5.23% 5.09% 5.21%
B7 15.58% 6.68% 7.99% 6.20% 7.76% 6.14% 7.76%
B8 23.60% 12.41% 16.16% 11.97% 16.16% 11.95% 16.15%
B9 21.72% 11.72% 15.81% 11.32% 15.75% 11.24% 15.73%
B10 18.03% 7.39% 7.53% 6.96% 7.21% 6.90% 7.18%

X11 15.40% 6.17% 5.66% 5.76% 5.29% 5.71% 5.27%
X12 14.22% 6.73% 6.88% 6.20% 6.41% 6.15% 6.35%
X13 18.53% 8.31% 7.82% 7.85% 7.34% 7.81% 7.31%
X14 17.21% 8.06% 8.10% 7.57% 7.69% 7.50% 7.65%
X15 16.83% 9.06% 9.11% 8.52% 8.60% 8.46% 8.56%

Total 17.80% 8.21% 9.09% 7.76% 8.79% 7.70% 8.76%

6.6. New Dual Bounds for the Euro/Roadef Challenge 2010

This section provides our best results, using truncated MILP computations instead of LP+cuts
stopping criterion for the most promising schemes. Table 12 presents our best lower bounds and
compares it to the former ones [16,17]. The parameters leading to the reported best dual bounds are
presented in Table 12: the MILP relaxation LB or LB(5), the maximal number of scenario in an MILP
sub-problem and the maximal time for an MILP computation, time/S denotes the CPU time in seconds
per scenario, i.e., an MILP computation considering m scenarios will be limited to time/S ×m seconds.
In Table 12, OPT in the time/S column denotes that the dual bounds are computed optimally in the
0.001% tolerance gap set for MILP solving with Cplex.

The best results for instances A4 and A5 were already given in Table 6. For these instances,
the memory space is a limiting factor to reach better dual bounds. For instances A1, A2, and A3, we can
compute optimally the LB bounds with 10 scenarios with an accuracy of 0.001%. For instance A1,
10 scenarios correspond to the total number of scenario so that Table 6 gives the best lower bound that
we can compute with the LB relaxation, which is also the dual bound that would give the Bender’s
decomposition from [26]. Our new dual bounds for the datasets B and X improve by more than 0.50%
the older ones from the preliminary work [17], which highlights the interest of the partial scenario
decomposition and the ML-guided partitioning procedure in Algorithm 1.

The most difficult MILP computations are obtained for instances B8 and B9, increasing for
instances B8 and B9 the time/S parameter to 3600 s, which was the solving time for the results [17],
Each sub-problem reaches the branching phase which was not the case with time/S = 1800 s.
Finishing the cutting planes passes has a significant impact, as already observed in Table 10, but also the

Algorithms 2020, 13, 185 25 of 28

first branching operations improve significantly the lower bounds from the root node of the B&B tree in
general. This explains the improvement of the lower bounds for instances B8 and B9, from 11.95% and
11.25% in the truncated LP+cuts mode in Table 11, to the final gaps 11.69% and 10.87%. For instances
B6, B7, X11, and X12, setting time/S = 3600 s implies an improvement about 0.1%, reaching more
advanced phases of the B&B algorithm, whereas the parametrizing time/S = 1800 s allows to reach
more than 10,000 nodes in the B&B tree. For the instances of datasets B and X, the memory space is not
a limiting factor, and better dual bounds can be obtained allowing more time for the computations of
MILP sub-problems.

Table 12. New best dual bounds for EURO/ROADEF Challenge 2010, comparison to the former ones
of [16,17], and presenting the configuration leading to our best lower bounds. Gaps are calculated for
the best primal solution known from [15,28,32]. Machine A is used for instances of datasets B and X,
whereas Machine B was used for the instances of datasets A.

Primal [16].1 [16].2 [17] New Lower Bound Gap Bound M Time/S

A1 169,474.5 M [32] 5.09% 2.31% 0.04% 169,460.6069 M 0.01% LB 10 OPT
A2 145,956.7 M [32] 10.83% 4.09% 0.25% 145,669.1154 M 0.20% LB 10 OPT
A3 154,277.2 M [32] 10.72% 3.77% 0.37% 153,770.2050 M 0.33% LB 10 OPT
A4 111,494.0 M [15] 26.07% 8.22% 1.52% 110,130.2886 M 1.22% LB 5 2400
A5 124,543.9 M [15] 24.22% 9.70% 2.55% 122,035.5788 M 2.01% LB 3 2400

∑ A 705,746.3 M 14.20% 5.24% 0.83% 701,065.7947 M 0.66%

B6 83,424.7 M [28] 56.44% 16.58% 5.30% 79,394.9322 M 4.83% LB 5 3600
B7 81,099.7 M [15] 52.82% 15.50% 6.22% 76,499.2099 M 5.67% LB(5) 10 3600
B8 81,899.7 M [15] 65.31% 23.57% 12.37% 72,322.5889 M 11.69% LB(5) 10 3600
B9 81,689.5 M [15] 63.28% 21.67% 11.59% 72,811.7201 M 10.87% LB(5) 10 3600
B10 77,767.0 M [15] 60.92% 18.03% 7.32% 72,462.8317 M 6.82% LB(5) 10 1800

∑ B 405,880.6 M 59.74% 19.08% 8.56% 373,491.2828 M 7.98%

X11 79,007.6 M [15] 57.75% 15.29% 5.45% 75,183.0108 M 4.84% LB 5 3600
X12 77,564.0 M [15] 52.63% 14.19% 6.65% 72,986.7523 M 5.90% LB 5 3600
X13 76,288.5 M [15] 66.20% 18.53% 7.59% 70,988.40356 M 6.95% LB 5 1800
X14 76,149.8 M [15] 64.67% 17.21% 7.82% 70,549.09524 M 7.35% LB 5 1800
X15 74,388.4 M [15] 61.76% 16.83% 8.11% 68,821.7327 M 7.48% LB 5 1800

∑ X 383,398.3 M 60.55% 16.39% 7.11% 358,421.1372 M 6.49%
∑ BX 789,278.9 M 60.13% 17.77% 7.85% 731,912.4200 M 7.25%

Total 1,495,025.2 M 38.45% 11.85% 4.54% 1,432,978.2147 M 4.14%

For the most difficult instances, i.e., B7, B8, and B9, the best dual bounds are obtained using
LB(5) formulations and 10 scenarios. For the easiest instances, we had the best dual bounds with LB
bounds and five scenarios, reaching very advanced phases of the B&B search. Similar to the results in
Table 10, if the LP+cuts computations are more efficient for most of the instances using LB(5) lower
bounds as shown in Table 11, branching phases often close the gap between LB and LB(5) bounds,
and LB bounds become slightly better after a sufficient number of branching. X11 and X13 are kinds of
exceptions, where the LB computations were already more efficient to provide dual bounds of the best
quality at the root node of the B&B tree. We note that results with LB or LB(5) bounds with 5 or 10
scenarios were very close for instance B10.

Table 12 improves significantly the former best lower bounds from the literature. In dataset A, our
dual bounds prove a gap in average 0.76% to the BKS, it was 5.24% for [16]. In dataset X, our average
gap is 6.55% to the BKS, it was 16.39% for [16]. In dataset B, our average gap is 8.16% to the BKS, it was
19.08% for [16]. For the most difficult instances B8 and B9, our gaps are less than 12% whereas gaps
in [16] are around 22%.

7. Conclusions and Perspectives

New dual bounds for the EURO/ROADEF Challenge 2010 are provided in this paper hybridizing
exact methods, heuristics, and ML techniques. Parametric surrogate relaxations illustrate the interest

Algorithms 2020, 13, 185 26 of 28

of dual heuristics for an industrial MILP: relaxations are parametrized to induce little degradation of
the dual bound’s quality, but it significantly improves the MILP solving capabilities, so that in defined
time limits dual heuristics may provide better dual bounds than exact approaches. The scenario
decomposition computes dual bounds for the original problem with a fixed number of scenarios,
with a numerical interest to choose carefully the partitions of scenarios, using ML techniques.
Combining these techniques leads to tractable computations of dual bounds for the EURO/ROADEF
Challenge 2010, outclassing significantly the former best dual bounds of the literature. The quality of
our dual bounds justifies the quality of the best primal solutions known, mainly in [15].

This work offers new perspectives. Using more powerful computers and more computation
time may improve some reported results. Our approach is scalable to compute dual bounds in a
given time limit and hardware configuration, which is useful for a real life application. We note
special perspectives for the approach deployed by [26]: parametric MILP relaxations may be useful to
accelerate Bender’s decomposition, to compute quicker valid cuts and also to stabilize the Bender’s
decomposition. Considering bi-objective extension, implied by robust optimization considerations [38]
or stability costs [24], we can compute dual bound-sets using computations of dual bounds from this
paper using scalarization or epsilon-constraint methods. Lastly, we mention as a perspective that the
results of Section 5 are valid for a general class of 2-stage stochastic problems, optimizing strategical
problems like maintenance planning conjointly with an operational level as in [3].

Author Contributions: Conceptualization, N.D. and E.-G.T.; Methodology, N.D. and E.-G.T.; Software, N.D.;
Validation, N.D. and E.-G.T.; Formal analysis, N.D.; Investigation, N.D.; Resources, N.D.; Data curation, N.D.;
Writing—original draft preparation, N.D.; Writing—review and editing, N.D.; Visualization, N.D.; Supervision,
E.-G.T.; Project administration, E.-G.T.; Funding acquisition, N.D. and E.-G.T. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the French Defense Procurement Agency of the French Ministry of
Defense (DGA).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and
machine learning. Ann. Oper. Res. 2016, 240, 171–215. [CrossRef]

2. Jourdan, L.; Basseur, M.; Talbi, E.G. Hybridizing exact methods and metaheuristics: A taxonomy. Eur. J.
Oper. Res. 2009, 199, 620–629. [CrossRef]

3. Peschiera, F.; Dell, R.; Royset, J.; Haït, A.; Dupin, N.; Battaïa, O. A novel solution approach with ML-based
pseudo-cuts for the Flight and Maintenance Planning problem. OR Spectr. 2020, 1–30. [CrossRef]

4. Li, Y.; Ergun, O.; Nemhauser, G. A dual heuristic for mixed integer programming. Oper. Res. Lett. 2015,
43, 411–417. [CrossRef]

5. Bixby, E.; Fenelon, M.; Gu, Z.; Rothberg, E.; Wunderling, R. MIP: Theory and practice-closing the gap.
In System Modelling and Optimization; Powell, M.J.D., Scholtes, S., Eds.; Springer: Boston, MA, USA, 2000.

6. Wolsey, L.A. Integer Programming; Springer: Berlin, Germany, 1998.
7. Lodi, A. The heuristic (dark) side of MIP solvers. In Hybrid Metaheuristics; Talbi, E.G., Ed.; Springer: Berlin,

Germany, 2013; pp. 273–284.
8. Dupin, N.; Parize, R.; Talbi, E. Matheuristics to stabilize column generation: Application to a technician

routing problem. Matheuristics 2018, 2018, 1–10.
9. Glover, F. Surrogate constraints. Oper. Res. 1968, 16, 741–749. [CrossRef]
10. Rogers, D.; Plante, R.; Wong, R.; Evans, J. Aggregation and disaggregation techniques and methodology in

optimization. Oper. Res. 1991, 39, 553–582. [CrossRef]
11. Clautiaux, F.; Hanafi, S.; Macedo, R.; Voge, M.; Alves, C. Iterative aggregation and disaggregation algorithm

for pseudo-polynomial network flow models with side constraints. Eur. J. Oper. Res. 2017, 258, 467–477.
[CrossRef]

http://dx.doi.org/10.1007/s10479-015-2034-y
http://dx.doi.org/10.1016/j.ejor.2007.07.035
http://dx.doi.org/10.1007/s00291-020-00591-z
http://dx.doi.org/10.1016/j.orl.2015.05.007
http://dx.doi.org/10.1287/opre.16.4.741
http://dx.doi.org/10.1287/opre.39.4.553
http://dx.doi.org/10.1016/j.ejor.2016.09.051

Algorithms 2020, 13, 185 27 of 28

12. Riedler, M.; Jatschka, T.; Maschler, J.; Raidl, G. An iterative time-bucket refinement algorithm for a
high-resolution resource-constrained project scheduling problem. Int. Trans. Oper. Res. 2020, 27, 573–613.
[CrossRef]

13. Müller, B.; Muñoz, G.; Gasse, M.; Gleixner, A.; Lodi, A.; Serrano, F. On Generalized Surrogate Duality in
Mixed-Integer Nonlinear Programming. In Integer Programming and Combinatorial Optimization; Bienstock, D.,
Zambelli, G., Eds.; Springer: Cham, Germany, 2020; pp. 322–337.

14. Porcheron, M.; Gorge, A.; Juan, O.; Simovic, T.; Dereu, G. Challenge ROADEF/EURO 2010: A Large-Scale
Energy Management Problem with Varied Constraints. Available online: https://www.fondation-hadamard.
fr/sites/default/files/public/bibliotheque/roadef-euro2010.pdf (accessed on 15 June 2020).

15. Gardi, F.; Nouioua, K. Local Search for Mixed-Integer Nonlinear Optimization: A Methodology and an
Application. Lect. Notes Comput. Sci. 2011, 6622, 167–178.

16. Brandt, F.; Bauer, R.; Völker, M.; Cardeneo, A. A constraint programming-based approach to a large-scale
energy management problem with varied constraints. J. Sched. 2013, 16, 629–648. [CrossRef]

17. Dupin, N.; Talbi, E.G. Dual Heuristics and New Lower Bounds for the Challenge EURO/ROADEF 2010.
Matheuristics 2016, 2016, 60–71.

18. Khemmoudj, M. Modélisation et Résolution de Systèmes de Contraintes: Application au Problème de
Placement des Arrêts et de la Production des Réacteurs Nucléaires d’EDF. Ph.D. Thesis, University Paris 13,
Villetaneuse, France, 2007.

19. Griset, R. Méthodes pour la Résolution Efficace de Très Grands Problèmes Combinatoires Stochastiques.
Application à un Problème Industriel d’EDF: Application à un Problème Industriel d’EDF. Ph.D. Thesis,
Université de Bordeaux, Bordeaux, France, 2018.

20. Dupin, N. Tighter MIP formulations of the discretised Unit Commitment Problem with min-stop ramping
constraints. EURO J. Comput. Optim. 2017, 5, 149–176. [CrossRef]

21. Dupin, N.; Talbi, E. Parallel matheuristics for the discrete unit commitment problem with min-stop ramping
constraints. Int. Trans. Oper. Res. 2020, 27, 219–244. [CrossRef]

22. Froger, A.; Gendreau, M.; Mendoza, J.; Pinson, E.; Rousseau, L. Maintenance scheduling in the electricity
industry: A literature review. Eur. J. Oper. Res. 2015, 251, 695–706. [CrossRef]

23. Dupin, N. Modélisation et Résolution de Grands Problèmes Stochastiques Combinatoires: Application à la
Gestion de Production d’électricité. Ph.D. Thesis, University of Lille, Lille, France, 2015.

24. Dupin, N.; Talbi, E. Matheuristics to Optimize Refueling and Maintenance Planning of Nuclear Power Plants.
Available online: https://arxiv.org/pdf/1812.08598.pdf (accessed on 15 June 2020).

25. Jost, V.; Savourey, D. A 0–1 integer linear programming approach to schedule outages of nuclear power
plants. J. Sched. 2013, 16, 551–566. [CrossRef]

26. Lusby, R.; Muller, L.; Petersen, B. A solution approach based on Benders decomposition for the preventive
maintenance scheduling problem of a stochastic large-scale energy system. J. Sched. 2013, 16, 605–628.
[CrossRef]

27. Rozenknop, A.; Calvo, R.W.; Alfandari, L.; Chemla, D.; Létocart, L. Solving the electricity production
planning problem by a column generation based heuristic. J. Sched. 2013, 16, 585–604. [CrossRef]

28. Final Results and Ranking of the ROADEF/EURO Challenge 2010. Available online: https://www.roadef.
org/challenge/2010/en/results.php (accessed on 15 June 2020).

29. Benoist, T.; Estellon, B.; Gardi, F.; Megel, R.; Nouioua, K. Localsolver 1. x: A black-box local-search solver for
0-1 programming. 4OR 2011, 9, 299–316. [CrossRef]

30. Anghinolfi, D.; Gambardella, L.; Montemanni, R.; Nattero, C.; Paolucci, M.; Toklu, N. A Matheuristic
Algorithm for a Large-Scale Energy Management Problem. Lect. Notes Comput. Sci. 2012, 7116, 173–181.

31. Brandt, F. Solving a Large-Scale Energy Management Problem with Varied Constraints. Master’s Thesis,
Karlsruhe Institute of Technology, Karlsruhe, Germany, 2010.

32. Gavranović, H.; Buljubasić, M. A Hybrid Approach Combining Local Search and Constraint Programming
for a Large Scale Energy Management Problem. RAIRO Oper. Res. 2013, 47, 481–500. [CrossRef]

33. Godskesen, S.; Jensen, T.; Kjeldsen, N.; Larsen, R. Solving a real-life, large-scale energy management problem.
J. Sched. 2013, 16, 567–583. [CrossRef]

34. Dell’Amico, M.; Diaz, J. Constructive Heuristics and Local Search for a Large-Scale Energy Management
Problem. EURO Conference 2011, Lisboa. Available online: http://www.roadef.org/challenge/2010/files/
talks/S04%20-%20Diaz%20Diaz.pdf (accessed on 15 June 2020).

http://dx.doi.org/10.1111/itor.12445
https://www.fondation-hadamard.fr/sites/default/files/public/bibliotheque/roadef-euro2010.pdf
https://www.fondation-hadamard.fr/sites/default/files/public/bibliotheque/roadef-euro2010.pdf
http://dx.doi.org/10.1007/s10951-012-0281-1
http://dx.doi.org/10.1007/s13675-016-0078-7
http://dx.doi.org/10.1111/itor.12557
http://dx.doi.org/10.1016/j.ejor.2015.08.045
https://arxiv.org/pdf/1812.08598.pdf
http://dx.doi.org/10.1007/s10951-013-0322-4
http://dx.doi.org/10.1007/s10951-012-0310-0
http://dx.doi.org/10.1007/s10951-012-0286-9
https://www.roadef.org/challenge/2010/en/results.php
https://www.roadef.org/challenge/2010/en/results.php
http://dx.doi.org/10.1007/s10288-011-0165-9
http://dx.doi.org/10.1051/ro/2013053
http://dx.doi.org/10.1007/s10951-012-0279-8
http://www.roadef.org/challenge/2010/files/talks/S04%20-%20Diaz%20Diaz.pdf
http://www.roadef.org/challenge/2010/files/talks/S04%20-%20Diaz%20Diaz.pdf

Algorithms 2020, 13, 185 28 of 28

35. Gorge, A.; Lisser, A.; Zorgati, R. Stochastic nuclear outages semidefinite relaxations. Comput. Manag. Sci.
2012, 9, 363–379. [CrossRef]

36. Data Instances of the ROADEF/EURO Challenge 2010. Available online: https://www.roadef.org/
challenge/2010/en/instances.php (accessed on 15 June 2020).

37. Joncour, C. Problèmes de Placement 2D et Application à L’ordonnancement: Modélisation par la Théorie
des Graphes et Approches de Programmation Mathématique. Ph.D. Thesis, Université Bordeaux, Bordeaux,
France, 2010.

38. Dupin, N.; Talbi, E. Multi-objective Robust Scheduling to maintain French nuclear power plants.
In Proceedings of the 6th International Conference on Metaheuristics and Nature Inspired Computing
(META 2016), Marrakech, Morocco, 27–31 October 2016; pp. 1–10.

39. Savelsbergh, M. Preprocessing and probing techniques for mixed integer programming problems.
ORSA J. Comput. 1994, 6, 445–454. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10287-012-0148-0
https://www.roadef.org/challenge/2010/en/instances.php
https://www.roadef.org/challenge/2010/en/instances.php
http://dx.doi.org/10.1287/ijoc.6.4.445
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement
	Production Assets
	Time Step Discretization
	Decision Variables and Objective Function
	Description of the Constraints

	Related Work
	Solving Methods
	Reductions by Pre-Processing
	Dual Bounds for the Euro/Roadef Challenge 2010
	Milp Formulations

	Mathematical Programming Relaxations
	Relaxing Only Constraints CT6 and CT12
	Parametric Surrogate Relaxations
	Preprocessing Reductions and Dual Bounds

	Dual Bounds by Scenario Decomposition
	Computational Results
	Computational Experiments and Parameters
	Data Characteristics
	Branch & Bound Solving Characteristics
	Lower Bounds for Dataset A
	Lower Bounds for Datasets B and X
	Dual Bounds Computable in Less Than One Hour
	Dual Bounds Decomposing Scenario by Scenario
	Dual Bounds with Partial Scenario Decomposition

	New Dual Bounds for the Euro/Roadef Challenge 2010

	Conclusions and Perspectives
	References

