
algorithms

Article

Trajectory Clustering and k-NN for Robust Privacy
Preserving k-NN Query Processing in GeoSpark

Elias Dritsas *, Andreas Kanavos, Maria Trigka, Gerasimos Vonitsanos, Spyros Sioutas and
Athanasios Tsakalidis

Computer Engineering and Informatics Department, University of Patras, 265 04 Patras, Greece;
kanavos@ceid.upatras.gr (A.K.); trigka@ceid.upatras.gr (M.T.); mvonitsanos@ceid.upatras.gr (G.V.);
sioutas@ceid.upatras.gr (S.S.); tsak@ceid.upatras.gr (A.T.)
* Correspondence: eldritsas@gmail.com; Tel.: +30-2610-996959

Received: 26 May 2020; Accepted: 26 July 2020; Published: 28 July 2020
����������
�������

Abstract: Privacy Preserving and Anonymity have gained significant concern from the big data
perspective. We have the view that the forthcoming frameworks and theories will establish several
solutions for privacy protection. The k-anonymity is considered a key solution that has been widely
employed to prevent data re-identifcation and concerns us in the context of this work. Data modeling
has also gained significant attention from the big data perspective. It is believed that the advancing
distributed environments will provide users with several solutions for efficient spatio-temporal data
management. GeoSpark will be utilized in the current work as it is a key solution that has been widely
employed for spatial data. Specifically, it works on the top of Apache Spark, the main framework
leveraged from the research community and organizations for big data transformation, processing
and visualization. To this end, we focused on trajectory data representation so as to be applicable to
the GeoSpark environment, and a GeoSpark-based approach is designed for the efficient management
of real spatio-temporal data. Th next step is to gain deeper understanding of the data through
the application of k nearest neighbor (k-NN) queries either using indexing methods or otherwise.
The k-anonymity set computation, which is the main component for privacy preservation evaluation
and the main issue of our previous works, is evaluated in the GeoSpark environment. More to the
point, the focus here is on the time cost of k-anonymity set computation along with vulnerability
measurement. The extracted results are presented into tables and figures for visual inspection.

Keywords: algorithmic data management; big spatial data management; GeoSpark; k-NN Queries;
privacy preserving; trajectories

1. Introduction

There is no doubt that we live in the era of Big Data. Over the last decade, thanks to technological
advances, information systems have favored automatic and effective data gathering, thus resulting
in a considerable increase in the amount of available data. Daily, a wide range of data is produced:
scientific, financial, health data, as well as from social media, are just some examples of sources.
However, this data is useless without the extraction of the underlying knowledge, a major challenge
for the researchers as classical machine learning methods cannot deal with the volume, value, veracity
and variety that big data brings [1]. Therefore, existing machine learning techniques, which deal
with 4 Vs [2], have been or need to be redefined for efficiently processing and managing such data,
as well as to obtain valuable information that can benefit not only scientists, but also businesses and
organizations. Actually, the recent advances in distributed technologies can be utilized in order to
enable scientists to rapidly find out hidden or unknown patterns from the 4 Vs [3]. Nonetheless,
most of the existing methods fail to directly tackle the increased number of attributes and records

Algorithms 2020, 13, 182; doi:10.3390/a13080182 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/13/8/182?type=check_update&version=1
http://dx.doi.org/10.3390/a13080182
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 182 2 of 23

of databases, due to its computational complexity. Hence, the data mining techniques should be
able to encounter data scalability, dimensionality, uncertain data and/or data preprocessing. Data
preprocessing constitutes an important step before the data mining process and, as a result, data
mining algorithms are designed to accept specific data formats that are best suited for them.

With the advances in wireless and mobile technologies, moving objects are equipped with location
positioning sensors and wireless communicating capabilities, thus, large-scale spatio-temporal data
is being generated and an urgent need for efficient query processing approaches, to deal with both
the spatial and temporal attributes, has been arisen [4]. In particular, with the advent of mobile and
ubiquitous computing, spatio-temporal queries processing on moving objects databases has become a
necessity for many applications, such as traffic control systems, geographical information systems, and
location-aware advertisement. Hence, time-dependent versions of k nearest neighbor (k-NN) queries
need to be studied. According to [5], the k-NN queries can be distinguished into four categories:
(i) both query and data objects are static, (ii) moving query but static data objects, (iii) static query
but moving data objects and (iv) both query and data objects are moving. When a mobile object’s
location data changes, a Snapshot k-NN (SkNN) query is issued at each location. However, in highly
dynamic spatio-temporal applications, where the moving objects data varies frequently over time, a
fundamental query is the so-called Continuous k-NN (CkNN) [6]. A CkNN query can be subjected to
the fourth category, as it instantly retrieves the k nearest neighbor objects of a moving query object
at each time within a given time interval. Practically, the CkNN spatio-temporal query is evaluated
on a high number of consecutive timestamps and can be considered as a series of frequent SkNN
queries. To the best of our knowledge, none of the existing approaches, such as [6–8] to name a few,
address the problem of CkNN queries processing on non-linear trajectories under the support of
Hough transformation. It is worth to mention that in previous works the process of CkNN query has
been considered in road networks with linear trajectory moving objects.

In this paper, our efforts are devoted to processing a CkNN query assuming that each object keeps
track of non-linear trajectory. Such a trajectory is approximated as piece-wise linear among timestamps
where objects (small) velocity changes; a storage efficient strategy adopted in our previous work [9].
Some previous works investigate the problem of CkNN for moving objects with fixed velocity while
others with uncertain velocity in road networks [10,11]. Nonetheless, once an object’s velocity changes,
the CkNN query has to be re-executed. Such a case is quite frequent in highly dynamic environments,
thus, the performance of these techniques would be significantly degraded, resulting in increased
query cost (because of re-evaluation). The focus of this work is on k nearest neighbor queries, which
are considered under both a spatio-temporal and a Hough transformed database. The Hough method
can mitigate such issues since it is piece-wise constant [9], thus, the CkNN query is not evaluated as
frequent as in the Euclidean space with non-linear trajectory. Actually, the application of k-NN queries
in Hough space facilitates the maintenance and consistency of continuous queries result [12], even if
the moving objects location data updates. The aforementioned issue relates to the fact that the query
result needs to be only updated upon specific changes, namely, whenever moving angle direction
and/or velocity vary dramatically. Nevertheless, while an object (including the query object) is moving
on a linear part of its trajectory (maintenance phase) the query result will not change, meaning that the
query result of all the objects will not need be revised until the objects transit to the next linear part of
its trajectory, which indicates that the maintenance phase expires.

Moreover, with the extensive adoption of the Cloud, research on privacy preserving has appealed
to lots of researchers [13,14]. Let us recall that the ultimate purpose of the processing is to formulate
the k-anonymity set to protect users’ privacy in the cloud computing environment. Especially, in the
context of this work, we are challenged with the necessity to apply temporal continuous spatial k-NN
queries in a distributed architecture with the ultimate goal of forming the anonymity set for a group of
moving objects in a fast and efficient manner.

In summary, the main contributions of this paper are as follows:

Algorithms 2020, 13, 182 3 of 23

• A continuous query processing algorithm is considered that efficiently answers the spatial k-NN
query with the aid of an indexing method or otherwise. From the query result, in each timestamp
and for all moving objects, the desired anonymity set is formulated.

• The adopted method is designed with the aid of GeoSpark spatial data operations to compute the
k-anonymity set which is used to measure the possibility of each object identity being unveiled as
it moves from one location to another. To be more specific, vulnerability evaluation is conducted in
two-dimensional space (both Euclidean and Hough space), considering different pairs of features,
as it will be demonstrated in Section 4.

• A comprehensive set of experiments is conducted to evaluate the time performance of the
proposed method in the GeoSpark environment under different data sizes.

The rest of this paper is organized as follows. In Section 2, previous related works are presented
in relation to our approach. In Section 3, the following are described: (a) the problem definition,
(b) the system model and (c) the proposed GeoSpark framework for the k-anonymity set computation.
Section 4 presents the experiments conducted for the evaluation of the studying problem, while
Section 5 evaluates relevant discussion of the studying problem results in relation to previous works.
Finally, in Section 6, conclusions and future directions of this work are recorded.

2. Related Work

The domain of efficient management regarding spatio-temporal data has different aspects
and extensions which are worth studying, from storage and indexing to time-efficient and robust
spatio-temporal queries issuing. It is pointed out here that, in the context of this work, we focus on
time efficient privacy preserving spatio-temporal k-NN queries.

2.1. Distributed Frameworks for Spatio-Temporal data Queries Processing

Due to the explosive growth of spatio-temporal data, the domain of distributed execution of
spatial queries has gained considerable concern. In [15], a novel framework, known as STARK, is
recommended for spatio-temporal data management, which includes spatial partitioners, different
modes for indexing, filter, join, and clustering operators. In contrast to existing solutions, STARK is
considered an integrated Spark program and provides more flexible and comprehensive operators.
Several application scenarios of this framework are presented in [16]. Moreover, the authors in [17]
introduce a new abstraction called IndexTRDD to manage trajectory segments, which exploits a global
and local indexing mechanism to accelerate trajectory queries. Also, they adaptively update the
partition structure based on the change of data distribution to alleviate the partitioning overhead.

In [18], a scalable system for massive trajectory data management is elaborated, which modifies
the three core layers of ST-Hadoop. Authors in [19] evaluate the distributed execution of spatial SQL
queries in GeoSpark and STARK system. Moreover, in order to address the challenges of high velocity
location data, authors propose a distributed in-memory spatio-temporal data processing system, which
includes a distributed in-memory index and storage infrastructure built on a distributed in-memory
programming paradigm [20]. The location records are distributed across a cluster of nodes using the
producer–consumer model.

2.2. Efficient Privacy Preserving k-NN Queries

In spatial databases, the processing of k-NN query over stationary objects has be extensively
studied. The last decade, thanks to technological advances, real-time spatio-temporal data of moving
objects can be monitored and in following processed. Hence, the Continuous k-NN querying in
real-time and dynamic environments has attracted the attention of researchers [21]. In [22], the authors
attempt to develop an efficient algorithm to process the k-NN queries on uncertain locations of objects.
A probability model is designed to quantify the possibility of each object being one of the k nearest

Algorithms 2020, 13, 182 4 of 23

neighbors. The uncertainty of the object’s location lies in the fact that their position is monitored by a
sensor-based tracking system, instead of the GPS technique.

In a recent work, the authors study the problem of CkNN queries on moving objects to retrieve
the k-NNs of all points along a query trajectory in spatial road networks [23]. A novel direction-aware
CkNN algorithm, the so-called DACKNN, is recommended. To ensure an efficient query, the algorithm
excludes from the analysis moving objects that are far away from the query point.

In [24] a fast continuous query privacy-preserving framework in road networks is recommended,
based on the concepts of both k-anonymity and l-diversity. The authors in [25] propose a method to
make location cloaking less vulnerable to query tracking attacks. The proposed method is applied on
road networks, such as subways, railways, and highways, where the road network is known and fixed,
except for the trajectories. It is called adaptive-fixed k-anonymization and generates smaller cloaking
regions without compromising the privacy of the query issuer’s location.

Futhermore, the authors in [26] study the problem of location disclosure adopting the k-anonymity
method in the centralized architecture based on a single trusted anonymizer. However, this strategy
may compromise user privacy involving continuous LBSs. A dual-K mechanism (DKM) is suggested
to protect the users’ trajectory privacy for continuous LBSs. The proposed method firstly inserted
multiple anonymizers between the user and the location service provider (LSP). The k anonymization
is achieved by sending k query locations to different anonymizers. To improve user trajectory privacy,
the dynamic pseudonym mechanism is combined with the location selection one. Hence, the user
trajectory (spatio-temporal points) cannot be obtained by neither the LSP nor the anonymizer.

Note that in our previous work [9], a pseudonyms system is recommended to ensure and/or
reinforce the privacy of mobile objects. Actually, a mobile user can initiate a discrete number of k-NN
queries in each spatio-temporal point with different pseudonyms for each one. The recommended
protocols provide unlinkability, thus, the service provider cannot connect to the IP and validate that
they belong to the same user. The main characteristic of this approach is that the k-NN queries can
be issued not only in Euclidean space but also in Hough-X/Y space. As the analysis and results
show, Hough space is an appropriate solution as it preserves a user’s privacy and provides storage
efficiency as well, assuming that the initial non-linear trajectory of a moving object is splitted into a set
of linear sub-trajectories.

In this work, the problem of k-anonymity for privacy preserving in spatio-temporal databases
is evaluated in a distributed environment. Although traditional privacy preserving solutions have
been designed in Euclidean space, our framework assumes the concept of k-anonymity in Hough
space as well. Due to the constant evolution of the mobile objects’ location information in time,
it is required to evaluate massive single query point k-NN queries for massive mobile objects per
timestamp. The spatio-temporal k-NN queries are issued with the aim to formulate the k-anonymity set
of moving objects. This set is online computed based on all objects trajectory point in each timestamp
and consists of the ids of the k nearest objects. Specifically, in each timestamp, a k-NN query, called
Snapshot Trajectory Point k-NN (STkNN), is issued taking into consideration the selected features
information (e.g., euclidean coordinates, angle and velocity, dual points) of all the objects. Assuming a
high time sampling rate, we can claim that the process is similar to a Continuous Trajectory Point k-NN
(CTPkNN). As we have already mentioned, an important characteristic of continuous k-NN query in
Hough space is that the k-NNs in between two consecutive spatio-temporal points remain the same.
Based on this characteristic, the problem of performing repetitive queries can be considerably reduced
to finding the k-NNs in specific spatio-temporal points where the mobile objects’ velocity varies,
indicating a new linear sub-trajectory of the initial non-linear trajectory. Unlike our and other previous
works, here, the key idea is to evaluate the proposed method for the k-anonymity set computation in
an environment suitable for efficient k-NN query in spatial or dual points data.

Algorithms 2020, 13, 182 5 of 23

3. Materials and Methods

This section provides the necessary background knowledge for the remainder of the paper.
Initially, the k-NN algorithm, a core component of the adopted privacy preserving methodology
along with its weaknesses to tackle big data problems, is presented. In following, useful definitions
and notations will be recorded under the problem definition, with the most characteristic being the
spatial indexing and partitioning methods. Moreover, the GeoSpark components for the CkNN queries
processing with the aim to formulate the k-anonymity set, will be in detail described.

3.1. Operations on Spatial Data

Querying on spatial data is considered an operation that is usually coupled with indexing methods.
Several indexing methods have been considered in literature as they are crucial for the performance of
spatial data query processing algorithms, since they are used in order to reduce the query run time.
The most representative are the ones based on R-tree and Quad-tree.

Further, to support efficient query processing on moving objects, grid-based space partitioning
methods can be adopted [27]. Moving objects data are indexed in the grid cells they belong to for
facilitating the queries and avoiding the check of all the objects. The aim of a spatial partitioning
technique is to improve the query time as well as to keep all the partitions balanced in terms of memory
and computations, which is known as the term “load balancing” [28].

The equal grids partitioning uniformly divides the whole region, providing thus a good data
locality but not load balancing. Also, Quad-tree is another data structure based on the principle of
“divide and rule” that recursively divides two-dimensional space into four quadrants and needs a
merging operation to construct the specified number of partitions. On the other hand, the R-tree
provides an efficient data partitioning strategy to efficiently index spatial data. It is considered
a balanced search tree that improves both search speed and storage utilization. Another space
partitioning strategy is based on KDB-tree, a balanced binary tree, which has been used in load
balancing of spatial databases for fast querying. It is worth mentioning that the locality of data and
load balancing are important to speedup queries performance [29].

3.2. The k-NN Classifier from Big Spatial Data Perspective

The k-NN algorithm is a popular non-parametric method that can be used for both classification
and regression tasks. In following, we will discuss the k-NN classification problem from the big spatial
data viewpoint. The main components of k-NN classifier are:

• TR is a training mobile objects dataset of size N,
• TS is a testing mobile objects dataset of size M,
• on is a mobile object represented as a tuple in the form of (fn1, fn2, . . . , fnp, cl), where fnp is the

value of the p-th feature of the n-th object and cl is the class it belongs to, denoted as ocl
n and

• cl is only known to TR dataset.

In the classification process, for each test object t ∈ TS, the k-NN algorithm searches the k closest
objects in the TR set, computing the distances (specifically the Euclidean distance) between the test
mobile object and all the mobile objects in TR. The distances from all training objects are ranked in
ascending order and then, the k nearest objects (knn1, knn2, . . . , knnk) are kept to find the dominant
class cl. Despite its remarkable performance in real-world applications, it lacks the scalability to
manage large-scale datasets. Initially, the time complexity to find the k nearest neighbors for a single
test mobile object is O(Np), where an extra complexity O(Nlog(N)) for distances sorting process is
involved; in this additional complexity, N is the size of training dataset and p is the number of object
features. The classification process needs to be restated for all the test mobile objects. Additionally, the
k-NN model requires the training data to be stored in memory in order to achieve a fast computation
of the distances. However, large-scale TR and TS sets may not fit in the RAM memory.

Algorithms 2020, 13, 182 6 of 23

3.3. Problem Definition

A spatio-temporal database, whose records are moving objects with geolocation data attributes in
two-dimensional space D, is assumed. In real world examples objects move arbitrarily which oppose
to fixed velocity assumption that some works suppose. Hence, it is considered that the objects velocity
is low with values between a minimal and a maximal, i.e., u ∈ [umin, umax]. In addition to, we consider
low data sampling rate, since applying high data sampling rate it would be difficult to apply linear
interpolation between sampled points, thus, the adopted dual methods should be redesigned adopting
appropriate curve fitting methods. As a result, the velocity calculated from two consecutive way points
could not represent the real velocity well and Euclidean distance would not work. In the following,
an overview of the studying problem definitions along with notations is presented.

Definition 1. The trajectory of a moving object is assumed to be a continuous piece-wise linear function,
which maps the temporal dimension to the two-dimensional Euclidean space, connecting a sequence of points
(x1, y1, t1), (x2, y2, t2), . . . , (xL, yL, tL) for t1 < t2 < . . . < tL.

Such a representation entails that the n-th object position at time ti is posti
n = (xi, yi) for

n = 1, 2, . . . , N, and that during each time interval (ti, ti+1), the object moves along a straight line
from (xi, yi) to (xi+1, yi+1) with a constant velocity (amplitude and direction).

To ensure an efficient storage and handling of the queries, the expected position of the object at
any time t ∈ (ti, ti+1), where 1 ≤ i ≤ L− 1, is obtained by a linear interpolation between (xi, yi) and
(xi+1, yi+1). In this way, a number of additional features can be extracted, such as velocity u, angle
direction θ, Hough-X and/or Hough-Y transformation of (x, y) [9].

Definition 2. A moving object trajectory (spatio-temporal) snapshot is defined as the location data of that
object in a specific timestamp; thus, a single trajectory is stored as a collection of location snapshots denoted
as {posti

n}L
i=1.

Definition 3. Snapshot Distance: Given two objects o1 and o2 with location snapshots posti
1 and posti

2
respectively, the l2− norm distance (Euclidean) (Without loss of generality, both other distance measures
can be considered, such as the Manhattan distance (l1 − norm), as well as the maximum distance (l∞ − norm))
between o1 and o2 in D at timestamp ti is computed as

distti
o1,o2 =

√√√√ D

∑
j=1

(posti
1 [j]− posti

2 [j])
2. (1)

The distance between two objects in our model is represented in Euclidean distance.
The spatial k-NN queries are considered as one of the most common search problems that will be

employed in our study. Generally, given a spatial region, a k-NN query on spatial data identifies all
the spatial points that lie inside this region. For spatio-temporal k-NN queries, a time interval is also
given, where the timestamps of the resulting trajectories in that region need to also fall in that time
interval. A spatial k-NN query takes as input a query center point along with a set of spatial objects
location data in order to find the k nearest neighbors around the center point.

Definition 4. k-NN: Given a moving object mo, a dataset O and an integer k, the k nearest neighbors
of mo from O, denoted as kNN(mo, O), is a set of k objects from O that ∀o ∈ kNN(mo, O), ∀s ∈
O− kNN(mo, O), disto,mo ≤ dists,mo .

Definition 5. Snapshot Trajectory Point k-NN (STPkNN) query: Given a query center point q at timestamp ti,
an integer k and a dataset of trajectory (spatio-temporal) points denoted as Sti = {trajti

1 , trajti
2 , trajti

3 , . . . trajti
N}

Algorithms 2020, 13, 182 7 of 23

a k-NN query, denoted as STPkNN(q, Sti , k), asks for the k spatial points of Sti whose l2 distance from the
query point q is less than that of the rest points of Sti .

Definition 6. Continuous Trajectory Point k-NN (CTPkNN) query: Given a query center point q
at timestamp ti, an integer k and a dataset of trajectory (spatio-temporal) points denoted as Sti =

{trajti
1 , trajti

2 , trajti
3 , . . . trajti

N} at a time-interval t = {ti}L
i=1 for L → ∞ (practically large enough), a

continuous k-NN query, denoted as CTPkNN(q, St, k), asks for the k spatial points of Sti , whose distance from
the query point q is less than that of the rest points of Sti , for all consecutive ti ∈ t.

Note that, trajti
1 ≡ posti

1 . Considering the previous definitions, the problem formulation for the
application of robust CTPkNN queries (see Figure 1) will be considered in the following subsection. In
the context of the proposed approach, all points q ∈ Sti are selected as query objects in order to acquire
the k nearest neighbors of all mobile objects in each timestamp ti. If the process is repeated for a high
number of consecutive timestamps in a selected time period, then, the collection of STPkNN queries
constitutes a CTPkNN query, thus similar to our case.

Time

y

x

Tra
j 1

Tra
j 2

Tra
j 4

Tr
aj 3

t1

t2

t3

Spatio-temporal Trajectory Query

Figure 1. An Overview of Continuous Trajectory Point k Nearest Neighbor (CTPkNN) Query.

3.4. Problem Formulation

The problem of Robust Spatio-temporal Databases is addressed in an environment suitable for
Big Spatial Data Management. The k-anonymization approach adopted in [30] for preventing mobile
objects identity reveal, is related to k-NN algorithm as described in Section 3.2. Specifically, the
k-anonymity set is formulated by the unique object identifier, denoted as id, of the k nearest neighbors,
exploiting as a result the spatio-temporal data of a set of mobile objects.

Through the SMaRT system, a set of mobile users’ trajectory data is recorded per timestamp, that is,
the mobile user trajectory id and the values of longitude and latitude are recorded. From these location
features, the four attributes (x, y, θ, u) (as presented in Table 1) along with the values of Hough-X and
Hough-Y of (x, y) [9], (Ux, ax, Uy, ay, bx, wx, by, wy) (as presented in Table 2), are computed.

Algorithms 2020, 13, 182 8 of 23

Table 1. An Overview of an Original Spatio-Temporal Database.

ID Timestamp Time to next Point x y Angle θ Velocity u

1 9 March 2013 10:00:01 0 21,082 56436 1.23 0
1 9 March 2013 10:00:04 3 21,099 56,432 1.16 4.5
1 9 March 2013 10:00:11 7 21,221 56,484 1.51 14.6
1 9 March 2013 10:00:19 8 21,331 56,524 1.95 11.3
1 9 March 2013 10:00:21 2 21,402 56,495 0 29.5
2 9 March 2013 10:00:03 0 35,587 59,829 −2.76 0
2 9 March 2013 10:00:08 5 35,568 59,782 2.94 7.8
2 9 March 2013 10:00:16 8 35,580 59,723 −2.07 5.8
2 9 March 2013 10:00:25 9 35,530 59,668 −1.52 6.4
2 9 March 2013 10:00:34 9 35,476 59,671 −2.85 4.6

Table 2. An Overview of the Transformed Spatio-Temporal Database.

ID Timestamp Ux ax Uy ay bx wx by wy

1 9 March 2013 10:00:01 4.37 22,242,219.9 1.03 4,800,692.9 0.23 −5,093,637.76 0.97 −4,645,833.3
1 9 March 2013 10:00:04 13.4 22,242,156.2 5.83 4,800,651.2 0.075 −1,659,862.40 0.17 −82,3641.2
1 9 March 2013 10:00:11 10.58 22,242,287.4 3.79 4,800,713.7 0.0946 −2,103,289.59 0.26 −1,267,515.2
1 9 March 2013 10:00:19 27.3 22,242,427.4 11 4,800,762 0.04 −814,740.93 0.09 −436,432.91
1 9 March 2013 10:00:21 27.3 22,242,427.4 11 4,800,762 0.04 814,740.9 0.09 −436,432.91
2 9 March 2013 10:00:03 2.92 22,256,723.4 7.32 4,804,052.4 0.3425 −7,622,165.55 0.14 −-656,291.3
2 9 March 2013 10:00:08 1.15 22,256,709.8 5.75 4,803,996 0.87 −19,353,660.69 0.17 −835,477.56
2 9 March 2013 10:00:16 4.27 22,256,692.6 4.64 4,803,941.2 0.23 −5,216,411.92 0.22 −1,034,341.51
2 9 March 2013 10:00:25 4.6 22,256,639.5 0.23 4,803,925.9 0.22 −4,826,741.21 4.29 −20,588,283.27
2 9 March 2013 10:00:34 1.5 22,256,625.5 5.2 4,803,925.8 0.67 −14,837,750.3 0.19 −923,831.89

So, by employing the k-NN method for different pairs of features, this fact enables us to form the
k-anonymity set of each mobile object per timestamp, as depicted in Table 3.

For each mobile user i and per timestamp l, the k nearest neighbors id it is computed and in
the following is kept in a vector form knnsil = [idil1idil2 . . . idilk] for l = 1, 2, . . . , L as presented in
Table 3. For each user, the number ks out of the k nearest neighbors, which remains the same from one
timestamp to another, is computed in order to estimate the vulnerability ratio 1

ks
. Hence, higher ks is

associated with lower probability (i.e., lower vulnerability) a moving object’s identity being unveiled.

Table 3. k-Anonymity Sets for N Mobile Users in L = 5 Timestamps.

ID Time Moment knns id

1 1 [id111, id112, . . . , id11k]
1 2 [id121, id122, . . . , id12k]
1 3 [id131, id132, . . . , id13k]
1 4 [id141, id142, . . . , id14k]
1 5 [id151, id152, . . . , id15k]
2 1 [id211, id212, . . . , id21k]
2 2 [id221, id222, . . . , id22k]
2 3 [id231, id232, . . . , id23k]
2 4 [id241, id242, . . . , id24k]
2 5 [id251, id252, . . . , id25k]

.

.
N 1 [idN11, idN12, . . . , idN1k]
N 2 [idN21, idN22, . . . , idN2k]
N 3 [idN31, idN32, . . . , idN3k]
N 4 [idN41, idN42, . . . , idN4k]
N 5 [idN51, idN52, . . . , idN5k]

Algorithms 2020, 13, 182 9 of 23

Definition 7. k-anonymous database: A database is k-anonymous, i.e., its records are k-anonymous with respect
to the selected features, if k− 1 discrete records in the same specific timestamp τ, have at least the same nearest
neighbors so that no record of k is distinguished from its k− 1 neighboring records.

3.5. System Model

A spatio-temporal database is considered with N records, that is, N moving objects in the xy plane.
Each record (xj

i , yj
i) represents the spatial coordinates of a mobile user j in timestamp tj

i , or point i of
its trajectory j [31]. From the location coordinates (x, y), we can extract the corresponding velocity and
angle direction features (u, θ) and the dual points (Ux, ax), (Uy, ay), (bx, wx), (by, wy) by employing
the dual methods described in [9]. Let us assume a trajectories database T = {T1, . . . , TN} of equal
length L in which each trajectory is represented via a sequence of L triples.

For each point i in trajectory j, we define a two-dimensional feature vector Fj
i , which captures the

selected features data. Hence, we can define and store the trajectory j as T j = {Fj
1, Fj

2, Fj
3, . . . , Fj

L}.
In the context of this work, the time performance of the k-anonymity set formulation either with

the aid of an indexing method or for spatial k-NN queries on trajectory data employing Snapshot k-NN
query on Trajectory Points, as depicted in Figure 2, is evaluated. Given a set of trajectories represented
as a sequence of spatio-temporal points along with a query point, the STPkNN algorithm finds its k
nearest spatial points from a set of trajectory points in corresponding timestamps. The STPkNN query
is issued over a set of moving objects, executing the classical k-NN in a time period, and updates the
k-anonymity set from timestamp to timestamp for all objects.

Spatial
Partitioning

Indexing

RAW DATA

Te
mp
ora
l

Pa
rtit
ion
ing

time-stamp

y

y

y

x

x

x

Figure 2. An Overview of Spatio-Temporal Data Partitioning and Indexing.

However, some objects may not move with the same velocity, leading to changes in the query
result, i.e., in the k-anonymity set. As a result, in Privacy Preserving, it is important for the k-anonymity
set to remain the same or vary slowly, as in this case, the vulnerability measure of moving objects will
be affected. Note that, for a given STPkNN query q, the k-anonymity set, denoted as A, should always
satisfy the following conditions:

1. The first condition |A| = k ensures that the anonymity set contains the ids of k objects.
2. The second condition ∀a ∈ (S−A), dist(q, a) ≥ maxdist(q, a)|a ∈ A ensures that these k objects’

id are the k nearest ones to q.

Algorithms 2020, 13, 182 10 of 23

Assuming a mobile object when considering a k-NN query relevant to the selected features in a
specific timestamp, then, the spatial k-anonymity ensures that an attacker, as the query issuer, cannot
identify a mobile object with probability larger than 1

k , where k is a user-defined anonymity parameter.
Moreover, a spatio-temporal database is expected to handle a high number of moving objects location
data, as well as, a large number of consecutive k-NN queries. Hence, an efficient consecutive STPkNN
processing algorithm is very important to be addressed. To this end, the STPkNN query is investigated
in the GeoSpark framework and experimental evaluations are conducted using a realistic dataset to
demonstrate the time performance of the k-anonymity set computation under the STPkNN query.
Ultimately, the vulnerability behavior for different pairs of features is investigated.

3.6. GeoSpark System Overview

In this subsection, the necessary structures of GeoSpark-based approach is thoroughly presented.
All parts were implemented using Apache Scala due to its compatibility with Apache Spark framework.
The core components are the following implemented on GeoSpark Resilient Distributed Dataset (RDD)
and the interaction with GeoSpark is utilized through Apache Zeppelin interface.

3.6.1. GeoSpark Architecture

GeoSpark [32] is an extension of the Apache Spark core and provides additional tools to manage
geospatial data, e.g., geospatial datatypes, indexes and operations. The architecture of GeoSpark,
as introduced in Figure 3, consists of the following three layers:

1. The Apache Spark Layer consists of all the components present in Spark and performs data
loading and querying.

2. The Geospatial RDD Layer extends Spark and supports three types of RDD, i.e., Point, Rectangle
and Polygon RDD. In addition, it contains a geometrical operations library for every RDD.

3. The Geospatial Query Processing Layer is used to perform different types of geospatial queries.

Figure 3. An Overview of GeoSpark Layers.

Algorithms 2020, 13, 182 11 of 23

GeoSpark provides Spatial RDD that allows efficient loading, transformation, partitioning,
in-memory storing as well as indexing of complex spatial data for different input data sources
such as CSV, WKT, GeoJSON, Shapefile, etc., which, through the GeoSpark Spatial SQL interface,
are compatible with Spark. It also provides eight types of spatial objects, namely Point, Multi-Point,
Polygon, Multi-Polygon, Line String, Multi-Line String, GeometryCollection, and Circle. Hence, spatial
objects in a Spatial RDD can consist of different geometry types. Furthermore, it supports three types
of spatial objects, which are Point, Rectangle and Polygon, for which the corresponding spatial RDDs
can be defined. These structures can be used as input to several spatial queries, such as spatial k-NN,
spatial range and spatial join.

In following, taking advantage of the GeoSpark architecture, the main parts of our approach will
be presented.

3.6.2. Spatial RDD Structures Preparation

Initially, the trajectory data of all mobile users is stored in a csv file. Specifically, this data
consists of trajectory (spatio-temporal) points for a number of mobile objects, i.e., bike riders. For
each bike trajectory (spatio-temporal) point, we have in our disposal the bike rider id, the spatial
coordinates (x, y), the polar coordinates (direction, velocity) (u, θ), the Hough-X/Y attributes as well
as the timestamp, with the aim of computing the k nearest neighbors and selecting two features
among them, at each time. Practically, all bike riders follow non-linear trajectories. However,
in our case, the users’ trajectory is approximated by linear sub-trajectories, as, in our previous
work [9], thus, the values of the attributes are not randomized such that groups of bikes have similar
behavior. The user cannot control attribute values, but, they may ask to simulate a specific timestamp.
In GeoSpark, firstly the corresponding SRDD is recovered and in following the temporal partitioning
is implemented. Information about road network that describe the situation of the region are not taken
into consideration.

In Apache Zeppelin, the input data are loaded from the csv file as a Dataframe and then SQL
queries can be executed on the created Dataframe in order to recover spatial data of moving objects in
specific timestamps. Then, these data are stored and transformed to PointRDD. In this way, several
PointRDDs are created which, from now, will be called as BikesRDD, as they concern bike riders
trajectories (spatio-temporal points). GeoSpark’s operator permits us to transform a set of raw data into
a PointRDD, and selecting the columns that correspond to the desired features at a specific timestamp,
as depicted in Table 4.

Table 4. The Different Types of Point Resilient Distributed Dataset (RDDs) According to Selected Features.

PointRDDs

Features Type of PointRDD

(x, y) Spatial Points RDD

(u, θ) Polar Points

(ax, Ux) Hough-X of x PointRDD

(ay, Uy) Hough-X of y PointRDD

(bx, wx) Hough-Y of x PointRDD

(by, wy) Hough-Y of y PointRDD

3.6.3. Spatio-Temporal Partitioning

The proposed approach considers a naive temporal partitioning from which a collection of
timestamps is considered. These timestamps are related to the sampling period where the system
recorded the spatio-temporal data with its usage. As a result, the size of the loaded data in BikesRDD
may be different for different timestamps since some mobile objects may not have a spatio-temporal

Algorithms 2020, 13, 182 12 of 23

footprint for all recorded timestamps. Here, in our simulations, the sampling period is supposed to be
similar for all bike riders trajectory data. From the trajectory (i.e., spatio-temporal) points of a number
of bike riders objects at different timestamps, a collection of BikesRDD is constructed.

Following the previous aspects, GeoSpark can easily utilize spatial partitioning over the temporal
partition of the data of these bikes. In each temporal partition, a bike rider may have not necessarily
moved because random delays may be employed. Hence, in a specific time partition, the spatial data
of all bikes may not necessarily participate.

BikesRDD constitutes a specialized GeoSpark PointRDD, which consists of individual bike riders’
records. The spatial partitioning on the BikesRDD concerns bike riders selected features, such as the
location data. In several temporal partitions, the BikesRDD are simulated one by one.

More to the point, GeoSpark offers low overhead spatial partitioning approaches that take into
consideration the spatial distribution of the data as well as repartitions a loaded Spatial RDD in an
automatic way. In each Spatial RDD, several spatially proximal objects are grouped into the same
partition and, as a result, the partitioning layer in GeoSpark partitions the workload in a spatial way
and periodically repartitions this workload in order to keep balanced partitions. Also, it supports a
variety of grid-type partitioning methods, such as equal-grids, R-tree, Quad-tree and KDB-tree, to
name a few [33].

3.6.4. k-Anonymity Set in GeoSpark

Algorithm 1 presents the steps of a spatial k-NN in GeoSpark. It takes as input a non-indexed or
indexed SRDD, a query center point as well as a parameter k, which indicates the number of nearest
neighbors. The algorithm is separated in two phases, namely selection and sorting phase [33], and will
be utilized in the simulations.

Algorithm 1 Spatial k-NN Query

1: input The number of k nearest neighbors
2: input A query center object A
3: input A Spatial RDD B
4: output A list of k spatial objects
5: Step 1: Selection phase
6: for all partition ∈ SRDD B do

7: if an index exists then

8: Return k-neighbors of A by querying the index of this partition
9: else

10: for all object ∈ this partition do

11: Check all the distance between the object A and Spatial RDD B
12: end for
13: end if
14: end for
15: Maintain a priority queue that stores the top k nearest neighbors
16: Step 2: Sorting phase
17: Sort the spatial objects in the intermediate Spatial RDD based on their distances to A
18: Return top k objects in C

Our aim is to exploit the above mentioned structures and Algorithm 1 so as to formulate the
k-anonymity set for a number of moving objects based on their trajectory (spatio-temporal) data. From
the trajectory points of a number of mobile objects at different timestamps, a collection of spatial
BikesRDD is constructed. The goal of this paper is to provide an efficient and scalable framework for
robust continuous k-NN querying of spatial objects in GeoSpark. A Scala RDD API for creating the
desired PointRDD from a csv file is introduced in following Algorithm 2.

Algorithms 2020, 13, 182 13 of 23

Algorithm 2 Spatial PointRDD Creation

1: Define csv file location in pointRDDInputLocation
2: Define the attributes start Column equal to 0 in pointRDDOffset
3: Define pointRDDSplitter as FileDataSplitter.csv
4: Define rest attributes in carryOtherAttributes = true
5: Create PointRDD: PointRDD = new PointRDD(sc, pointRDDInputLocation, pointRDDOffset,

pointRDDSplitter, carryOtherAttributes)

An iterative application of a typical spatial k-NN query, which was presented in Algorithm 1,
is introduced with use of Scala RDD API of Geospark in following Algorithm 3.

Algorithm 3 Iterative Spatial k-NN Query

1: input k, usingIndex, number of timestamps L
2: for timestamp t = 1 to L do

3: Create the Dataframe d f with the selected features in t
4: Save d f as csv file f
5: Create from csv a PointRDD
6: if usingIndex = true then

7: Build R-Tree index on PointRDD
8: end if
9: for all lines ∈ csv file f do

10: Read the selected features (f1, f2)
11: Create querypoint
12: val fact = new GeometryFactory()
13: val querypoint = fact.createPoint(new Coordinate(f1, f2))
14: Run Spatial k-NN Query to return k geometry points
15: val queryResultList = KNNQuery.SpatialKnnQuery(PointRDD, querypoint, k, usingIndex)
16: end for
17: end for

It is worth mentioning the fact that the output format of the spatial k-NN query (indexed or not)
is a list of geometries as in Table 5, where the id of the point geometry is related to the mobile object id.
In addition, the list holds the top-k geometry objects. In the following, the above methodology and
algorithms will be considered for the performance evaluation of the proposed k-anonymity method
based on spatial k-NN.

Table 5. Trajectory Representation in a PointRDD.

Trajectory Points

Point (−88.331492, 32.324142)

Point (−88.175933, 32.360763)

Point (−88.388954, 32.357073)

Point (−88.221102, 32.35078)

4. Results

4.1. Environment and Dataset

A local machine was used for the experimental evaluation. The experiments were executed
using 1 VM, which consisted of 4 CPU Cores, 3.8 Gb RAM and 488 Gb Storage capacity each with
Ubuntu 18.04.4 LTS, Apache Spark 2.1.0, GeoSpark 1.2.0 and Apache-Zeppelin 0.8.2. We conducted the
experiments on one master node and assign 384.1 MB memory to the Spark driver program that is

Algorithms 2020, 13, 182 14 of 23

executed on the master local machine. The experimental data extracted from the SMaRT Database GIS
Tool (http://www.bikerides.gr/thesis2/). The experiments were based on trajectory datasets of bike
riders in the area of Corfu, Greece, so the case study area is located in the non-urban area of Corfu.

4.2. Time Performance of k-Anonymity Set

A comprehensive experimental evaluation that studies the performance of GeoSpark under the
studying problem, lies in the corresponding subsection. Specifically, the GeoSpark spatial k-NN query
performance, which impacts the computation of the k-anonymity set of 80, 500 as well as 2000 mobile
objects in 10 consecutive timestamps, as shown in Table 6, is measured. The spatial k-NN queries are
tested by varying k values equal to 8 and 16 on Bike Riders Trajectory (spatio-temporal points) dataset.
The performance measure of the system for the k-anonymity set computation is the total run time that
the system needs to execute the jobs. We compare the following spatial data processing approaches:

1. Without Partitioning–Without Indexing: GeoSpark approach without spatial index in non-partitioned
PointRDD.

2. Without Partitioning–With Indexing: GeoSpark approach with spatial index in non-partitioned
PointRDD.

3. With Partitioning–Without Indexing: GeoSpark approach with spatial index on each partition of
PointRDD after data partitioned according grids using (i) KDB-Tree and (ii) R-Tree.

Table 6. Simulation Parameters.

Parameters

Parameter Range

Mobile Objects 80, 500, 2000

Timestamps 10

Time Step uniform

The above cases will be taken into consideration in order to evaluate the GeoSpark performance
for the computation of the k-anonymity set for a number of mobile users. To form the
desired k-anonymity set, we apply spatial k-NN queries using the embedded function known
as ”KNNQuery.SpatialKnnQuery”. The spatial index R-tree is only supported for the spatial
k-NN Queries.

We consider the following results assuming that the trajectories are represented as a collection
of spatio-temporal points in two-dimensional space. The experiments were conducted in Apache
Zeppelin, which is an open web-based notebook that enables interactive data analytics. In Figure 4,
an SQL query is employed, which returns the trajectory data (spatio-temporal points) of 40 mobile
objects. Specifically, a notebook, created in Zeppelin through which the methods described in previous
section were executed under GeoSpark framework, is utilized.

In this case, it should be noted that the experimentation depicts that, when mobile objects do
not move at the same timestamps, then it is difficult for the k-anonymity set to be formed, as the
desired set of mobile objects has very low cardinality. Also, we observed that from timestamp to
timestamp, different objects participated in the formed dataset, meaning that the k nearest neighbors
are time-varying. Such a scenario proves that the randomness in objects’ movements does not benefit
or promote the formulation of a slow time-varying anonymity set, as we have proved in our previous
work [30].

http://www.bikerides.gr/thesis2/

Algorithms 2020, 13, 182 15 of 23

Figure 4. An Overview of 40 Trajectories through Zeppelin.

4.2.1. Impact of Data Size

In this subsection, the impact of data size in terms of the number of mobile objects N in Figure 5
and storage size in MB in Figure 6 with or without the aid of an R-Tree indexing on the computation
time of the k-anonymity set are investigated. According to results in Tables 7–9, we observe that the use
of indexing does not impact the total execution time of involved spatial k-NN queries. This happens
due to the fact that GeoSpark caches the spatial RDD along with the corresponding indexes in each
timestamp. Hence, for the upcoming mobile objects, it directly reads spatial PointRDD and index
from the cache, in this way leading to time saving. It should be also noted that in each timestamp, all
objects use the same (partitioned or not) PointRDD, which changes in the upcoming timestamps for all
the objects.

Figure 5. Time Cost for k-Anonymity Set Computation with or without Indexing for N = 80, 500, 2000
Mobile Objects.

Algorithms 2020, 13, 182 16 of 23

Figure 6. Time Cost for k-Anonymity Set Computation with or without Indexing for 3 Cases of Total
Input Data in Executor.

Table 7. Time for 80 Mobile Objects without Indexing and with R-Tree Indexing.

Time Results in Minutes

k-NNs No Indexing Indexing Number of Completed Jobs Number of Queries

8 1.5 1.6 730 6400

16 1.5 1.6 730 6400

Table 8. Time for 500 Mobile Objects without Indexing and with R-Tree Indexing.

Time Results in Minutes

k-NNs No Indexing Indexing Number of Completed Jobs Number of Queries

8 3.5 3.6 4510 25× 105

16 3.5 3.6 4510 25× 105

Table 9. Time for 2000 Mobile Objects without Indexing and with R-Tree Indexing.

Time Results (Minutes)

k-NNs No Indexing Indexing Number of Completed Jobs Number of Queries

8 11 12 18,010 4× 107

16 11 12 18,010 4× 107

In terms of total execution time, as shown in Figure 5 including the time for index building on
PointRDD, GeoSpark without index shows approximately similar search time performance as in the
indexed version. Also, the execution time of a k-NN query in GeoSpark remains constant for different
values of k in each case. That is mainly considered when the value of k is very small with respect to the
input data and thus, most of the time is spent on input data processing. The time cost of loading data
from csv to dataframe is 42 s whereas it is included in the total execution time.

Figure 6 illustrates the total execution time relative to the total input data size in executor in MB,
which seems to increase in a non-linear way.

Ultimately, in Figure 7 let us focus only on higher number of mobile objects in order to understand
the impact of data scalability in the time performance of the proposed approach for the k-anonymity
set computation assuming 2-dimensional (2D) points RDD for 10 consecutive timestamps. Indeed,
it seems to approach exponential increase which for actual Big Data will be more apparent.

Algorithms 2020, 13, 182 17 of 23

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of mobile objects 104

0

50

100

150

200

250

300

T
im

e
(m

in
ut

es
)

Figure 7. Time Cost for Mobile Objects N = {500, 2000, 8000, 32.000} without Indexing for k = 8.

4.2.2. Impact of Spatial Partitioning

In this subsection, we experiment on the impact of the embedded spatial partitioning methods on
the computation time of k-anonymity set, despite the fact that in GeoSpark the spatial partitioning
method is usually used to optimize spatial join.

Initially, in Figure 8, the total number of records in PointRDDs for four partitioning methods in a
specific timestamp is demonstrated. Obviously, the partition size of KBD-Tree partitioning is more
balanced than that of Quad-Tree. Also, we observe that regarding R-Tree partitioning, an overflow in
data partition (e.g., partition 2) occurs, which is much larger than other partitions because R-Tree does
not consider the whole space [33].

Figure 8. Spatial PointRDD Data Distribution for 4 Spatial Partition Techniques for 2000 Mobile Objects.

Note that, in the third dataset, with size N = 2000, the data distribution varies from one timestamp
to another and thus, it is not recorded in Table 10.

In Table 10, we focus only on the impact of R-Tree and KDB-Tree spatial partitioning on
k-anonymity set time computation without PointRDD indexing, as GeoSpark does not support building
local indexing on spatially partitioned data for spatial k-NN queries.

We choose to evaluate, for a specific k with value equal to 16, the impact of spatial data partitioning
on the time needed to formulate the k-anonymity set for 10 consecutive timestamps, as aforementioned.
As the results show, the time cost of the k-anonymity method did not benefit from data partitioning.

Algorithms 2020, 13, 182 18 of 23

In addition, the time for the k-anonymity set computation is a little bit lower when using R-Tree for
datasets having smaller size. However, in case of a larger dataset, the difference between the two
types of partitioning is normalized. This means that most of the processing time, in the same machine,
is focused on k-NN query computation.

Table 10. Impact of Spatial Partitioning in Time Performance.

Time Results (Minutes) for Different Spatial Partitioning Methods

Mobile Objects R-Tree KDB-Tree Completed Jobs

N = 80 1.4 1.5 766

N = 500 3.6 3.7 4546

N = 2000 12 12 18,046

Data Distribution for 2 Different Spatial Partitioning Methods

Mobile Objects R-Tree KDB-Tree

N = 80 40 40 0 30 25 25

N = 500 250 250 0 236 132 132

4.3. Vulnerability Evaluation

In this subsection, some additional experiments based on a real dataset with parameters presented
in Table 11 and Figures 9–11, are conducted. The k-anonymity set computation is utilized with the aid
of R-Tree indexing. As GeoSpark works with spatial data in two-dimensional space, our focus is on
three different cases for the k-anonymity set computation in order to evaluate the vulnerability under
the formulated anonymity set in each space, which are:

1. Euclidean coordinates (x, y)
2. Polar coordinates (u, θ)

3. Hough-X coordinates of (x, y) denoted as (Ux, ax) and (Uy, ay)

Table 11. Parameters when using N = 500 Trajectories, L = 100 Timestamps.

Anonymity Set Size k Anonymity Set Attributes

5, 10 (x, 0)
5, 10 (0, y)
5, 10 (x, y)
5, 10 (Ux, ax)
5, 10 (Uy, ay)

0 10 20 30 40 50 60 70 80 90 100

Timestamps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
ul

ne
ra

bi
lit

y

x, k=5
x, k=10
y, k=5
y, k=10
xy, k=5
xy, k=10

(a)

0 10 20 30 40 50 60 70 80 90 100

Timestamps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
ul

ne
ra

bi
lit

y

u, , k=5
u, , k=10

(b)

Figure 9. (a) Euclidean Space and (b) Polar Space for N = 500 Trajectories, L = 100 Timestamps.

Algorithms 2020, 13, 182 19 of 23

0 10 20 30 40 50 60 70 80 90 100

Timestamps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
ul

ne
ra

bi
lit

y

x, k=5
(U

x
,a

x
), k=5

(a)

0 10 20 30 40 50 60 70 80 90 100

Timestamps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
ul

ne
ra

bi
lit

y

x, k=10
(U

x
,a

x
), k=10

(b)

Figure 10. Hough-X Space of x for (a) k = 5 and (b) k = 10 for N = 500 Trajectories, L = 100 Timestamps.

0 10 20 30 40 50 60 70 80 90 100

Timestamps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
ul

ne
ra

bi
lit

y

y, k=5
(U

y
, a

y
), k=5

(a)

0 10 20 30 40 50 60 70 80 90 100

Timestamps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
ul

ne
ra

bi
lit

y

y, k=10
(U

y
,a

y
), k=10

(b)

Figure 11. Hough-X Space of y for (a) k = 5 and (b) k = 10 for N = 500 Trajectories,
L = 100 Timestamps.

The experimentation has been carried out on a dataset of size N = 500 Trajectories (or
moving objects).

Actually, Figure 9 on the left depicts that assuming only the x feature (or y one) for the anonymity
set formulation, the vulnerability in both cases is about 2 times higher than in the case when both
attributes (x, y) are considered. Similarly, in Figure 9 on the right, the vulnerability is measured in
polar space, where the performance is worse than in Euclidean one. This is attributed to the fact that
polar coordinates are linearly dependent on spatial data (x, y), revealing the curse of dimensionality.
Also, this figure reveals that the anonymity set varies from timestamp to timestamp, meaning that for
given objects angle direction and velocity, more than one out of k nearest neighbors change.

Finally, Figures 10 and Figures 11 show the vulnerability performance in Hough-X space, which is
compared with the corresponding one in Euclidean space. Obviously, the results are better in Euclidean
space as Hough-X space is linearly dependent on the former. Finally, focusing on the case where
k = 10 in Figure 12, the vulnerability varies slowly around 0.4 and 0.3 (red and orange dashed lines
respectively) in Hough-X space, while in Euclidean space, it achieves values very close to 0.1 (purple
solid lines).

Algorithms 2020, 13, 182 20 of 23

0 10 20 30 40 50 60 70 80 90 100

Timestamps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

V
ul

ne
ra

bi
lit

y

(x,y), k=10
(U

x
,a

x
), k=10

(U
y
, a

y
), k=10

Figure 12. Vulnerability Performance Comparison in Euclidean and Hough-X Space.

5. Discussion

In this section, two main issues will be discussed. At first, the time performance of the researched
issue and in following the robustness of the suggested anonymity method. Actually, the analysis in
Section 4 gives some useful insights and presents some key aspects of the results obtained from the
evaluation of the proposed k-anonymity method in GeoSpark.

5.1. Performance Issues

Here, we should claim that the adopted partitioning method is simple. Hence, to improve the
performance of the suggested privacy preserving CkNNs, we could employ the approach proposed
in [34] and extend Algorithm 1 by applying the smart partitioning technique. Especially, we
could consider to compute AkNN queries based on kdANN or kdANN+ (where d stands for the
dimensionality), instead of simple k-NN queries and study the effect of d on the performance of
such queries and thus, in k-anonymity set computation performance, which is the main issue in
the context of this research work. At this point, it should be noted that that approach exploits a
space decomposition technique suitable for Big Data and processes the classification in a parallel and
distributed manner considering multidimensional objects, as well. Through an extensive experimental
evaluation it has been proved that the solution is efficient, robust and scalable in processing the k
nearest neighbor queries.

Although the trajectory (spatio-temporal) data utilized in this article are 2-dimensional (2D), the
methodology and techniques are general and applicable to higher dimensions. Hence, observing
Figures 5 and 6 in Section 4, the efficiency of the proposed approach, which now is investigated
utilizing 2D trajectory (spatio-temporal) points datasets, is expected to scale up exponentially with
respect to both data size, as shown in Figure 7, and dimensions, when d > 2, in the same trend as
in [34]. This results from the curse of dimensionality. As the number of dimensions increases, the
number of distance computations as well as the number of searches. For further experimentation with
the dimensionality parameter d > 2 in the context of GeoSpark, functions for data preprocessing to
prepare Points RDD structure need to be redefined. Let us recall that GeoSpark RDD operations and
k-NN queries processing work with 2D points.

Finally, as the previous finding shows in [34], it is expected that the increment of computing nodes
(VMs) will improve scalability and time performance in support of both snapshot and continuous
spatial queries over moving objects, having a great effect when the data follows a uniform distribution
due to better load balancing. Indeed, the increment of number of computing nodes decreases the
amount of distance calculations and update steps on k-NN lists that each computing node undertakes.
A similar behavior we expect to see in our case if the processing is distributed in multiple nodes in the
GeoSpark environment.

Algorithms 2020, 13, 182 21 of 23

5.2. Vulnerability

Vulnerability is considered a major issue which arises in spatio-temporal data management as
well, and simply measures how vulnerable various mobile objects are to revealing their identity to
potential adversaries, when moving from one position to another. Moreover, reducing vulnerability
and enhancing resilience in the face of adversity are considered to be essential steps. To date, less
attention has been given to vulnerability resulting from k-NN querying on non-linear trajectory data.

This study investigates the vulnerability of mobile objects with respect to k-NN queries based on
their geolocation data attributes. The proposed anonymity technique, as well as previous findings, are
confirmed in the GeoSpark environment and, as a result, vulnerability is estimated for different risk
conditions (i.e., for different number of nearest neighbors, namely k and pair of features, as presented
in Tables 4 and 11).

Furthermore, it is observed that for low values of k, the vulnerability remained at the medium level,
and the more the nearest neighbors are utilized to form the anonymity set, the lower the vulnerability
becomes. In other words, the results of the present study indicate a low level of vulnerability for high
number of nearest neighbors and uncorrelated features data.

At this point, it should be noted that the results in Section 4 highlight the superiority, that is
lower vulnerability, of Euclidean space in terms of privacy preserving, which is the main issue in
k-anonymity and, thus, in applying robust k-NN queries. However, let us recall that, as it has been
already investigated in [9], dual representative features, e.g., Hough-X of x and/or y, are considered
an appropriate choice to form the k-anonymity set from both privacy preserving and storage efficiency
perspective. So, priority should be given to the use of low dimension independent features data; in
that case, the utilization of dual space against the Euclidean one.

6. Conclusions and Future Work

In conclusion, this work aimed at testing the hardware and software performance in terms of
the number of operations performed and the time needed to obtain satisfactory anonymity. The real
world example concerning moving bicycle riders proved satisfactory results using different additional
ancillary methods of space partitioning and indexing. Also, a GeoSpark-based approach for evaluating
the vulnerability of spatial k-anonymity in large-scale spatio-temporal data is provided. Experiments
show that GeoSpark constitutes an appropriate Spark-based system for the evaluation of robust k-NN
queries. The GeoSpark spatial RDDs are exploited to store trajectory data of the mobile objects as
PointRDD in order to acquire the anonymity sets of all query mobile objects issuing iterative spatial
k-NN queries for all mobile objects in consecutive timestamps. It should be noted that the experiments
were conducted in one Virtual Machine (VM) in local mode, with specific capabilities as described in
the experimental evaluation.

As a future work, our aim is to apply the proposed anonymity method in a fully distributed
environment with many VMs so as to verify the expected results from previous findings about the
execution time; in this case, the input data will be partitioned and in following distributed to different
VMs. In this way, several parallel tasks will be executed and thus, the execution time for the anonymity
set computation is expected to be much lower than in the current single VM case when considering
large-scale databases. The locality of the data and load balancing are important when applying efficient
k-NN queries. GeoSpark also provides a grid-type partitioning based on KDB-tree that can ensure
workload balancing.

In conclusion, it should be pointed out that the current experimentation gave us an insight about
the design issues and possible constraints of the proposed approach so as to optimize its performance
in terms of execution time cost and memory utilization for real-time scenarios, where the mobile
objects identity security, when issuing a k-NN query, is of high importance.

Algorithms 2020, 13, 182 22 of 23

Author Contributions: E.D., A.K., M.T., G.V., S.S. and A.T. conceived of the idea, designed and performed the
experiments, analyzed the results, drafted the initial manuscript and revised the final manuscript. All authors
have read and agreed to the published version of the manuscript.

Funding: This research work is funded by General Secretariat for Research and Technology (GSRT), Hellenic
Foundation for Research and Innovation (HFRI), and supported by University of Patras.

Acknowledgments: The authors gratefully acknowledge the helpful comments and suggestions of the reviewers,
which have improved both content and presentation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jiang, F.; Leung, C.K. A Data Analytic Algorithm for Managing, Querying, and Processing Uncertain Big
Data in Cloud Environments. Algorithms 2015, 8, 1175–1194. [CrossRef]

2. Emani, C.K.; Cullot, N.; Nicolle, C. Understandable Big Data: A Survey. Comput. Sci. Rev. 2015, 17, 70–81.
[CrossRef]

3. Yang, C.; Yu, M.; Hu, F.; Jiang, Y.; Li, Y. Utilizing Cloud Computing to Address Big Geospatial Data
Challenges. Comput. Environ. Urban Syst. 2017, 61, 120–128. [CrossRef]

4. Shekhar, S.; Jiang, Z.; Ali, R.Y.; Eftelioglu, E.; Tang, X.; Gunturi, V.M.V.; Zhou, X. Spatiotemporal Data
Mining: A Computational Perspective. ISPRS Int. J. Geo-Inf. 2015, 4, 2306–2338. [CrossRef]

5. Güting, R.H.; Behr, T.; Xu, J. Efficient k-Nearest Neighbor Search on Moving Object Trajectories. VLDB J.
2010, 19, 687–714. [CrossRef]

6. Huang, Y.; Chen, Z.; Lee, C. Continuous K-Nearest Neighbor Query over Moving Objects in Road
Networks. In Proceedings of the Joint International Conferences on Advances in Data and Web Management
(APWeb/WAIM), Suzhou, China, 2–4 April 2009; pp. 27–38.

7. Fan, P.; Li, G.; Yuan, L. Continuous K-Nearest Neighbor Processing based on Speed and Direction of Moving
Objects in a Road Network. Telecommun. Syst. 2014, 55, 403–419. [CrossRef]

8. Zheng, B.; Zheng, K.; Xiao, X.; Su, H.; Yin, H.; Zhou, X.; Li, G. Keyword-Aware Continuous kNN Query on
Road Networks. In Proceedings of the 32nd IEEE International Conference on Data Engineering (ICDE),
Helsinki, Finland, 16–20 May 2016; pp. 871–882.

9. Dritsas, E.; Kanavos, A.; Trigka, M.; Sioutas, S.; Tsakalidis, A.K. Storage Efficient Trajectory Clustering and
k-NN for Robust Privacy Preserving Spatio-Temporal Databases. Algorithms 2019, 12, 266. [CrossRef]

10. Huang, Y.; Lee, C. Efficient Evaluation of Continuous Spatio-temporal Queries on Moving Objects with
Uncertain Velocity. GeoInformatica 2010, 14, 163–200. [CrossRef]

11. Fan, P.; Li, G.; Yuan, L.; Li, Y. Vague Continuous K-Nearest Neighbor Queries over Moving Objects with
Uncertain Velocity in Road Networks. Inf. Syst. 2012, 37, 13–32. [CrossRef]

12. Heendaliya, L.; Lin, D.; Hurson, A.R. Continuous Predictive Line Queries for On-the-Go Traffic Estimation.
Trans. Large-Scale Data Knowl.-Cent. Syst. 2015, 18, 80–114.

13. Wu, W.; Parampalli, U.; Liu, J.; Xian, M. Privacy Preserving K-Nearest Neighbor Classification over
Encrypted Database in Outsourced Cloud Environments. World Wide Web 2019, 22, 101–123. [CrossRef]

14. Yang, S.; Tang, S.; Zhang, X. Privacy-Preserving K-Nearest Neighbor Query with Authentication on Road
Networks. J. Parallel Distrib. Comput. 2019, 134, 25–36. [CrossRef]

15. Hagedorn, S.; Götze, P.; Sattler, K. The STARK Framework for Spatio-Temporal Data Analytics on Spark.
In Proceedings of the 17th Conference on Database Systems for Business, Technology, and Web (BTW),
Stuttgart, Germany, 6–10 March 2017; Volume P-265, pp. 123–142.

16. Hagedorn, S.; Räth, T. Efficient Spatio-Temporal Event Processing with STARK. In Proceedings of the
20th International Conference on Extending Database Technology (EDBT), Venice, Italy, 21–24 March 2017;
pp. 570–573.

17. Zhang, Z.; Jin, C.; Mao, J.; Yang, X.; Zhou, A. TrajSpark: A Scalable and Efficient In-Memory Management
System for Big Trajectory Data. In Proceedings of the 1st (APWeb-WAIM) International Joint Conference on
Web and Big Data, Beijing, China, 7–9 July 2017; pp. 11–26.

18. Alarabi, L. Summit: A Scalable System for Massive Trajectory Data Management. In Proceedings of
the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
(SIGSPATIAL), Seattle, WA, USA, 6–9 November 2018; pp. 612–613.

http://dx.doi.org/10.3390/a8041175
http://dx.doi.org/10.1016/j.cosrev.2015.05.002
http://dx.doi.org/10.1016/j.compenvurbsys.2016.10.010
http://dx.doi.org/10.3390/ijgi4042306
http://dx.doi.org/10.1007/s00778-010-0185-7
http://dx.doi.org/10.1007/s11235-013-9795-x
http://dx.doi.org/10.3390/a12120266
http://dx.doi.org/10.1007/s10707-009-0081-8
http://dx.doi.org/10.1016/j.is.2011.08.002
http://dx.doi.org/10.1007/s11280-018-0539-4
http://dx.doi.org/10.1016/j.jpdc.2019.07.013

Algorithms 2020, 13, 182 23 of 23

19. Giannousis, K.; Bereta, K.; Karalis, N.; Koubarakis, M. Distributed Execution of Spatial SQL Queries.
In Proceedings of the IEEE International Conference on Big Data, Seattle, WA, USA, 10–13 December 2018;
pp. 528–533.

20. Patrou, M.; Alam, M.M.; Memarzia, P.; Ray, S.; Bhavsar, V.C.; Kent, K.B.; Dueck, G.W. DISTIL: A
Distributed In-Memory Data Processing System for Location-Based Services. In Proceedings of the 26th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA,
USA, 4–6 November 2018; pp. 496–499.

21. Yang, C.; Yu, X.; Liu, Y. Continuous KNN Join Processing for Real-Time Recommendation. In Proceedings
of the IEEE International Conference on Data Mining (ICDM), Shenzhen, China, 14–17 December 2014;
pp. 640–649.

22. Huang, Y. Processing KNN Queries in Grid-Based Sensor Networks. Algorithms 2014, 7, 582–596. [CrossRef]
23. Dong, T.; Lulu, Y.; Shang, Y.; Ye, Y.; Zhang, L. Direction-Aware Continuous Moving K-Nearest-Neighbor

Query in Road Networks. ISPRS Int. J. Geo-Inf. 2019, 8, 379. [CrossRef]
24. Wang, Y.; Xia, Y.; Hou, J.; Gao, S.; Nie, X.; Wang, Q. A Fast Privacy-Preserving Framework for Continuous

Location-based Queries in Road Networks. J. Netw. Comput. Appl. 2015, 53, 57–73. [CrossRef]
25. Song, D.; Park, K. A Privacy-Preserving Location-Based System for Continuous Spatial Queries. Mob. Inf.

Syst. 2016, 2016, 6182769:1–6182769:9. [CrossRef]
26. Zhang, S.; Mao, X.; Choo, K.R.; Peng, T.; Wang, G. A Trajectory Privacy-Preserving Scheme Based on Dual-K

Mechanism for Continuous Location-Based Services. Inf. Sci. 2020, 527, 406–419. [CrossRef]
27. Eldawy, A.; Alarabi, L.; Mokbel, M.F. Spatial Partitioning Techniques in Spatial Hadoop. Proc. VLDB Endow.

2015, 8, 1602–1605. [CrossRef]
28. Yu, Z.; Liu, Y.; Yu, X.; Pu, K.Q. Scalable Distributed Processing of K Nearest Neighbor Queries over Moving

Objects. IEEE Trans. Knowl. Data Eng. 2015, 27, 1383–1396. [CrossRef]
29. García-García, F.; Corral, A.; Iribarne, L.; Vassilakopoulos, M. Improving Distance-Join Query processing

with Voronoi-Diagram based partitioning in SpatialHadoop. Future Gener. Comput. Syst. 2019, 111, 723–740.
[CrossRef]

30. Dritsas, E.; Trigka, M.; Gerolymatos, P.; Sioutas, S. Trajectory Clustering and k-NN for Robust Privacy
Preserving Spatiotemporal Databases. Algorithms 2018, 11, 207. [CrossRef]

31. Yuan, G.; Sun, P.; Zhao, J.; Li, D.; Wang, C. A Review of Moving Object Trajectory Clustering Algorithms.
Artif. Intell. Rev. 2017, 47, 123–144.

32. Huang, Z.; Chen, Y.; Wan, L.; Peng, X. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on
Spark. ISPRS Int. J. Geo-Inf. 2017, 6, 285. [CrossRef]

33. Yu, J.; Zhang, Z.; Sarwat, M. Spatial Data Management in Apache Spark: The GeoSpark Perspective and
Beyond. GeoInformatica 2019, 23, 37–78. [CrossRef]

34. Nodarakis, N.; Pitoura, E.; Sioutas, S.; Tsakalidis, A.K.; Tsoumakos, D.; Tzimas, G. kdANN+: A Rapid AkNN
Classifier for Big Data. Trans. Large-Scale Data Knowl.-Cent. Syst. 2016, 24, 139–168.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/a7040582
http://dx.doi.org/10.3390/ijgi8090379
http://dx.doi.org/10.1016/j.jnca.2015.01.004
http://dx.doi.org/10.1155/2016/6182769
http://dx.doi.org/10.1016/j.ins.2019.05.054
http://dx.doi.org/10.14778/2824032.2824057
http://dx.doi.org/10.1109/TKDE.2014.2364046
http://dx.doi.org/10.1016/j.future.2019.10.037
http://dx.doi.org/10.3390/a11120207
http://dx.doi.org/10.3390/ijgi6090285
http://dx.doi.org/10.1007/s10707-018-0330-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Distributed Frameworks for Spatio-Temporal data Queries Processing
	Efficient Privacy Preserving k-NN Queries

	Materials and Methods
	Operations on Spatial Data
	The k-NN Classifier from Big Spatial Data Perspective
	Problem Definition
	Problem Formulation
	System Model
	GeoSpark System Overview
	GeoSpark Architecture
	Spatial RDD Structures Preparation
	Spatio-Temporal Partitioning
	k-Anonymity Set in GeoSpark

	Results
	Environment and Dataset
	Time Performance of k-Anonymity Set
	Impact of Data Size
	Impact of Spatial Partitioning

	Vulnerability Evaluation

	Discussion
	Performance Issues
	Vulnerability

	Conclusions and Future Work
	References

