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Abstract: Considering the increasing use of emerging technologies in industrialized construction
in recent years, the primary objective of this article is to develop and validate predictive models to
predict the emerging technology utilization level of industrialized construction industry practitioners.
Our preliminary research results indicate that the company background and personal career profiles
can significantly affect practitioners’ technology utilization level. Thus, our prediction model is
based on four variables: company size, company type, working experience, and working position.
The United States and China are selected as the case studies to validate the prediction model. First,
a well-designed questionnaire survey is distributed to the industrialized construction industry
practitioners from the two countries, which leads to 81 and 99 valid responses separately. Then,
ordinal logistic regression is used to develop a set of models to predict the practitioners’ utilization
level of the four main technology types. Finally, the external test dataset consisting of 16 cases
indicates the prediction models have a high accuracy. The results also reflect some differences of
the technology utilization status in the industrialized construction industry between the United
States and China. The major contribution of this research is offering an efficient and accurate method
to predict practitioners’ technology utilization level in industrialized construction. Significantly,
the models are believed to have a wide application in promoting the emerging technologies in the
actual industrialized construction.

Keywords: industrialized construction; simulation; construction modeling; decision-making;
predictive analysis; logistic regression

1. Introduction

Industrialized construction is a method of construction that promotes the advancement of the
process from design through construction by employing intelligent manufacturing and automation
techniques. In recent years, industrialization has been gradually introduced into the construction
industry due to benefits including less construction cost, shorter construction time, and reduced labor
requirements [1–3]. This is also accompanied by an increase in the amount of research relevant to
industrialized construction.

Some researchers have provided a holistic review of the industrialized construction-related
research. The incorporation of emerging construction technologies (e.g., information technology,
sensing technology, and advanced data analytics) has been identified as one of the future research
directions of industrialized construction-related research [4,5]. Due to the factory-based nature of
industrialized construction, the benefits of emerging technologies on off-site industrialized construction
facture could be far greater than those of traditional construction [1]. The application of technology
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can make industrialized construction sites safer and workers more efficient, and thus achieving the
expected performance improvement and benefits brought by industrialized construction. For example,
the post-3D model-based ergonomic analysis proposed by [6] can significantly reduce various types
of risk ratings on the industrialized construction site. [7] propose a precast production scheduling
optimization model, which can reduce the construction time by around 15% to 36%.

Despite the growing academic attention, our preliminary study [8] indicated a discrepancy in
the needs of emerging technology in industrialized construction between academia and industry.
Specifically, the corresponding application in the actual industrialized construction industry is generally
at a low level, although more works in academia are focusing on the research of emerging technologies.
The promotion of the emerging technologies is impeded by many barriers, including human skepticism
and resistance [9], potential work interruptions [6], the inability to afford the hardware or software [10],
and increased cost [11]. Thus, it is important to design effective strategies to promote the emerging
technologies into the industrialized construction industry. Some common technology promotion
strategies mentioned in previous research include collaboration with research institutes and firms,
implementation of market-based incentives, better enforcement of existing standards, subsidies from
government, low-cost loans, and investment incentives [12]. Before applying the specific strategy, it is
necessary to get the full picture of the existing technology utilization status. The specific technology
promotion strategy should be designed according to the existing technology utilization level of the
construction practitioners. Thus, the practitioners can determine whether new technologies can be
integrated smoothly by assessing the maturity level of their current technology application. In this
article, construction practitioner is defined as someone who has a career in a construction-related
discipline (e.g., architect, engineer, and quantity surveyor).

However, the statistics about the current technology utilization level in the industrialized
construction industry are lacking. The traditional methods include using questionnaire surveys,
interviews, or focus groups to collect related data from the industry practitioners. Specifically,
our preliminary research distributed a questionnaire survey to collect the practitioners’ technology
utilization level [8,13]. The questionnaire introduced the concepts and scope of various technology
types and then requested the practitioners to rate their utilization level. However, traditional surveying
methods have limitations including inefficiency and high-cost [14,15]. This highlights the importance
of developing robust prediction models based on past data to enable the detection of the industrialized
construction practitioners’ technology utilization level.

Predictive analysis is commonly applied in construction-related research, such as contractor
performance prediction [16], construction company failure prediction [17], and sustainability
performance prediction [18]. However, similar research often requests the users to evaluate dozens of
factors to obtain the prediction results, which might be too sophisticated to be understood and utilized
by users [17]. In addition, some of the factors, such as organization skills or cultures, are difficult
to collect and quantify. The rating process of these determinants could be affected by respondents’
selection preferences and subjectivity [17]. Without a benchmarking system, the organization or
individuals cannot get a consistent evaluation of these determinants.

These limitations mentioned above might decrease the generalization of the predictive model,
and a more efficient and objective method is needed. Our preliminary research [8,13,19] used Analysis
of Variance (ANOVA) to find that company background and personal career profiles can significantly
affect the practitioners’ technology utilization level in the industrialized construction projects. The data
about company background and personal career profiles can be easier to access compared to other types
of determinants that need to be evaluated subjectively by respondents. Thus, four variables—company
size, company type, working experience, and working position—are regarded as viable predictors to
predict the practitioners’ technology utilization level. The primary objective of this article is to describe
a comprehensive effort to predict the emerging technology utilization level of industrialized industry
practitioners using practitioners’ company backgrounds and career profiles. An external test dataset
has been used to evaluate the efficiency of the prediction model. Correlating historical data allows the
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development of a model to assist the planning and implementation of emerging technologies into the
industrialized construction industry and the collaboration between academia and industry. Although
the scope covers any developed economy, this article uses case studies from the United States and
Chinese industry. The findings of this article contribute to the body of knowledge and practice by
offering an efficient and accurate method to the predict practitioners’ technology utilization level in the
industrialized construction.

2. Emerging Technology Categorization

The manufacturing industry has a history of applying emerging technologies to improve efficiency
and production. Recently, the manufacturing industry has been experiencing the 4th Industrial
Revolution, also referred to as Industry 4.0. Industry 4.0 is used to describe the tendency towards
digitization, automation of the manufacturing environment. Much research has summarized the
different types of Industry 4.0 technologies that have applied in the manufacturing sector (e.g., [20–22]).
There are also some technologies that are specific to the construction industry (e.g., BIM). This literature
is focusing on the discussion of technology itself, without discussing the difference between the use in
different countries. Based on the works of previous literature reviewing and the preliminary research
conducted by the authors [8], this article classifies the technologies that either have already been
applied or have the potential to be applied in the industrialized construction industry into four main
areas: (1) business digitalization, (2) computer integrated design and planning, (3) data acquisition
and analytics, and (4) robotics and automation. Each of these groups encompasses subclasses of
technologies and tools that are necessary to re-engineer the industrialized construction process.

2.1. Business Digitalization

The workflows and project deliveries of the construction industry are experiencing a trend
of moving away from the traditional paper-based to digital-based. Successful implementation of
industrialized construction technologies requires digital collaboration among stakeholders from
different fields [23]. It is also essential to design an effective method to realize data integration and
interoperability between the various information systems [24]. Efficient interaction between devices
and applications reduces the time and effort needed for communication and information exchange
among different stakeholders during the project life cycle. The business digitalization class has two
subcategories:

1. Business information systems. The Cloud-based information systems are emerging in the
construction industry for coordination, sharing design documents, and communication between
project sectors [25]. These information systems have the ready-made software to implement. Some
existing commercial information systems are enterprise resource planning (ERP), geographical
information systems (GIS), manufacturing execution system (MES), and product life-cycle
management (PLM).

2. Self-designed system integration. Other than existing commercial business information systems,
researchers also design the system integration applications by themselves. Self-designed system
integration applications can be classified into two types: horizontal integration and vertical
integration [25,26]. Horizontal integration refers to expanding the company by acquisition
or investing in different types of off-site construction, such as precast concrete, metal frames,
panelized, and modular, that address the same customer base with different but complementary
products. Vertical integration aims to tie together all logical layers within the organization from
the design to assembly.

2.2. Computer Integrated Design

The computer systems are often used in both the manufacturing and construction sectors to improve
the process of creation, analysis, and optimization of a design. Computer-integrated design class includes:
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1. 3D and nD. The architecture, engineering, and construction (AEC) industry has utilized the
computer-aided design (CAD) tools for creating 2D or 3D design practices [27]. Compared to
2D drawings, 3D models are more intuitive and can accelerate the product development cycle.
The emergence of BIM tools also adds parametric and standard features into the 3D geometries
and expands the application of 3D models. The developments in BIM now go beyond 3D and
create the 4D (time), 5D (cost), or 6D (quality) models.

2. Design optimization. Design optimization refers to optimizing industrialized building design
and improving its one-time success rate by integrating professional knowledge and information
of other stages into the design stage [28]. The parametric and standard structure of BIM facilitates
providing information for various design optimization applications such as automated rule
checking and constructability validation [28].

3. Extended reality. Extended reality technology refers to real-and-virtual combined environments
and human-machine interactions generated by computer technologies, which includes
augmented reality (AR), virtual reality (VR), and mixed reality (MR) [29]. It is gradually
getting attention from construction industry for its ability of visualizing design, production,
and construction information.

2.3. Data Acquisition and Analytics

The operation management and scheduling in both manufacturing and construction industries
conventionally rely on manual methods or outdated simulation and planning software packages.
The emerging data acquisition and analytics technologies improve the process of data collection,
data analysis, and the communication of process-performance results. These measures increase
efficiency in controlling entire project processes such as design, engineering, planning, purchasing,
as well as factory floor functions such as materials handling and quality control. The subcategories
include:

1. Sensing technology. Data acquisition is the process of collecting real world physical conditions and
converting them into numeric values that can be manipulated by computers. Commonly applied
sensing technologies include photogrammetry, digital imaging, laser scanning, GPS sensors,
and industrial sensors (i.e., sensors commonly applied in industrial automation processes such
as temperature sensors and pressure sensors). These sensors can be applied to collect real-time
vision, kinematic, or energy data throughout the project [25].

2. IoT system. IoT (Internet of things) is composed of numerous connected devices that rely on
sensory, communication, networking, and information processing technologies [20,21]. The key
technologies that enable the IoT network are wireless sensor networks (WSN) devices, such as
RFID and Bluetooth. Other technologies that can integrate with IoT systems include barcodes,
industrial sensors and actuators, location-based services, and wearables [30].

3. Optimization and simulation. Various optimization algorithms are used to predict uncertainties,
progress, and risks of the construction projects [21,26]. The collected information from the
project can be processed by simulation software to model the behavior of machines, products,
and workers [25]. The optimization and simulation results enable the problem prediction,
configuration costs reduction, and quality improvement of the industrialized projects.

4. Advanced data analytics. Advanced data analytics are used to extract useful information from
vast amounts of data generated from interconnected systems [20]. The specific advanced data
analytic techniques that can be used in the construction industry include data management
techniques (e.g., data mining, data classification, and data storage) and artificial intelligence
techniques (e.g., machine learning and deep learning). The appearance of third-party Cloud
computing systems with friendly interfaces and high levels of security and reliability lowers the
threshold to using these technologies.
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2.4. Robotics and Automation

The technology developments in robotics and automation systems are transferable to the fabrication
and assembly stages of the industrialized construction. The subcategories for the robotics and
automation class are:

1. Digital fabrication. Digital fabrication is a fabrication process where the machine is controlled
by computers [20]. The ready-made control systems for managing and controlling of digital
fabrication in the manufacturing factories include a computer numerical controlled (CNC) machine
tool, programmable logic controller (PLC), and production control system (PCS). Researchers in
the construction sector also develop the other digital fabrication systems that are designed to
implement specific functions during the construction process [31].

2. Autonomous machinery. Autonomous robots with interconnectivity, such as drones, can operate
collaboratively to improve the production processes [26]. The new generation of autonomous
machinery is capable of monitoring the physical environment and performing functions with
little or no direct human control. Their most common applications in the construction industry
are progress monitoring, material handling, or replacing human workers in unsafe conditions.

3. Additive manufacturing. This refers to the manufacturing techniques that build 3D objects by
adding a layer-upon-layer of material [29]. One of the typical examples of additive manufacturing
is 3D printing. Additive manufacturing beneficial in the production system to increase flexibility
and customization of construction products.

3. Research Purpose and Methodology

The main objective of this article is to develop and validate prediction models that can predict
the industry practitioners’ utilization level of the four main technology classes. Despite emerging
technologies are receiving increasing attention from academia, the practical application of emerging
technology is still at a low level. Before implementing the specific promotion strategy, it is necessary to
understand the current technology utilization level of industry practitioners.

The specific research process consists of four steps. First, a holistic literature review was conducted
to establish the state of practice and research regarding emerging technologies in industrialized
construction, which has been conducted in preliminary research [19]. Second, a well-designed
questionnaire survey was developed and distributed to the construction industry. Third, the collected
data was inputted into the ordinary logistic regression model to generate the prediction models. Fourth,
the accuracy of the models will be tested through the external test dataset. Since this article selects
the United States and China as the case studies, the same research flow will be applied to the two
countries independently.

3.1. Questionnaire Survey

A three-part online survey was designed to collect industry practitioners’ perspectives. The first
part briefly introduced the objectives of this survey, concepts of industrialized construction,
and descriptions of each category of emerging technologies. The second part asked the respondents’
company background and career profiles through single-choice questions, which included their
company type, company annual revenue, occupation type, and working experience. Table 1 presents
the options for each question, which can be regarded as the categories for different variables. The criteria
for the data grouping are based on our preliminary research [13]. Each category was given a label for
facilitating further analysis and processing. This part also collected respondents’ experience on the
industrialized construction projects. The third part of the survey asked the respondents to rate their
current utilization levels of four technology types in the industrialized construction project separately
using a four-point scale (i.e., 1 = none, 2 = low level, 3 = medium level, 4 = high level). We also clarified
the specific criteria for each level: “none” means have never used this technology in the industrialized
construction projects; “low” means have used this technology once or twice in the industrialized
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construction projects; “medium” means have used this technology in half of the industrialized projects;
“high” means have used this technology in almost every industrialized project.

Table 1. Predictor variables and corresponding groups.

Variable Category Label

Company type

Construction company CT1
Component manufacturer CT2

Developer CT3
Consultant organization CT4

Company size
(annual avenue in $USD million dollars 1)

<100 (i.e., small) CS1
100 to 1000 (i.e., medium) CS2

>1000 (i.e., large) CS3

Working position
Engineering and Designing WP1

Administration WP2
Project management WP3

Working experience (in years)
<5 (i.e., junior) WE1

5 to15 (i.e., medium) WE2
>25 (i.e., senior) WE3

1 The money is transferred into Chinese currency (i.e., RMB) according to the exchange rate when distributing the
survey in China.

The questionnaire survey was also translated into a Chinese version to overcome the language
barriers in China. Finally, the survey was sent to the modular construction experts from the two
countries separately to solicit feedback on the design, format, and content. The survey was then
updated accordingly, and the final version was published on Qualtrics for distribution, which is a
commonly used web-based survey tool.

A snowball sampling method was utilized to distribute the survey. The snowball sampling
method is a non-probability sampling technique in which the samples have traits that are rare to
find. This is a sampling technique where the existing research participants recruit other participants
for a test or study. For the survey distribution in the United States, initial respondents included
manufacturers, designers, and project managers from several modular construction companies in
Florida; in China, initial respondents included the practitioners from several modular construction
companies in Jiangsu. Then, they were requested to answer the survey and distribute it to other
knowledgeable participants they think appropriate within their country. The respondents were sent
e-mails containing the hyperlinks to access the survey. The survey distribution lasted for two months,
starting from August 9 to October 9, 2019. Approximately 500 questionnaires have been distributed in
the United States, and 600 questionnaires have been distributed in China.

The collected data were then preprocessed to filter out invalid responses. First, incomplete
responses were removed. Then, since the questionnaire also contained questions asking the respondents’
past experiences with industrialized construction. (e.g., Have you utilized any industrialized
construction strategies? Which type of projects have you utilized industrialized construction strategies?),
only responses of the respondents who had utilized any industrialized construction strategies or
participated in any industrialized projects were regarded as valid.

3.2. Ordinal Logistic Regression Model

Ordinal logistic regression was applied to develop the prediction model in Minitab. Ordinal
logistic regression was used to predict an ordinal dependent variable given one or more independent
variables [32]. For this research, the technology utilization level was regarded as the ordinal dependent
variable (i.e., multi-class ordered variables), which included levels from 1 to 4; company size, company
type, working position, and working experience were regarded as categorical independent variables
(i.e., multi-class unordered variables), and the categories for each variable are presented in Table 1.
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Assuming a dependent variable has j levels, and there are M independent variables, the mathematical
formulation of the ordinal logistic regression model is given below:

Logit j (P(Y ≤ j)) = ln
(

P (Y ≤ j)
P (Y > j)

)
= α j −

M∑
i = 1

βiXi (1)

In Formula (1), Logit(P(Y ≤ j)) is the logarithmic link function of the probability of occurrence
of an event when dependent variable Y’s value is no larger than j. α j represents the intercept of
the corresponding regression model. βi represents the regression coefficient of the corresponding
independent variable Xi. For the categorical independent variable, the first category is regarded as
the reference category. Regression coefficients of the other categories indicate their influence on Y
compared to the reference category. Specifically, positive coefficients indicate that the first level of the
dependent variable (i.e., technology utilization level 1) is more likely to happen at this category of
Xi than at the reference category. Negative coefficients indicate that the last level of the dependent
variable (i.e., technology utilization level 4) is more likely to happen at this category of Xi than at
the reference category. The four independent variables involved in this article are all unmeasurable
categorical variables. Since the categorical variable cannot be directly input into the regression model
like a numerical variable, it is necessary to convert the four categorical variables into a dummy variable.
Each category of the independent variable Xi is encoded in a 0/1 form, where 1 refers to presence and
0 refers to absence.

Based on Formula (1), the probability of the event when dependent variable Y’s level is no larger
than j can be obtained through Formula (2). The probability of each level of Y can be obtained in
Formula (3). Then, the model will assign the sample’s Y value as the level with the largest probability.

P(Y ≤ j) =
eα j+

∑M
i = 1 βiXi

1 + eα j+
∑M

i = 1 βiXi
(2)

P(Y = j) =


P(Y ≤ 1), j = 1

P(Y ≤ j) − P(Y ≤ j− 1), j = 2, . . . , J − 1
1− P(Y ≤ J − 1), j = J

(3)

Then, it was necessary to evaluate the fitness of the model. The null hypothesis was that all
independent variable coefficients were equal to zero, which implied that there was no association
between the dependent variable and the independent variables. The p-value of “test of all slopes being
zero” was used to determine whether at least one of the predictors in the model had a statistically
significant association. A p-value equal to or less than 0.05 could reject the null hypothesis and then
conclude that there was a statistically significant association between the dependent variable and at
least one of the independent variables. Lower p-values provide stronger evidence against the null
hypothesis. There was a total of (C1

4 + C2
4 + C3

4 + C4
4 = 15) combinations of the four independent

variables, and the model was trained separately. The model with the lowest p-value and less than 0.05
would be selected.

3.3. Model Prediction Efficiency Evaluation

This article compared the prediction results to the actual outcomes to evaluate the performance of the
models. An external test dataset was built consisting of multiple different cases. The percentage of the
cases whose technology utilization levels were correctly predicted (i.e., correctness ratio) was used as the
evaluation metric. In each case, the corresponding industry practitioner was asked the questions about their
company background and career profiles, experience with industrialized construction, and utilization level
of each technology through the questionnaire and interviews. The background of the selected practitioners
should be as diverse as possible to cover different company background and occupation categories. Then,
the collected practitioners’ company backgrounds and career profiles data were input into the model to
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obtain the predicted utilization level of each technology type. Finally, the predicted utilization levels were
compared with the actual utilization level, to evaluate the accuracy of the model.

4. Results

The following subsections will present the descriptive data of the questionnaire survey results,
the development, and the evaluation process of the models.

4.1. Descriptive Data

A total of 99 responses is received in the United States. Eighty-one of them (82%) are regarded as
valid responses since they meet the criteria of being complete and the respondents being knowledgeable
about industrialized construction. A total of 112 responses is received in China and 99 of them (88%) are
regarded as valid responses. The specific company background and career profiles of the respondents
are presented in Table 2. The average utilization levels of different technology types in the United
States and China are presented in Figures 1 and 2. It is found that the overall average utilization level
of Chinese practitioners (2.70) is higher than that of United States practitioners (2.02).

Table 2. Data distribution.

Group United States China

Company type
Component manufacturer 8 6

Construction company 43 35
Consultant organization 15 49

Developer 15 9
Company size

Small 23 31
Medium 25 36

Large 33 32
Working position

Engineer 25 49
Administrative 21 21
Project manager 35 29

Working experience
Junior 35 39

Medium 15 47
Senior 31 13

Algorithms 2020, 13, x FOR PEER REVIEW  8 of 15 

4.1. Descriptive Data 

A total of 99 responses is received in the United States. Eighty-one of them (82%) are regarded 

as valid responses since they meet the criteria of being complete and the respondents being 

knowledgeable about industrialized construction. A total of 112 responses is received in China and 

99 of them (88%) are regarded as valid responses. The specific company background and career 

profiles of the respondents are presented in Table 2. The average utilization levels of different 

technology types in the United States and China are presented in Figures 1 and 2. It is found that the 

overall average utilization level of Chinese practitioners (2.70) is higher than that of United States 

practitioners (2.02).  

Table 2. Data distribution. 

Group United States China 

Company type   

Component manufacturer 8 6 

Construction company 43 35 

Consultant organization 15 49 

Developer 15 9 

Company size   

Small 23 31 

Medium 25 36 

Large 33 32 

Working position   

Engineer 25 49 

Administrative 21 21 

Project manager 35 29 

Working experience   

Junior 35 39 

Medium 15 47 

Senior 31 13 

 

Figure 1. Average technology utilization levels of the United States practitioners. 

0 10 20 30 40 50 60 70 80 90

3D and nD model

Extended reality

Internet of Things

Smart Machinery

Number of responses

Te
ch

n
o

lo
gy

None Low Medium High

Figure 1. Average technology utilization levels of the United States practitioners.



Algorithms 2020, 13, 180 9 of 15

Algorithms 2020, 13, x FOR PEER REVIEW  9 of 15 

 

Figure 2. Average technology utilization levels of the Chinese practitioners. 

4.2. Model Fitting 

As mentioned previously, different combinations of the four independent variables are used to 

train the models separately, and the model with the lowest p-value and less than 0.05 will be selected. 

After getting the intercepts and the regression coefficients of each independent variable, the probability 

of each level of technology utilization can be calculated using Formulas (2) and (3). 

 United States. The ordinal logistic regression model results for the four technology types in the 

United States’ industrialized construction industry are presented in Table 3. 𝛼𝑗  values for 

different models are presented in Table 4. The practitioner utilization levels of 3D and nD models 

cannot be predicted based on the collected data since none of the models have been tested with 

a p-value less than 0.05. Specifically, in the United States models, company size and working 

experience are used in the prediction of the utilization level of extended reality; company size, 

working experience, and working position are used in the prediction of the utilization level of 

Internet of things; and company type and working experience are used in the prediction of the 

utilization level of smart machinery.  

Table 3. Ordinal logistic regression model for the United States. 

Technology Ordinal Logistic Regression Model 

3D and nD 

model 
N/A 

Extended reality 
𝐿𝑜𝑔𝑖𝑡 [𝑃(𝑌 ≤  𝑗)] 

=  𝛼𝑗– 0.78 ∗ 𝐶𝑆2 – (−1.35) ∗ 𝐶𝑆3 –  1.76 ∗ 𝑊𝐸2 –  0.94 ∗ 𝑊𝐸3 

Internet of 

Things 

𝐿𝑜𝑔𝑖𝑡 [𝑃(𝑌 ≤  𝑗)] 
=  𝛼𝑗– (−1.07) ∗ 𝐶𝑆2–  1.17 ∗ 𝐶𝑆3–  1.80 ∗ 𝑊𝐸2–  0.62 ∗ 𝑊𝐸3–  0.03 ∗

𝑊𝑃2–  0.92 ∗ 𝑊𝑃3  

Smart Machinery 
𝐿𝑜𝑔𝑖𝑡 [𝑃(𝑌 ≤  𝑗)] 

=  𝛼𝑗  –  2.44 ∗  𝐶𝑇2 –  2.11 ∗ 𝐶𝑇3 –  1.87 ∗ 𝐶𝑇4 − (−1.01) ∗ 𝑊𝐸2 –  0.05 ∗ 𝑊𝐸3 

Table 4. 𝛼𝑗value of different technology types for the United States. 

Technology j = 1 j = 2 j = 3 

Extended reality −1.41 0.55 2.54 

Internet of Things −1.29 0.31 1.54 

Smart Machinery −1.55 −0.42 0.59 

 China. Similarly, the ordinal logistic regression model results for the four technology types in 

the Chinese industrialized construction industry are presented in Table 5. 𝛼𝑗 values for different 

0 20 40 60 80 100

3D and nD model

Extended reality

Internet of Things

Smart Machinery

Number of responses

Te
ch

n
o

lo
gy

None Low Medium High

Figure 2. Average technology utilization levels of the Chinese practitioners.

4.2. Model Fitting

As mentioned previously, different combinations of the four independent variables are used to
train the models separately, and the model with the lowest p-value and less than 0.05 will be selected.
After getting the intercepts and the regression coefficients of each independent variable, the probability
of each level of technology utilization can be calculated using Formulas (2) and (3).

• United States. The ordinal logistic regression model results for the four technology types in the
United States’ industrialized construction industry are presented in Table 3. α j values for different
models are presented in Table 4. The practitioner utilization levels of 3D and nD models cannot
be predicted based on the collected data since none of the models have been tested with a p-value
less than 0.05. Specifically, in the United States models, company size and working experience
are used in the prediction of the utilization level of extended reality; company size, working
experience, and working position are used in the prediction of the utilization level of Internet of
things; and company type and working experience are used in the prediction of the utilization
level of smart machinery.

Table 3. Ordinal logistic regression model for the United States.

Technology Ordinal Logistic Regression Model

3D and nD model N/A

Extended reality
Logit [P(Y ≤ j)]

= α j − 0.78 ∗CS2 − (−1.35) ∗CS3 − 1.76 ∗WE2 − 0.94 ∗WE3

Internet of Things
Logit [P(Y ≤ j)]

= α j − (−1.07) ∗CS2− 1.17 ∗CS3− 1.80 ∗WE2− 0.62 ∗WE3− 0.03 ∗WP2− 0.92 ∗WP3

Smart Machinery
Logit [P(Y ≤ j)]

= α j − 2.44 ∗ CT2 − 2.11 ∗CT3 − 1.87 ∗CT4− (−1.01) ∗WE2 − 0.05 ∗WE3

Table 4. α j value of different technology types for the United States.

Technology j = 1 j = 2 j = 3

Extended reality −1.41 0.55 2.54
Internet of Things −1.29 0.31 1.54
Smart Machinery −1.55 −0.42 0.59

• China. Similarly, the ordinal logistic regression model results for the four technology types in
the Chinese industrialized construction industry are presented in Table 5. α j values for different
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models are presented in Table 6. In the Chinese models, company type and company sizes are
used in the prediction of the utilization level of all four technology types. The prediction of
the utilization level of Internet of things and smart machinery use the working experience as
the predictor.

Table 5. Ordinal logistic regression model for China.

Technology Ordinal Logistic Regression Model

3D and nD model Logit [P(Y ≤ j)]
= α_ j− (−0.75) ∗CT2− 0.57 ∗CT3− (−1.23) ∗CT4− (−0.34) ∗CS2− (−0.09) ∗CS3

Extended reality
Logit [P(Y ≤ j)]

= α j − 2.29 ∗CT2 − 0.63 ∗CT3 − (−0.47) ∗CT4 − (−1.21) ∗CS2 − (−0.74) ∗CS3

Internet of Things
Logit [P(Y ≤ j)]

= α j − 0.52 ∗CT2 − 0.84 ∗CT3 − (−0.40) ∗CT4 − (−1.08) ∗CS2 − (−1.09) ∗CS3 −
(−0.84) ∗WE2 − (−1.36) ∗WE3

Smart Machinery
Logit [P(Y ≤ j)]

= α j − 1.23 ∗CT2 − 1.57 ∗CT3 − (−0.10) ∗CT4 − (−1.09) ∗CS2 − (−0.28) ∗CS3 −
(−0.57) ∗WE2 − (−0.38) ∗WE3

Table 6. α j value of different technology type for China.

Technology j = 1 j = 2 j = 3

3D and nD model −2.97 −0.30 1.57
Extended reality −1.38 0.17 1.66

Internet of Things −0.90 0.63 2.08
Smart Machinery −1.17 0.43 2.15

4.3. Model Evaluation

As presented in Tables 3 and 5, seven models have been selected to predict the utilization level
of different technology types of the practitioners in the United States and China. Then, an external
test dataset consisting of 16 cases were selected to evaluate the accuracy of the developed prediction
models, which included 8 from the United States and 8 from China. The specific information of the
cases and the corresponding prediction results are presented in Table 7. Six out of the seven models
have the correctness ratio no less than 75%. It is noticeable that the prediction model of the utilization
level of smart machinery in China has a correctness ratio of 100%. Only the model to predict the
utilization level of smart machinery in the United States has a correctness ratio less than 75%. For those
wrong predictions, the difference between the predicted value and actual value is 1.

Table 7. Application of the ordinal logistic regression model.

Case
Number

Background Predicted Technology Utilization Level

Country Company
Type

Company
Size

Working
Position

Working
Experience

3D and nD
Model

Extended
Reality

Internet
of Things

Smart
Machinery

1 U.S. Manufacturer Medium Engineering Junior N/A Low High * Medium

2 U.S. Developer Small Administration Medium N/A Medium High Low

3 U.S. Construction Small Project
management Junior N/A Low High * None

4 U.S. Construction Medium Engineering Junior N/A Low High None

5 U.S. Manufacturer Small Engineering Junior N/A Low * Low High

6 U.S. Manufacturer Large Project
management Junior N/A Medium * High High

7 U.S. Consultant Large Administration Medium N/A High High High
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Table 7. Cont.

Case
Number

Background Predicted Technology Utilization Level

Country Company
Type

Company
Size

Working
Position

Working
Experience

3D and nD
Model

Extended
Reality

Internet
of Things

Smart
Machinery

8 U.S. Manufacturer Small Administration Senior N/A Medium High High

9 China Consultant Large Engineering Junior Low* None None Low *

10 China Construction Small Project
management Medium Medium Medium Medium * High *

11 China Construction Small Engineering Junior Medium Low * Low Low

12 China Developer Small Engineering Junior Low Low None Low *

13 China Manufacturer Large Engineering Junior Low* Low None Low

14 China Consultant Small Administration Medium Low None * None None

15 China Construction Small Administration Medium Low Medium None Low

16 China Manufacturer Medium Engineering Junior None Medium None None

Note. * denotes the predicted technology utilization level is different from the actual prediction level.

5. Discussion

By observing the models and questionnaire survey results, some insights about the differences
in the technology utilization status in the industrialized construction between the United States and
China are obtained. The practical application and the limitations of the models will also be discussed
in the following subsections.

5.1. Comparison between the United States and China

The results show that Chinese practitioners have a higher average technology utilization level in
industrialized construction than those in the United States. This reflects that, currently, the practitioners
in China pay more attention to the application of emerging technologies into the industrialized
construction than the United States. Recent years have witnessed a prosperous development in the
Chinese construction industry. Before 2008, the U.S. had the most top 225 international construction
companies in the world. However, China has now surpassed the United States. This booming
development brings the increase in the level of construction technologies [33,34]. Moreover, in order to
comply with increasing requirements of urbanization and housing demand, the Chinese government
is proactively promoting the industrialized construction strategies [34]. It has also been confirmed by
previous researchers [35,36] that China is gradually leading in the off-site related research around the
world. These could potentially explain why Chinese practitioners have a higher average technology
utilization level.

Moreover, the compositions of the models of the United States and China are different. These
differences in the model compositions can reflect some insights about the practitioners’ technology
utilization conditions in the United States and China. Specifically, working experience acts as the
influencing factors in all of the models in the United States. The United States practitioners with
different working experience expressed significant differences in their attitudes towards applying
emerging technologies in industrialized construction. By comparison, company type and company
size are the predictors in all four models in China. Working position is not included in any of the four
models in China. It reflects that the practitioners from the same Chinese company may have similar
mastery of the applied technologies. The size and types of companies where Chinese practitioners work
can significantly affect their technology utilization level in the industrialized construction projects.

Overall, it is found that the variable company size exists in six out of the seven models. It indicates
that company size can significantly affect practitioners’ utilization levels of different technology levels
in both countries. As presented in Table 5, the regression coefficients of CS2 and CS3 of different
models are almost negative. It means the practitioners from medium-sized and large-sized companies
are more likely to have a higher technology utilization level than those from small-sized companies.
This is reasonable since technology utilization in small-sized companies is often hampered by high
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costs of equipment, software, and technical education. By contrast, large-sized companies often have
more funding to invest in the development and application of technologies.

5.2. Model Application

Four predictors, which are company type, company size, working position, and working
experience, are used in this research to predict the practitioners’ technology utilization level in
industrialized construction. The ordinal logistic regression models get a high predication correctness
ratio through the external test dataset and it can be concluded that the developed models can accurately
predict the practitioners’ technology utilization level in industrialized construction.

The other significant advantage of the model is the simple requirements on the input parameters.
In previous construction-related research (e.g., [37]), users are required to evaluate dozens of factors
to get the prediction results. Some of the factors are difficult to quantify and can also be affected
by subjective bias. However, the model developed in this research only requires the input of the
practitioners’ company background and career profiles, which are often easy to get. For the practical
applications of the models, respondents’ company background, career profiles, and experience with
industrialized construction can be collected in the format of a concise questionnaire or a simple
telephone interview. Then, the collected company background and career profiles of the respondents
who have participated in the industrialized construction projects can be input into the models to
generate the predicted technology utilization level.

Knowing the practitioners’ technology utilization level in the industrialized construction is
beneficial for different stakeholders: researchers can seek support from those practitioners with a high
technology utilization level in the development and validation process of their research achievements;
technology vendors can identify the market demand and thus promote their technological products
better; and practitioners can determine whether new technologies can be integrated smoothly by
assessing the maturity level of their current technology application. The models developed in this
research are believed to have a wide application in the promotion of emerging technologies in the
industrialized construction.

5.3. Limitation and Future Works

Even though an extensive work, this research still has some limitations, which can be categorized
into following aspects:

1. The data sample is not sufficient. Despite great benefits, industrialized construction technique
is not the mainstream construction technique in both the United States and China. During the
questionnaire survey distribution and collection process, it was found that a large proportion of
practitioners have never participated in any industrialized construction projects, which made
them refuse to answer the questionnaire survey. The number of respondents in some groups
are not sufficient. For example, the number of Chinese practitioners whose company type is
component manufacturer is only six, which is much lower than the number of respondents
in other groups. Future research should enlarge the sample size, which is believed to further
improve the accuracy of the prediction models.

2. Other variables may affect the results. In addition to these four variables, there could be other
variables that can affect the practical technology utilization level in industrialized construction,
such as construction culture and research investment. Future research will focus on collecting
and quantifying these factors and thus improve the prediction performance.

3. This research is the first known research that focuses on the prediction of technology utilization
levels in the industrialized construction, and ordinal logistic regression is used as the method
considering the structure of the collected data. In future research, some other multi-class
machine-learning algorithms (e.g., Naïve Bayes, Decision tree, and support vector machine) might
be used to improve the accuracy of prediction.
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6. Conclusions

The application of emerging technology is gradually becoming a research hotspot in the
industrialized construction field. Meanwhile, a preliminary study found a discrepancy in the needs of
emerging technology in industrialized construction between academia and industry. Before applying
the specific promotion strategy, it is necessary to understand the existing technology utilization status.
However, the statistic on the industry practitioners’ technology utilization level is lacking. This
highlights the importance of a prediction model that can accurately predict the industry practitioners’
technology utilization level. This article is based on our preliminary research results that company
background and personal career profiles can significantly affect practitioners’ technology utilization
level. Thus, the primary objective of this article is to develop and validate predictive models to
predict the emerging technology utilization level of industrialized construction industry practitioners
using four variables: company size, company type, working experience, and working position.
Such prediction models are based on the questionnaire survey data collected from the United States
and Chinese industrialized construction industries. Using the ordinal logistic regression model, a set of
models have been developed to predict the practitioners’ utilization level of the four main technology
types in both the United States and China. The external validation indicates the prediction models
are reliable.

Through analyzing the questionnaire survey data and the model compositions, some facts about
the differences of the technology utilization in industrialized construction between the United States
and China are reflected. Specifically, Chinese practitioners have a higher average technology utilization
level in industrialized construction than those in the United States; working experience is influential
in the United States practitioners’ technology utilization level; and company type and company size
are the key determinants for the technology utilization of Chinese practitioners. The developed
model is advantageous in its accuracy and the simple requirements on the input parameters, which
makes it reliable and efficient to predict the technology utilization level of industrialized construction
practitioners. The models developed in this research are believed to be beneficial for different
stakeholders in the industrialized construction by accelerating the collaboration between industry and
academia, providing an assessment benchmark for practitioners, and helping technology vendors
promote the emerging technologies.

The major contribution of this research is offering an efficient and accurate method to
predict practitioners’ technology utilization level in the industrialized construction. Significantly,
understanding the practitioners’ utilization level of different types of the technologies is beneficial
for different stakeholders including researchers, technology providers, and construction companies.
The developed prediction models are believed to have a wide application in promoting the emerging
technologies in industrialized construction.
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