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Abstract: We define the notion of an approximate triangulation for a manifold M embedded in
Euclidean space. The basic idea is to build a nested family of simplicial complexes whose vertices lie
in M and use persistent homology to find a complex in the family whose homology agrees with that
of M. Our key examples are various Grassmann manifolds Gk(Rn).
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1. Introduction

Smooth manifolds admit piecewise-linear triangulations [1]. However, there are many subsequent
questions one might ask: How many simplices are required? What is the minimal number of vertices?
Is there an algorithm to construct a triangulation?

A great deal of work in algebraic topology has been devoted to these topics. The question of
the number of simplices required to triangulate a given manifold is often attacked by sophisticated
cohomological methods involving characteristic classes (such arguments also often yield estimates
on the minimal embedding dimension for the manifold). Surprisingly, much of this work is very
recent [2,3]. A main result in [3] is the following.

Theorem 1 ([3], Theorem 3.10). Every triangulation of the Grassmann manifold Gk(Rn+k) must have at least

[(n + k)(n + k + 1)− 2kn] · (2kn+1 − 1)

simplices.

For example, any triangulation of the manifold G2(R4) must have at least 372 simplices.
The Grassmann manifolds will be defined in Section 2.1 below. These are important spaces to study
because of their utility in algebraic topology, especially with respect to the study of characteristic
classes [4]. Moreover, while the theory of these spaces is rich, there are still many unsolved questions
about them. For example, if we pass to the limit as n→ ∞, we obtain an infinite Grassmannian Gk(R∞);
it is still unknown [5] if these spaces are triangulable for k ≥ 3. If one could construct compatible
triangulations of the various Gk(Rn), then one might be able to answer this question. Our methods
here do not apply, however.

Unfortunately, most results along these lines are not constructive; that is, the proofs do not yield
an explicit triangulation of the manifold. In fact, if one seeks a triangulation of a Grassmannian Gk(Rn),
the end result is usually disappointment. For the smallest nontrivial space, G1(R3) = RP2, there are
many well-known small triangulations, and even an algorithm to generate a triangulation from any
collection of points in general position [6]. Beyond that, however, results are sparse.

In this paper, we develop a procedure to find what we call an approximate triangulation of the
manifold Gk(Rn) (Definition 3). The basic idea is to first generate a sample of points on Gk(Rn).

Algorithms 2020, 13, 172; doi:10.3390/a13070172 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-6768-2542
http://www.mdpi.com/1999-4893/13/7/172?type=check_update&version=1
http://dx.doi.org/10.3390/a13070172
http://www.mdpi.com/journal/algorithms


Algorithms 2020, 13, 172 2 of 15

This already leads to technical difficulties involving embeddings of these spaces into a Euclidean
space RN , but we are able to solve this. We then build a nested family of simplicial complexes on
the point cloud, parametrized by the positive real numbers. The persistent homology of this family
is then computed and we identify an interval of parameters for which the mod 2 homology of the
complexes in that range agrees with that of Gk(Rn). Such a complex is then a viable model for the
manifold: its vertices lie in Gk(Rn) ⊂ RN and it has the correct mod 2 homology. (As a further check,
we can compute the mod 3 homology to ensure it is correct as well if we wish.) We then implement
this procedure for the following spaces: RP2 ⊂ R4, RP2 ⊂ R5, RP3 ⊂ R9, and G2(R4) ⊂ R16.
Computational limitations have so far prohibited further calculations; we discuss this in Section 4.

In effect, what we are doing is taking a tool developed for examining unknown objects (persistent
homology modules built from point clouds) and using it on spaces that are well-understood
(Grassmann manifolds) to build new structures associated with those spaces (approximate
triangulations). We have chosen the Grassmannians because their homology is relatively easy
to compute and they arise in numerous areas in mathematics (topology, algebraic geometry,
combinatorics). These same ideas could be applied to any manifold whose homology groups are known
a priori to produce an approximate triangulation, which then might be useful for other applications
(e.g., storing the manifold efficiently in a computer).

2. Materials and Methods

Further details and proofs of the results in Sections 2.1 and 2.2 may be found in [4].

2.1. Grassmann Manifolds

Denote by Rn the Euclidean space of dimension n. By a k-frame in Rn, we mean a k-tuple of
linearly independent vectors; denote by Vk(Rn) the collection of k-frames in Rn. This is an open subset
of the k-fold Cartesian product Rn × · · · ×Rn.

Definition 1. The Grassmann manifold Gk(Rn) is the set of all k-dimensional planes through the origin
in Rn. It is topologized via the quotient map Vk(Rn)→ Gk(Rn) which takes a k-frame to the k-plane it spans.

When k = 1, we see that G1(Rn) is the real projective space RPn−1, a manifold of dimension n− 1.
In general, we have the following result.

Lemma 1. The Grassmannian Gk(Rn) is a compact manifold of dimension k(n − k). The map X → X⊥,
which takes a k-plane to its orthogonal complement is a diffeomorphism between Gk(Rn) and Gn−k(Rn).

2.2. Schubert Cells

Grassmannians have a well-known cell decompostion into Schubert cells. Consider the sequence
of subspaces of Rn: R0 ⊂ R1 ⊂ R2 ⊂ · · · ⊂ Rn, where Ri consists of the vectors of the form
(a1, . . . , ai, 0, . . . , 0). Any k-plane X gives rise to a sequence of integers

0 ≤ dim(X ∩R1) ≤ dim(X ∩R2) ≤ · · · ≤ dim(X ∩Rn) = k.

Consecutive integers differ by at most 1.

Definition 2. A Schubert symbol σ = (σ1, . . . , σk) is a sequence of k integers satisfying

1 ≤ σ1 < σ2 < · · · < σk ≤ n.

Given a Schubert symbol σ, let e(σ) ⊂ Gk(Rn) denote the set of k-planes X such that

dim(X ∩Rσi ) = i, dim(X ∩Rσi−1) = i− 1.
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Each X ∈ Gk(Rn) belongs to precisely one of the sets e(σ).

Lemma 2. e(σ) is an open cell of dimension d(σ) = (σ1 − 1) + (σ2 − 2) + · · ·+ (σk − k).

In terms of matrices, X ∈ e(σ) if and only if it can be described as the row space of a k× n matrix
of the form 

∗ · · · ∗ 1 0 · · · 0 0 0 · · · 0 0 0 · · · 0
∗ · · · ∗ ∗ ∗ · · · ∗ 1 0 · · · 0 0 0 · · · 0
...

...
∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ · · · ∗ 1 0 · · · 0


where the i-th row has σi-th entry positive (say equal to 1) and all subsequent entries zero. Equivalently,
we could (and do in the sequel) consider the column space of the transpose of this matrix.

For example, the possible Schubert symbols and cells for G2(R4) are as follows. Such a symbol
has the form σ = (σ1, σ2) where 1 ≤ σ1 < σ2 ≤ 4.

σ d(σ)
(1, 2) 0
(1, 3) 1
(1, 4) 2
(2, 3) 2
(2, 4) 3
(3, 4) 4

Theorem 2. The (n
k) sets e(σ) form the cells of a CW-decomposition of Gk(Rn).

Proposition 1. The number of r-cells in Gk(Rn) is equal to the number of partitions of r into at most k integers,
each of which is ≤ n− k.

The mod 2 homology of Gk(Rn) is easily computed from the Schubert cell decomposition: since
the induced boundary maps are all either 0 or multiplication by 2, the mod 2 homology has a basis
corresponding to the cells.

Continuing the example of G2(R4), we have

Hi(G2(R4),Z/2) =



Z/2 i = 0

Z/2 i = 1

Z/2⊕Z/2 i = 2

Z/2 i = 3

Z/2 i = 4

Since we will need it below, we also note the integral homology of G2(R4) [7]:

Hi(G2(R4),Z) =


Z i = 0

Z/2 i = 1, 2

0 i = 3

Z i = 4

Using the Universal Coefficient Theorem, one then quickly deduces that the homology groups
Hi(G2(R4),Z/3) are Z/3 for i = 0, 4 and 0, otherwise.
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2.3. Persistent Homology

Suppose we are given a finite nested sequence of finite simplicial complexes

KR1 ⊂ KR2 ⊂ · · · ⊂ KRp ,

where the Ri are real numbers R1 < R2 < · · · < Rp. For each homological degree ` ≥ 0, we then obtain
a sequence of homology groups and induced linear transformations (homology with Z/2-coefficients
for simplicity)

H`(KR1)→ H`(KR2)→ · · · → H`(KRp).

Since the complexes are finite, each H`(KRi ) is a finite-dimensional vector space. Thus, there are only
finitely many distinct homology classes. A particular class z may come into existence in H`(KRs),
and then one of two things happens. Either z maps to 0 (i.e., the cycle representing z gets filled in) in
some H`(KRt), Rs < Rt, or z maps to a nontrivial element in H`(KRp). This yields a barcode, a collection
of interval graphs lying above an axis parametrized by R. An interval of the form [Rs, Rt] corresponds
to a class that appears at Rs and dies at Rt. Classes that live to KRp are usually represented by the
infinite interval [Rs, ∞) to indicate that such classes are real features of the full complex KRp .

As an example, consider the boundary of the tetrahedron T with filtration

T0 ⊂ T1 ⊂ T2 ⊂ T3 ⊂ T4 ⊂ T5 = T

defined by T0 = {v0, v1, v2, v3}, T1 = T0 ∪ {all edges}, T2 = T1 ∪ [v0v1v2], T3 = T2 ∪ [v0v1v3],
T4 = T3 ∪ [v0v2v3], and T5 = T (this is topologically a 2-sphere). The barcodes for this filtration are
shown in Figure 1. Note that, initially, there are four components (β0 = 4), which get connected in T1,
when three independent 1-cycles are born (β1 = 3). These three 1-cycles die successively as triangles
get added in T2, T3, and T4. The addition of the final triangle in T5 creates a 2-cycle (β2 = 1).

Figure 1. The barcodes for a filtration of the boundary of the tetrahedron.

For analyzing point cloud data, one needs a simplicial complex modeling the underlying space.
Since it is impossible to know a priori if a complex is “correct”, one builds a nested family of complexes
approximating the data cloud, computes the persistent homology of the resulting filtration, and looks
for homology classes that exist in long sections of the filtration. We discuss two popular methods for
doing this in the next subsection.
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2.4. Vietoris–Rips and Witness Complexes

Now suppose we are given a discrete set X of points in some metric space (typically a Euclidean
space Rm). The standard example of such an object is a sample of points from some geometric object
M. We would like to recover information about M from the sample X, and the first step is to obtain an
approximation of M using only the point cloud X. There are many such techniques; perhaps the most
classical is the Delaunay triangulation of X. This is defined as follows. Say X = {x1, x2, . . . , xr} ⊂ Rm.
The Voronoi decomposition of Rm relative to X is the partition of Rm into cells V(xi), i = 1, . . . , r,
defined by

V(xi) = {x ∈ Rm : ||x− xi|| ≤ ||x− xj||, j 6= i}.

The corresponding Delaunay triangulation, Del(X), is the nerve of the Voronoi decomposition; that
is, a collection V(xi0), . . . , V(xi`) forms an `-simplex in Del(X) if ∩`j=0V(xij) 6= ∅. One obtains a
geometric realization of Del(X) via the map V(xi) 7→ xi. See Figure 2 for an example.
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Figure 2. (a) a Delaunay triangulation of a collection of points in the plane with the corresponding
Voronoi diagram, and (b) two associated witness complexes.

While the Delaunay triangulation provides a good approximation to the underlying space M,
it has several disadvantages. If the point cloud X is large, there will be a very large number of simplices
in Del(X). In addition, Del(X) suffers from the “curse of dimensionality;" that is, if the ambient
dimension (m) is large, calculating the Voronoi decomposition is computationally expensive.

There are many popular alternatives to the Delaunay triangulation. The one used most often
is the Vietoris–Rips complex, which is built as follows. Consider the point cloud X and let r > 0.
The Vietoris–Rips complex with parameter r is the simplicial complex VR(X, r) whose k-simplices are

{(x0, . . . , xk) : d(xi, xj) < r, i 6= j}.

That is, if one imagines a ball of radius r/2 around each point x ∈ X, then we join the points xi and
xj with an edge if the balls intersect. Observe that if r < r′ then there is an inclusion of complexes
VR(X, r) ⊂ VR(X, r′). We therefore have a nested sequence of complexes {VR(X, r)}r≥0 and we may
study the persistent homology of this filtration. The corresponding barcodes yield information about
the topology of the underlying space M.

Many software packages support the calculation of Vietoris–Rips persistence on point clouds.
In this paper, we use the Eirene package developed by Gregory Henselman [8]. Other popular programs
include Ulrich Bauer’s Ripser [9] and Vidit Nanda’s Perseus [10].

In Section 3.5, we shall use the witness complexes of de Silva and Carlsson [11]. The idea is to
model the Delaunay triangulation on a smaller set of points L ⊂ X, called landmarks, in such a way
that the topology of the underlying object is well-approximated. Moreover, the definition makes sense
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in any metric space, so assume that X is a metric space with distance function d (e.g., X could be a
finite point cloud in Rm with the usual Euclidean distance). Choose a subset L = {`1, `2, . . . , `n} of
X = {x1, x2, . . . , xN} and let R ≥ 0 be a real number.

The witness complex W(X, L, R) is defined as follows:

• The vertex set of W(X, L, R) is L;
• `, `′ ∈ L span an edge if there exists an x ∈ X, called a witness, such that

d(x, `), d(x, `′) ≤ R + min{d(x, `′′) : `′′ ∈ L− {`, `′}};

• A collection `0, . . . , `p ∈ L spans a p-simplex if {`i, `j} span an edge for all i 6= j.

Examples of witness complexes are shown in Figure 2b alongside the associated Delaunay
triangulation. Four landmark points were chosen using the maxmin procedure described below.
The complex on the left has R = 0.0329, and the complex on the right has R = 0.1317. Note that the
larger value of R yields a complex with more simplices. In addition, note that the witness complex is
a coarse approximation of the Delaunay triangulation.

We make some observations about this definition. Let D be the n× N matrix of distances from
points in L to points in X:

• If R = 0, then `, `′ ∈ L form an edge if there is an xi ∈ X such that d(xi, `) and d(xi, `′) are the
two smallest entries in the i-th column of D. This is analogous to the existence of an edge in the
Delaunay triangulation Del(L).

• For R > 0, one may think of relaxing the boundaries of the Voronoi diagram of L and taking the
nerve of the resulting covering of X.

• If 0 ≤ R < R′, then there is an inclusion of simplicial complexes W(X, L, R) ⊆W(X, L, R′).

By a theorem of de Silva and Carlsson [11], this complex is a natural analogue of the Delaunay
triangulation for a space represented by point cloud data.

Suppose that X is a sample of points from some object M ⊂ Rm. There is no guarantee
that W(X, L, R) recovers the topology of M, but experiments on familiar geometric objects [11]
(spheres, for example) suggest that, for a suitable range of values of R and good choices of landmarks
L, the topology of W(X, L, R) is the same as that of M. This begs the question:

1. How should the landmark set L be chosen?
2. What is the correct value of R?

The second question is best handled via the use of persistent homology, which we discussed in
Section 2.3 above. As for the choice of landmarks, there are three standard options:

1. Select landmarks at random.
2. Use the maxmin procedure: Choose a seed `1 at random. Then, if `1, . . . , `n have been chosen,

let `n+1 ∈ X− {`1, . . . , `n} be the point which maximizes the function

z 7→ min{d(z, `1), d(z, `2), . . . , d(z, `n)}.

3. Use a density-based strategy.

The maxmin procedure yields more evenly-spaced landmarks, but tends to emphasize extremal
points. It is generally more reliable than a random selection [11]. Another useful resource is [12].
In our experiments in Section 3.5 below, we use the maxmin process to generate landmarks.
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2.5. Sampling Procedures

To build a Vietoris–Rips or witness complex on points in Gk(Rn), we need to develop a sampling
procedure. The first question to be asked is in which Euclidean space do we embed Gk(Rn)? This is
highly nontrivial. Even in the case of projective spaces (k = 1), it is not so obvious how to proceed.
A whole industry has been devoted to the question of the minimal embedding dimension of RPn [13],
but the proof of the minimality of any particular embedding rarely comes with an explicit formula for
the map. An exception is if one insists on an isometric embedding [14], but the minimal dimension of
such an embedding for RPn is n(n + 3)/2, which grows rather quickly.

For arbitrary Grassmannians, one could try to use the Plücker embedding Gk(Rn) →
P(
∧k(Rn)) = RP(n

k)−1 defined by

(x1, . . . , xk) 7→ [x1 ∧ · · · ∧ xk]

(where [v] denotes the line spanned by the vector v) and then embed the target projective space into
Euclidean space. Of course, this explodes the dimension further, making this an impractical solution.
Aside from some low dimensional projective spaces, we will instead approach this problem via the
following result.

Proposition 2. The manifold Gk(Rn) is diffeomorphic to the smooth manifold consisting of all n× n symmetric,
idempotent matrices of trace k. The map ϕ realizing this takes a k-plane X to the operator defined by orthogonal
projection onto X.

Proof. If X is a k-plane with orthonormal basis x1, . . . , xk, denote by A the n× k matrix having the xi
as columns. Define a map ϕ : Gk(Rn) → Mn(R) by X 7→ AAT . This map is clearly smooth since it
consists of polynomials in the entries of the various xi. Moreover, it is well-defined since, if y1, . . . , yk
is another orthonormal basis of X with associated matrix B, then there is an orthogonal matrix O
such that B = AO. Then, BBT = (AO)(AO)T = AOOT AT = AAT . The matrix AAT is symmetric:
(AAT)T = (AT)T AT = AAT . It is idempotent: (AAT)2 = AAT AAT = AIk AT = AAT (note that
AT A = Ik, the k× k identity matrix, since the columns of A are orthonormal). Finally, the trace of
AAT is k since its rank is k and its only eigenvalues are 0 and 1. Thus, the image of ϕ lies in the set of
symmetric, idempotent matrices of trace k. To see that ϕ surjects onto this set, note that such a matrix
B is projection onto a k-dimensional subspace X and there exists a basis x1, . . . , xk with ϕ(X) = B.
Injectivity of ϕ follows since the subspace determined by a projection is unique.

Now, to generate a sample of points on which to build a Vietoris–Rips or witness complex, we will
use the embedding ϕ. A crude sampling is then obtained by the following procedure:

• Select k random vectors in Rn.
• Perform the Gram–Schmidt orthogonalization algorithm to yield an orthornomal set x1, . . . , xk.

Let A be the matrix with xi as columns.
• Compute AAT .

One immediate problem with this process is that the k-plane it constructs lives in the
top-dimensional Schubert cell with probability 1. However, since we know the space we are interested
in, and we know its homology, we can bias our sample to ensure we include points from each Schubert
cell. The following procedure implements this idea:

• Determine the percentage of sample points desired from each Schubert cell. For example,
one might choose 5% from a 1-cell, 10% from a 2-cell, and so on.

• Elements of a given Schubert cell correspond to the column space of a particular matrix form.
Generate such a matrix B using random vectors of the required form.

• Generate a random n× n orthogonal matrix X.
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• Add the matrix A = X(BBT)XT to the point cloud.

Note the final step above. If we merely took the matrix B, we would not end up with
a well-distributed sample. For example, in the case of G2(R4), such a matrix lying in the 1-cell
of the Schubert decomposition has the following form:

B =


1 ∗
0 1
0 0
0 0


The corresponding point in R16 would have most coordinates equal to 0, which is clearly not what we
want. Conjugating the various BBT by a random orthogonal matrix X (a different X for each B) yields
a wider distribution of points in Gk(Rn).

The MATLAB files we used to generate samples in various projective spaces and Grassmannians
are available at https://github.com/niveknosdunk/grassmann.

2.6. Approximate Triangulations

We are now ready to search for simplicial complexes modeling the spaces Gk(Rn). The procedure
we employ is as follows:

• Construct a sample of points on Gk(Rn).
• Construct a collection of Vietoris–Rips or witness complexes on the point cloud.
• Compute the persistent homology of this filtration.
• Determine a range of parameters where the homology of the complexes agrees with that of Gk(Rn).

Definition 3. Let Kr denote either VR(X, r) or W(X, L, r). If there exists a parameter r > 0 for which the
Z/2 homology of Kr agrees with that of Gk(Rn), then we call Kr an approximate triangulation of Gk(Rn).

Note that Kr is a subcomplex of the Euclidean space in which we have embedded Gk(Rn).
However, it does not necessarily lie inside the embedded Gk(Rn). Still, its vertices do lie on Gk(Rn)

and so we can think of this as being close to a triangulation of this manifold. For further verification,
we can also compute the Z/3 homology of Kr and check it against that of Gk(Rn).

3. Results

3.1. RP2, Part I

Let us begin by embedding RP2 into R4 using the map ψ : S2 → R4 defined by

ψ : (x, y, z) 7→ (xy, xz, y2 − z2, 2yz).

Note that ψ(−x,−y,−z) = ψ(x, y, z) and so it descends to a map RP2 → R4. Generate a sample of
100 points on S2 and then use this map to get the points in R4. The persistence diagrams are shown
in Figure 3. There is a tiny window, around r = 0.87, where we get the correct homology.

https://github.com/niveknosdunk/grassmann
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(a) (b)

Figure 3. Vietoris–Rips persistence diagrams for 100 points on RP2 (a) H1 persistence and (b)
H2 persistence.

Now generate a sample of 200 points. As expected, the Vietoris–Rips complex has the correct
homology for a longer range of parameters, as indicated in Figure 4. Here, we see a long interval
0.69 < r < 0.87 where we get the correct homology. Thus, the Vietoris–Rips complex built on these
200 points in R4 is a good approximation to RP2.

(a) (b)

Figure 4. Vietoris–Rips persistence diagrams for 200 points on RP2 (a) H1 persistence and (b)
H2 persistence.

3.2. RP2, Part II

The embedding of RP2 into R4 is not an isometric embedding, though. For that, we need R5:

(x, y, z) 7→
(

yz, xz, xy,
1
2
(x2 − y2),

1
2
√

3
(x2 + y2 − 2z2)

)
If we then generate 100 random points on this surface, we obtain the Vietoris–Rips barcodes in

Figure 5. This works better than the embedding into R4; we get the correct answer for 0.625 < r < 0.871.
The result for 200 points is even better, and is shown in Figure 6.
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(a) (b)

Figure 5. Vietoris–Rips persistence diagrams for 100 points on RP2, using the isometric embedding
into R5 (a) H1 persistence and (b) H2 persistence.

(a) (b)

Figure 6. Vietoris–Rips persistence diagrams for 200 points on RP2, using the isometric embedding
into R5 (a) H1 persistence and (b) H2 persistence.

3.3. RP3

We use the fact that RP3 is diffeomorphic to SO(3), the space of 3× 3 orthogonal matrices of
determinant 1. If we select 100 random points on this space in R9, we find that there is only a tiny
window where β2 = 1, so 100 points probably is not enough to yield a good approximate triangulation.
The barcodes are shown in Figures 7 and 8.

(a) (b)

Figure 7. Vietoris–Rips persistence diagrams for 100 points on RP3, realizing it as the Lie group
SO(3) ⊂ R9 (a) H1 persistence and (b) H2 persistence.
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Figure 8. The H3 barcode for 100 points on RP3.

If we now sample 200 points at random on RP3 (computation time 6:54), we obtain the barcodes
in Figures 9 and 10. Note that we get the correct homology for 2.1 < r < 2.4.

(a) (b)

Figure 9. Vietoris–Rips persistence diagrams for 200 points on RP3 (a) H1 persistence and (b)
H2 persistence.

Figure 10. The H3 barcode for 200 points on RP3.

3.4. G2(R4), Part I

We now consider the first Grassmannian that is not a projective space. Embed the 4-manifold
G2(R4) as the space of symmetric idempotent 4× 4 matrices of trace 2. As a first attempt, we take the
naïve sampling approach of generating random pairs of orthonormal vectors to build a point cloud
of such matrices. However, persistence calculations now become rather cumbersome. Table 1 shows
some statistics on computation times for point clouds of various sizes on a MacBook Pro, 16 GB RAM.
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Table 1. Computation times on a MacBook Pro, 16 GB RAM, of Vietoris–Rips persistence for various
spaces. An X indicates that the software could not complete the calculation; a indicates the software
was not used for the run. The ? indicates the number of simplices is unknown. Note the rapid explosion
in the number of simplices.

Space # Points Top Dim # Simplices Eirene Ripser

RP2 ⊂ R4 100 2 206K 0:00.53 –
200 2 2.1M 0:01 –

RP2 ⊂ R5 100 2 436K 0:02 –
200 2 4.2M 0:07 –

RP3 ⊂ R9 100 3 7.6M 0:09 –
200 3 146M 6:54 –

G2(R4) ⊂ R16 100 4 107M 1:51 1:15
150 4 792M 1:04:45 X
200 3 112M 3:01 3:07
200 4 ? X X

Eirene could compute homology for 200 points up to dimension 3 in about 3 min, producing a
parameter value of r = 0.95 where the homology is correct in these dimensions. It seems that H4 is the
sticking point. The barcodes for 150 points are shown in Figures 11 and 12. At r = 0.96, the homology
is correct up to dimension 3, but H4 = 0 there.

(a) (b)

Figure 11. Vietoris–Rips persistence diagrams for 150 points on G2(R4) (a) H1 persistence and (b)
H2 persistence.

(a) (b)

Figure 12. Vietoris–Rips persistence diagrams for 150 points on G2(R4) (a) H3 persistence and (b)
H4 persistence.
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In a quest for more memory, we received an offer from Mikael Vejdemo-Johannson to use his
machine. It has 256 GB RAM. We began the 200 point Vietoris–Rips calculation in Eirene in the
background and logged out. After 10 hours, it was still processing and was using 97% of the system
memory. The next morning the process was complete; the output file (in JLD2 format) was 74 GB (!).
Since Eirene uses PlotlyJS to render barcodes, they cannot be viewed remotely. Even if the file could be
retrieved, it is unclear that our laptop could even open it, nor is there any guarantee that the barcodes
are correct.

3.5. G2(R4), Part II

We then took a different approach. The Vietoris–Rips complex is nice because it is easy to compute,
but it suffers from combinatorial explosion. We turned to witness complexes and made the associated
computations using the Javaplex package [15] in MATLAB.

The initial attempt simply generated elements of G2(R4) by taking a pair of orthonormal vectors
in R4 and using them to build a certain 4× 4 matrix. For this experiment, we biased the sample in the
following way. For a given number M of points on G2(R4), we took 5% from the 1-cell, 15% from each
of the 2-cells, 25% from the 3-cell, and 40% from the 4-cell. One could choose different proportions,
of course.

This worked remarkably well. We generated 5000 points on G2(R4) and constructed the witness
complex on 100 landmarks chosen using the max-min process. The barcodes for one such trial are
shown in Figure 13. Note that we get the correct mod 2 and mod 3 homology for r > 0.125. This witness
complex, which has 118,220 simplices, is therefore a good approximate triangulation of G2(R4).
The point cloud and witness points are available as text files at https://github.com/niveknosdunk/
grassmann. Note that the number of simplices in this witness complex is three orders of magnitude
smaller than a Vietoris–Rips complex on the same number of points (cf. Table 1), so this construction is
more effective all the way around.

(a)

Figure 13. Cont.

https://github.com/niveknosdunk/grassmann
https://github.com/niveknosdunk/grassmann
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(b)

Figure 13. Barcodes for a witness complex on 100 points in a 5000-point sample on G2(R4) (a) Z/2
coefficients and (b) Z/3 coefficients.

4. Conclusions

In this paper, we demonstrated the utility of using Vietoris–Rips and witness complexes to obtain
approximate triangulations of the Grassmann manifolds Gk(Rn). We were able to construct such
spaces with relatively few vertices, but some questions remain for further study.

1. How small of a sample can we use to generate an approximate triangulation? For example,
a result in [3] asserts that any triangulation of G2(R4) must have at least 14 vertices. We built
an approximate triangulation using a witness complex on 100 landmarks. Surely, our algorithm
will not work with only 14 points, but we plan to investigate how few we can get away with.
A theorem of Niyogi–Smale–Weinberger [16] provides lower bounds on the number of points
required to compute homology correctly with high probability, but these are certainly too high
and can be improved in practice.

2. Can we push the computations further? The next Grassmannian to study is G2(R5). This is
a nonorientable 6-manifold, and, using our procedure, we would embed it in R25. The machine
used to compute the persistent homology of the witness complexes on G2(R4) in MATLAB ran
out of memory on 100 landmarks in G2(R5). We therefore need either a bigger machine running
MATLAB, or software that can handle witness complexes. The GUDHI package [17] is one option,
but we have not attempted it yet.

3. The author expects to gain access to a new GPU based supercomputer at his institution in the
next year. This may allow for similar computations on higher-dimensional Gk(Rn).
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