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Abstract: A Sudoku puzzle often has a regular pattern in the arrangement of initial digits and it is
typically made solvable with known solving techniques called strategies. In this paper, we consider
the problem of generating such Sudoku instances. We introduce a rigorous framework to discuss
solvability for Sudoku instances with respect to strategies. This allows us to handle not only known
strategies but also general strategies under a few reasonable assumptions. We propose an exact
method for determining Sudoku clues for a given set of clue positions that is solvable with a given
set of strategies. This is the first exact method except for a trivial brute-force search. Besides the clue
generation, we present an application of our method to the problem of determining the minimum
number of strategy-solvable Sudoku clues. We conduct experiments to evaluate our method, varying
the position and the number of clues at random. Our method terminates within 1 min for many grids.
However, as the number of clues gets closer to 20, the running time rapidly increases and exceeds the
time limit set to 600 s. We also evaluate our method for several instances with 17 clue positions taken
from known minimum Sudokus to see the efficiency for deciding unsolvability.

Keywords: Sudoku; constraint satisfaction problem; strategy-solvability; exact method; mathematics
of Sudoku; constraints of clue geometry; strategy-solvable minimum Sudoku

1. Introduction

Sudoku is a popular number placement puzzle. In an ordinary Sudoku (Figure 1), given a partially
completed 9× 9 grid, the goal is to fill in all empty cells with digits from 1 to 9 in such a way that each
cell has a single digit, and each digit appears only once in every row, column, and 3× 3 subgrid.

Sudokus that appear in books, newspapers, and so on often have the following characteristics:

1. The arrangement of initial digits (called clues) forms a regular pattern.
2. The level of difficulty is moderate.

Figure 1. Sudoku clues (left) and its solution (right).
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Regarding 1, for example, the left grid of Figure 1 has reflection symmetry on the two diagonal
axes. It may also have the shape of a number, a letter, or a symbol. Regarding 2, completing Sudokus
generally requires backtracking, which is amenable to computers. On the other hand, there is a set of
techniques (called strategies) that humans use in solving Sudokus by hand [1]. Typically strategies are
if-then rules: If a strategy is applicable to the current grid, then it might rule out digits as candidates or
might determine digits as those to be finally placed. A strategy-solvable Sudoku is a partially completed
grid that can be completed by applying strategies repeatedly. Here, the strategies must be selected from
a set of predetermined ones. Since there is no need to guess, strategy-solvable Sudokus (at least for a
few basic strategies) might be referred to as Sudokus having a moderate level of difficulty for humans.

Making new Sudoku instances having these characteristics is not an easy task. There is a public
software (The generator of Zama and Sasano [2] http://www.cs.ise.shibaura-it.ac.jp/2016-GI-35/
SudokuGenerator.tar.gz, accessed on 26 May 2020) that is able to generate Sudokus from a given set
of clue positions so that they are solvable with some known strategies. However, it is still hard to
generate those with 20 or less clues and those with around 45 or more clues. For such instances, there
might be no other choice but to rely on human intelligence involving the intuition, the inspiration,
and the experience of enthusiasts.

In this paper, we consider a method for determining Sudoku clues in specified positions such that
all empty cells can be filled in with a specified set of strategies (see Figure 2).

Figure 2. Clue positions (left) and clues solvable with naked singles only (right).

Almost all Sudoku generators simply output proper Sudoku instances (i.e., partially completed
grids having unique solutions). Clue arrangements and strategies necessary for solving are
uncontrollable. To the best of our knowledge, the only exception is the generator of Zama and
Sasano mentioned earlier. Their generator is based on the generate-and-test method, which repeats the
following steps until the test is passed or the number of trials exceeds a predetermined limit:

1. Generate clues in specified positions.
2. Test whether all other cells are completed using specified strategies only.

A similar idea is also mentioned in [3,4]. Since the test step can be done quickly, the key is to
devise a criterion for the generation step so that the number of trials is as small as possible.

Since the generate-and-test method examines only a limited portion of the vast search space, it has
the drawbacks listed below:

• The lower the density of solutions (i.e., strategy-solvable clues) over the whole search space
becomes, the harder it becomes to find a solution.

• If a set of clue positions happens to be not strategy-solvable, it is unable to recognize it no matter
how much time passes.

• Even for a strategy-solvable set of clue positions, there is no guarantee for being able to find a
solution in a finite amount of time.

To tackle these issues (in particular the last two), we consider it necessary to formulate the concept
of strategy-solvability. It seems that strategy-solvability has been recognized intuitively, and no formal

http://www.cs.ise.shibaura-it.ac.jp/2016-GI-35/SudokuGenerator.tar.gz
http://www.cs.ise.shibaura-it.ac.jp/2016-GI-35/SudokuGenerator.tar.gz
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treatment has been given so far. In this paper, we introduce a rigorous framework to discuss solvability
for Sudoku instances with respect to strategies and define the notion of strategy-solvable Sudoku clues.
This allows us to handle not only known strategies but also general strategies under a few reasonable
assumptions. We then propose an exact method for determining strategy-solvable Sudoku clues for a
given set of clue positions that is solvable with a given set of strategies. The key is a reduction to a
constraint satisfaction problem (CSP). Our method is able to benefit from the power of state-of-the-art
CSP solvers. Pruning techniques of CSP solvers are expected to be effective for the first issue above.
Moreover, as long as any complete CSP solver is utilized, it is guaranteed that if a set of clue positions
is not strategy-solvable, our method eventually recognizes the unsolvability; otherwise, our method
eventually finds strategy-solvable clues.

This is the first exact method except for a trivial brute-force search. As strategies allowed in
completing Sudokus, this paper employs naked singles, hidden singles, and locked candidates [1],
which are quite basic yet powerful enough to complete many Sudokus. Indeed, we have confirmed
that the combination of the three strategies allows for solving as many as 37,373 of the 49,151 minimum
Sudokus (i.e., Sudokus with 17 clues) collected by Gordon F. Royle [5]. Here we remark that our
CSP formulation is almost independent of specific strategies. In order to allow other strategies, it is
sufficient to formulate the corresponding logical constraints and add them with a minor modification
of the strategy-independent part.

Besides the clue generation, we present an application of our method to the problem of
determining the minimum number of Sudoku clues that are solvable with a given set of strategies.
We demonstrate that our method is easily customized for this problem with a small modification
in the CSP constraints. It is well-known that there is no proper Sudoku with 16 or less clues [6].
There are many Sudokus with 17 clues that are solvable with basic strategies such as hidden singles.
Interestingly, this may not be the case for naked singles, arguably one of the most basic strategies, as we
have confirmed that no grid solvable with only naked singles is included in the minimum Sudoku
collection. This poses an open problem of whether there is a gap between the minimum numbers for
strategy-solvable Sudokus and proper Sudokus. Our method will be useful in tackling this problem
thanks to the ability of determining unsolvability.

We conduct experiments to compare our method with the generator of Zama and Sasano [2],
using grids varying the position and the number of clues at random. From the results, we observe
that our method terminates within 1 min for many instances, showing our method being stable in
terms of running time. However, as the number of clues gets closer to 20, the running time rapidly
increases and exceeds a time limit. On the other hand, the generator of Zama and Sasano can often
find solutions much faster even with close to 20 clues, while the performance sharply deteriorates
around 45 clues and exceeds the time limit for all grids with more clue positions. Perhaps this is due to
the exponential blow-up of the search space (in other words, the exponential decline in the density of
solutions). We also evaluate our method for several instances with 17 clue positions taken from known
minimum Sudokus to see the efficiency for deciding unsolvability.

The main contributions of the present paper are to formulate the concept of strategy-solvability,
to establish an exact method for the strategy-solvable Sudoku clues problem, and to demonstrate the
flexibility of the CSP-based approach. It remains as future work to improve our method for less clues.

Unless otherwise noted, the size of the Sudoku is fixed to 9× 9 throughout the paper. This is
simply for convenience and our method can be easily translated into general Sudokus on a n2× n2 grid.

The paper is organized as follows. Section 2 introduces necessary notations and terminology,
and explains strategies. Section 3 formulates the concept of strategy-solvability and the strategy-
solvable Sudoku clues problem. Section 4 proposes an exact method for the strategy-solvable Sudoku
clues problem, and Section 5 presents two improvements for our method. Section 6 presents an
application of the strategy-solvable minimum Sudoku problem. Section 7 presents experimental
results. Section 8 summarizes related work. Section 9 concludes this paper.
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2. Preliminaries

In this section we introduce necessary notations and terminology and explain strategies.

2.1. Notations and Terminology

For convenience, rows and columns are numbered from 0 to 8. A cell is denoted by the pair
(i, j) of a row index i and a column index j. The 9 subgrids of 3× 3 are called blocks. Rows, columns,
and blocks are collectively called groups. A group is identified with the set of all cells in the group.
By abuse of notation, we denote by G \ (i, j) the difference of a singleton {(i, j)} from a group G.

Given a partially completed grid, the goal of a Sudoku puzzle is to fill in all empty cells with
digits from 1 to 9 in such a way that:

• Each cell has a single digit; and
• Each digit appears only once in every group.

The completed grid is called a solution. A Sudoku is a convenient alias for a partially completed
grid given as an initial grid. A Sudoku is proper if it has a unique solution. The occurrence of a digit in
an initial grid is called a clue, and Sudoku clues are the clues in an initial grid. A cell in an initial grid to
which some digit is designated to be placed as a clue is called a clue cell or a clue position.

2.2. Strategies

There is a set of techniques (called strategies) that humans use in solving Sudokus by hand [1].
Typically strategies are if-then rules: If a strategy is applicable to the current grid, then it might rule out
digits as candidates or might determine digits as those to be finally placed. Throughout the following
explanation, let n be a non-zero digit and (i, j) be a cell.

A naked single is a strategy that places n in (i, j) if no other candidate but n remains at (i, j).
For example, let us look at the gray cell (4, 7) in the left grid of Figure 3. Since all digits but 5 appear
in either group having (4, 7), these digits must be ruled out and only 5 remains. Hence, 5 is placed
in (4, 7). Starting with the left grid of Figure 3, one can reach the right grid using only naked singles,
but cannot proceed any more because of two or more candidates over all empty cells.

Figure 3. Starting with the partially completed grid on the (left), one can reach the grid on the (right)
using only naked singles but cannot proceed any more.

A hidden single is a strategy that places n in (i, j) if there is a group G having (i, j) such that no
cell in G \ (i, j) has n as a candidate. For example, let us look at the right grid of Figure 3. For the row
of index 1, we can observe that every cell in the row except for the gray cell (1, 6) does not have 7 as
a candidate. Indeed, for any such cell, 7 already appears in another cell of the same column. Hence,
a hidden single strategy determines 7 in (1, 6). In this way, by applying hidden singles repeatedly,
the grid can be completed.

Let A, B be groups such that |A ∩ B| = 3. A locked candidate is a strategy that rules out n over
all cells in one difference set B \ A if no cell in the other difference set A \ B has n as a candidate.
For example, let us look at the right grid of Figure 3. Let A be the column of index 7, and let B be the
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block adjacent, on the right, to the center block. No empty cell in A \ B has 3 as a candidate because for
each such cell, there is another cell in the same row to which 3 is already placed. Hence, 3 is ruled out
for all empty cells in B \ A. Because of this, 2 becomes a unique candidate at (3, 6). It is determined as
the digit at (3, 6) by a naked single. In this way, the grid can also be completed using locked candidates
as well as naked singles.

Figure 4 is an example of a grid showing that locked candidates are independent of the
combination of naked singles and hidden singles. Actually, none of the empty cells can be determined
using naked singles and hidden singles, but if locked candidates are allowed in addition, then there is
an empty cell that can be filled in.

Figure 4. Grid showing that locked candidates are independent of the combination of naked singles
and hidden singles.

To see this, look at cell (8, 4) in Figure 4. All candidates except 5 are removed by applying locked
candidates. Indeed, let A be the 6-th row and B be the block to which (8, 4) belongs. Since no cell
in A \ B has 4, 8, and 9 as candidates, these digits are removed from candidates at (8, 4), and only
5 remains. Hence, by applying naked singles to this cell, 5 is determined. In this way, this grid can be
completed, which shows that locked candidates are independent of the combination of naked singles
and hidden singles.

3. Formulation

Although some known strategies are introduced in the previous section and some solvable cases
are explained using particular grids, there are still unclear points, such as what is a strategy in general
and what operations are allowed for placing or ruling out digits. In this section, we thus introduce
a rigorous framework to discuss solvability for Sudoku instances. This allows us to handle not only
known strategies but also general strategies under a few reasonable assumptions. This also makes
it clear that, for example, it is not allowed to temporarily place digits and then cancel them when
a contradiction occurs. Such an inference would allow us to do backtracking, which nullifies the
restriction of completion methods.

A state transition model of Sudoku is a tuple (Q, R, I, F) such that Q is the set of all possible states,
R is a state transition relation, I is the set of initial states, and F is the set of final states. We will explain
each component below. Figure 5 shows how a grid evolves as strategies are applied, which will be
used as an example in the succeeding explanation.

A state of grid (or a state in short) is a pair ( f , g) of functions. The function f maps the set of cells
to the set of digits, and f (i, j) = n means that if n 6= 0, then n is placed in (i, j); otherwise, no digit is
placed. The function g maps the set of cells to the powerset of the set of non-zero digits, and g (i, j)
represents the set of all candidates at (i, j). Here, by abuse of notation, f (i, j) and g (i, j) denote f ((i, j))
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and g ((i, j)), respectively. All states must satisfy the conditions S1 and S2 below: for all cells (i, j) and
non-zero digits n,

S1 g (i, j) 6= ∅,
S2 n 6∈ g (i, j) if there is a different non-zero digit n′ from n such that f (i, j) = n′ or there is a

different cell (i′, j′) from (i, j) with both in a common group such that f (i′, j′) = n.

We denote by Q the set of all states.

Figure 5. Sequence of grids in a 4× 4 Sudoku, evolving from the left-most initial state to the right-most
final state. Larger digits are determined ones and smaller digits are candidates.

The antecedent of S2 is a condition for digits n that can be safely ruled out whenever some digits
are placed. Imposing S2 ensures that all such digits are ruled out. This is simply to make all states
have a type of normal form, and it would not deduce any wrong consequence as long as decisions for
number placements are correct, such as not violating the properness. In Figure 5 we can observe that
all grids are in “normal form”.

A state transition relation is a binary relation R ⊆ Q×Q. The (q, q′) ∈ R (or qRq′ in infix notation)
means that there are strategies by which q is changed to q′. We refer to q and q′ as the source state and
the target state of the transition, respectively. All state transitions must satisfy that for any cell (i, j) and
non-zero digit n, if f (i, j) = n holds in the source state, it does also in the target state; if n 6∈ g (i, j)
holds in the source state, it does also in the target state. This simply means that once digits are placed
or ruled out it cannot be cancelled afterward. We put one more assumption as follows. For any three
states q1 = ( f1, g1), q2 = ( f2, g2), and q3 = ( f3, g3) with q1Rq2 and q2Rq3, if g1 = g2, then q2 = q3.
We consider this assumption not so strong. Indeed, many strategies, such as naked singles and hidden
singles, decide to place digits by examining only candidates. For such strategies, suppose that q2 is
obtained from q1 by applying all strategies applicable to q1. Then, if g1 = g2, no strategy applicable to
q2 remains, and q2 cannot be changed any more, i.e., q2 = q3.

A state q = ( f , g) ∈ Q is an initial state if it satisfies the following: f (i, j) 6= 0 for all clue cells;
f (i, j) = 0 for the other cells; and n 6∈ g (i, j) if and only if the antecedent of S2 holds. The last condition
ensures that for each clue cell, all digits but the determined one are ruled out; all digits that appear
as candidates in a common group to some determined digit are ruled out; and—the only-if part—no
other digits are ruled out. Notice that the only-if part is the most essential because the if part can be
omitted thanks to S2. It is worth noting, that for non-initial states, this must not be assumed in general
because of strategies for number removals such as locked candidates. For example, in the-left most
grid of Figure 5, we can observe that all digits not designated to be ruled out by the antecedent of S2

remain as candidates. We denote by I the set of all initial states.
A final state is a state such that digits are determined for all cells, that is, f (i, j) 6= 0 for all (i, j).

We denote by F the set of all final states.

Definition 1. Let (Q, R, I, F) be a state transition model of Sudoku. A state q0 is strategy-solvable if there is
a sequence of states q0, . . . , qk ∈ Q such that q0 ∈ I, qk ∈ F, and qiRqi+1 for all i ∈ {0, . . . , k− 1}.

Definition 2. Let (Q, R, I, F) be a state transition model of Sudoku. The strategy-solvable Sudoku clues
problem (or SSC in short) is to determine whether there is a strategy-solvable state of (Q, R, I, F).
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Suppose that R is given as a logical formula that represents strategies and a set S of clue cells is also
given. Consider Q, I, and F as the ones defined as described above. Sudoku clues are strategy-solvable
if the initial state corresponding to the Sudoku clues is strategy-solvable with respect to (Q, R, I, F).
The strategy-solvable Sudoku clues problem is defined accordingly. If the output of the problem is yes,
in practice we will also ask for generating strategy-solvable Sudoku clues.

Proposition 1. Let q = ( f , g) be a state of grid. For any cells (i, j), (i′, j′) in a common group, f (i, j) =

f (i′, j′) implies (i, j) = (i′, j′) or f (i, j) = 0.

Proof. Suppose that f (i, j) = f (i′, j′), (i, j) 6= (i′, j′), and f (i, j) 6= 0. Let n = f (i′, j′). Applying S2,
we obtain n 6∈ g (i, j). Since n = f (i, j), applying S2, we obtain n′ 6∈ g (i, j) for all n′ 6= n. From both,
g (i, j) = ∅ follows, and this is contradictory to S1.

Corollary 1. Every final state represents a Sudoku solution.

Proof. Let q = ( f , g) be a final state. Since f is a function, each cell must have a single digit.
From Proposition 1 and f (i, j) > 0, it follows that each digit appears once in every group.

Notice that this corollary holds no matter what state transition relation is given.

Proposition 2. Let R be a state transition relation. Let q0 = ( f0, g0) , . . . , qk = ( fk, gk) be a sequence of states
such that qsRqs+1 for all s ∈ {0, . . . , k− 1}. If gs 6= gs+1 for all s ∈ {0, . . . , k− 1}, then k ≤ 648.

Proof. Let ms be the number of all triples (i, j, n) such that n ∈ gs (i, j). Clearly, 729 = 93 ≥ m0 >

m1 > · · · > mk ≥ 81. Hence k ≤ 648.

4. Our Method

In this section, we propose an exact method for the strategy-solvable Sudoku clues problem
(SSC). As strategies allowed in completing Sudokus, this paper employs naked singles, hidden singles,
and locked candidates, which are quite basic yet powerful enough to complete many Sudokus.

4.1. Overview

The key of our method is to encode a given SSC instance to an equivalent constraint satisfaction
problem (CSP) instance and then to solve it using a generic CSP solver. For the CSP encoding,
we introduce variables for representing states of grid and other auxiliary variables. Using such
variables, we represent constraints for states, state transitions, particular strategies, and so on.

Any variable assignment that satisfies all such constraints substantially corresponds to a sequence
of states q0, . . . , qk with q0 strategy-solvable, as characterized in Definition 1. Here, the initial state q0

represents an assignment of digits to clue cells and the whole sequence represents a history of evolving
grids and applied strategies, which eventually reaches a Sudoku solution. Hence, by applying a CSP
solver to the encoded constraints, we eventually obtain strategy-solvable Sudoku clues, if they exist;
otherwise, we eventually recognize the strategy-unsolvability of the clue cells, that is, no assignment
of digits to the clue cells is strategy-solvable.

The details of our method are explained as follows. At first, we present constraints for a
state transition framework, which is almost independent of particular strategies. As stated above,
we introduce variables for representing states of grid and auxiliary variables. We then represent
various constraints using such variables. After that, we shift to particular strategies. We present
constraints for number placements and constraints for number removals. We finally provide the whole
picture of our method as well as some remarks.
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4.2. Constraints for a General State Transition Framework

We introduce variables for representing the states of a grid. We then present constraints for initial
states, constraints for state transitions, and constraints for final states.

4.2.1. Variables

Let qk = ( fk, gk) be a state of a grid in step k ≥ 0, i.e., a state reachable from an initial state by k
transitions. Let i and j be a row index and a column index, respectively. The integer variable X (i, j, k)
encodes the value of fk at cell (i, j). In other words, X (i, j, k) takes 0 if no digit is placed in (i, j),
and it takes a non-zero digit n if n is placed in (i, j). The Boolean variable Y (i, j, n, k) encodes whether
the set of candidates gk (i, j) at cell (i, j) includes a non-zero digit n. Here Y (i, j, n, k) is true if and
only if n ∈ gk (i, j). We call variables of the forms X (i, j, k) and Y (i, j, n, k) X-variables and Y-variables,
respectively.

The remaining variables are Boolean variables of the form Z (m), which are used for auxiliary
purposes. We call them Z-variables. Each Z-variable is introduced per particular condition for a number
placement or a number removal. The parameter m is simply an identifier for distinguishing between a
large number of particular conditions. We thus number all such conditions in an arbitrary order.

It is worth noting, that since X-variables and Y-variables have k in their parameters, we have to
fix the maximum number of steps, K, in advance. In principle, it suffices to let K = 649. This is shown
later. Since this is too large in practice, we will propose a practical method using a smaller K while
keeping the exactness in Section 5.

4.2.2. Constraints for Initial States

The constraints for initial states are as follows. For all clue cells (i, j),

X (i, j, 0) 6= 0, (1)

and for the other cells (i, j),
X (i, j, 0) = 0. (2)

Here we would not explicitly impose any constraint on Y-variables in step 0 because such
constrains can be derived from the constraints for Y-variables of an arbitrary step and the constraints
for number removals.

4.2.3. Constraints for State Transitions

The constraints for state transitions represent how X-variables and Y-variables in the current grid
are determined from the previous grid.

The constraint that allows us to determine a non-zero digit n at cell (i, j) in step k is as follows.

X (i, j, k) = n↔
∨

Z (m) (3)

Here, Z (m) runs over all possible Z-variables that can derive the left-hand side. The only-if part means
that if X (i, j, k) = n, then there must be evidence, i.e., some Z-variable is true. One such Z-variable is
the case for which n is determined at (i, j) in the previous step.

Z (m)↔ X (i, j, k− 1) = n (4)

As noticed before, suppose that the parameter m is uniquely determined in order to distinguish the
condition in the right-hand side from the other particular conditions for Z-variables. Hereafter we will
follow the same implicit agreement whenever Z (m) appears in constraints. The other Z-variables of
Formula (3) will be detailed later according to particular cases. Note that as discussed in Section 3,
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in order for our assumption for state transitions to be met, it is sufficient to let Z (m) be determined by
only Y-variables in the previous step (except for Formula (4)).

The constraint that allows us to rule out a non-zero digit n as a candidate at cell (i, j) in step k is
as follows.

¬Y (i, j, n, k)↔
∨

Z (m) (5)

In the same way as X-variables, Z (m) runs over all possible Z-variables that can derive the
left-hand side. One such Z-variable is the case for which n is ruled out as a candidate at (i, j) in the
previous step.

Z (m)↔ ¬Y (i, j, n, k− 1) (6)

The other Z-variables of Formula (5) will be detailed later according to particular cases.

4.2.4. Constraints for Final States

The constraints for final states are those that allow us to reject the current state as soon as it turns
out that there is no chance to reach final states. There are three cases for the current state of a grid:

1. All cells are completed.
2. Some empty cells remain, and some candidates have been ruled out from the previous grid.
3. Some empty cells remain, and no candidate has been ruled out from the previous grid.

Clearly the first case must be accepted. For the third case, our assumption of state transitions
(see Section 3) implies that the current incomplete grid cannot be changed anymore. Hence, the third
case must be rejected immediately. For the second case, since applicable strategies may remain for the
current grid, the decision must be postponed to the next grid. The following formula is in charge of
this filtration.

∧
0≤i,j<9
1≤n≤9

(
Y (i, j, n, k− 1)↔ Y (i, j, n, k)

)
→

∧
0≤i,j<9

X (i, j, k) 6= 0 (7)

Suppose that the current grid is in step k (≥ 1). The left-hand side means that no candidate has
not been ruled out from the previous grid, and the right-hand side means that the current grid is
completed. It is clear that this formula rejects only the third case among the three cases.

As announced earlier, we show here that K = 649 is sufficient. Let q0 = ( f0, g0) , . . . , qk =

( fk, gk) , . . . be any sequence of states such that q0 is an initial state and qk is the next state of qk−1 for all
k. The assumption for state transitions (see Section 3) ensures that once gk̄−1 = gk̄ for some k̄; it follows
that qk̄ = qk for all k ≥ k̄. From Proposition 2, the minimum k̄ with gk̄−1 = gk̄ is bounded from above
by 649. Therefore it suffices to let K = 649. Notice that k̄ ≤ K is necessary in order to decide whether
qk̄ is a final state.

4.3. Constraints for Particular Number placements

We explain particular cases for Z (m)s in Formula (3).

4.3.1. Naked Singles

The right-hand side of the following formula is the condition for which a naked single allows us
to determine a non-zero digit n at cell (i, j) in step k (≥ 1). Notice that in order for this to take effect,
it is necessary that the following Z (m) is registered to Formula (3).

Z (m)↔
∧

n 6=n′
1≤n′≤9

¬Y
(
i, j, n′, k− 1

)
(8)
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The right-hand side means that all digits but n are ruled out as candidates at cell (i, j) in the
previous step. There are two cases: either only n remains as a candidate or no digit remains. Although
a naked single is applicable only to the former case, there is no substantial problem. Because even if the
latter case occurs, we obtain X (i, j, k) = n from Formulas (3) and (8), and we also obtain X (i, j, k) = n′

for any other digit n′ in the same way, which is a contradiction.

4.3.2. Hidden Singles

The right-hand side of the following formula is the condition for which a hidden single allows us
to determine a non-zero digit n at cell (i, j) in step k (≥ 1).

Z (m)↔
∧

(i′ ,j′)∈G\(i,j)
¬Y
(
i′, j′, n, k− 1

)
(9)

Here, let G be any group such that (i, j) ∈ G. There are three cases for G, and for each case the
corresponding constraint must be generated from Formula (9). The right-hand side of Formula (9) does
not exclude the case for which n is ruled out over all cells in G, but there is no substantial problem,
just like in Formula (8).

4.4. Constraints for Particular Number removals

We will now explain particular cases for Z (m)s in Formula (5).

4.4.1. Conditions for States of a Grid

We have imposed the two conditions S1 and S2 on the states of a grid in order to reject states that
violate the rules of a Sudoku puzzle. We introduce constraints corresponding to S1 and S2. Unlike the
other constraints, the constraints below determine a relation between X-variables and Y-variables in
the same step.

The following formula corresponds to S1, which ensures that all cells (i, j) have at least one
candidate in all steps k ≥ 0. ∨

1≤n≤9

Y (i, j, n, k) (10)

The following formula corresponds, in turn, to one of the two cases in the antecedent of S2, that is,
a different digit n′ from n is determined at cell (i, j).

Z (m)↔
∨

n 6=n′
0≤i,j<9

X (i, j, k) = n′ (11)

Here, suppose that Z (m) is registered in Formula (5). If the right-hand side of Formula (11) holds,
then it follows from Formulas (5) and (11) that n is ruled out as a candidate at (i, j) in the same step k,
which is the consequent of S2.

The following formula corresponds to the other case in the antecedent of S2, that is, there is a
different cell (i′, j′) from (i, j) with both in a common group G such that n is determined at (i′, j′).

Z (m)↔
∨

(i′ ,j′)∈G\(i,j)
X
(
i′, j′, k

)
= n (12)

Here, let G be any group such that (i, j) ∈ G. There are three cases for G, and for each case the
corresponding constraint must be generated from Formula (12). Just like Formula (11), Formula (12)
and Formula (5) imply that n is ruled out as a candidate at (i, j) in the same step k, which is the
consequent of S2.
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4.4.2. Locked Candidates

The right-hand side of the following formula is the condition for which a locked candidate allows
us to rule out a non-zero digit n at cell (i, j) in step k (≥ 1).

Z (m)↔
∨

(i′ ,j′)∈A\B
¬Y
(
i′, j′, n, k− 1

)
(13)

Here, let A and B be any groups such that (i, j) ∈ B \ A and |A ∩ B| = 3. For all possible combinations
of A and B, the corresponding constraint must be generated from Formula (13). Notice that Formula (13)
can be commonly used to deduce Y (i′′, j′′, n, k) for all (i′′, j′′) ∈ B \ A, by which the size of constraints
can be largely reduced.

4.5. Remarks

We have presented a CSP encoding for the strategy-solvable Sudoku clues problem. That is,
given a set of cells, there are clues for the cells such that the grid can be completed using naked
singles, hidden singles, and locked candidates if and only if there is an assignment of X-variables,
Y-variables, and Z-variables that satisfies all the constraints generated from Formulas (1)–(13).
A satisfying assignment substantially corresponds to a sequence of states q0, . . . , qk with q0 strategy-
solvable, as characterized in Definition 1. By applying a CSP solver to the encoded constraints,
we eventually obtain strategy-solvable Sudoku clues, if they exist; otherwise, we eventually recognize
the strategy-unsolvability of the clue cells, that is, no assignment of digits to the clue cells is
strategy-solvable. The constraints for a general state transition framework are almost independent of
particular strategies. The only connection is via Z-variables in Formulas (3) and (5). In order to include
additional strategies, it is sufficient to model these strategies as logical formulas independently and
then register new Z-variables for them to Formula (3) or Formula (5).

5. Two Improvements

In this section, we present two improvements to our method.

5.1. Reduction of Constraint Size

The biggest issue of our method is that there are hundreds of thousands of constraints. A simple
way for reducing constraint size is to eliminate constraints concerning clue cells. For all clue cells,
digits are determined in an initial state, and the determined digits do not change over all succeeding
steps. Hence, all constraints necessary for clue cells in each step take the same values as those in the
previous step. In the constraints for final states, there is no need to examine the values of X-variables
and Y-variables for clue cells. However, we must not ignore the constraints for clue cells in step 0
corresponding to Formulas (10)–(12) because otherwise we could not reject initial states violating the
rules of the Sudoku puzzle.

5.2. Incremental Approach

Our method requires to fix a maximum step size, K, in advance. Since it has a significant impact
on constraint size, K needs to be as small as possible. However, for a small K, our method may return
false clues. To see this, let us take a look at Figure 3. Suppose that the left grid is an initial state and the
right grid is a state in step K. The right grid is not yet completed, but no constraint has been violated
up to step K. Since there is no further step, our method returns the initial grid, even if only a naked
single strategy is allowed. Notice that if the right grid was in step K− 1 or less, our method would
reject the initial grid (because the constraints for final states are violated).

We propose a practical method using a smaller K while keeping the exactness. A basic idea is
to repeatedly apply our original method while incrementing K from an initial number Kmin until K
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exceeds a sufficiently large number Kmax. Algorithm 1 is a pseudo code for the method. Notice that once
constraints become unsatisfiable, constraints with any lager maximum step size must be unsatisfiable.

Algorithm 1 Incremental approach for the strategy-solvable Sudoku clues (SSC)

for K = Kmin to Kmax do
Generate constraints for a given SSC instance with maximum step K.
if the set of constraints is unsatisfiable then

return UNSAT
else if the grid in step K is completed then

return Sudoku clues in the initial grid.
end if

end for

6. Application

Besides the clue generation, we present an application of our method to the problem of
determining the minimum number of Sudoku clues that are solvable with a given set of strategies.

Our method is easily customized with a small modification as follows. Remove Formulas (1)
and (2). Instead, introduce integer variables taking 0 or 1, U (i, j), for all cells (i, j) and the following
formula.

U (i, j) = 1↔ X (i, j, 0) 6= 0 (14)

Introduce the following formula for ensuring that the number of determined digits in step 0 is less
than or equal to a threshold θ.

∑ U (i, j) ≤ θ (15)

Here the summation runs over all variables U (i, j).
In order to compute the minimum number, it is sufficient to repeatedly solve the modified

constraints while decreasing θ one by one until the constraints become unsatisfiable.

7. Experiments

In this section, we conduct two experiments to evaluate our method.

7.1. Common Settings and Remarks

Our method uses Sugar version 2.3.3 [7,8] as a CSP solver and MiniSat version 2.0 [9,10] as a SAT
solver internally invoked by Sugar. The maximum step size K is set to 30, and our method is applied
only once (i.e., with no use of an incremental approach) because in preliminary experiments, we have
confirmed that K = 30 is sufficient for many instances including those used in these experiments (Note
that the whole sequence of states returned by a CSP solver represents a history of evolving grids and
applied strategies. To check that the initial state in the sequence is strategy-solvable, it suffices to check
if the state in step K is a final state, that is, X(i, j, K) 6= 0 for all i, j. To make doubly sure, all the results
(initial grids) obtained by our method were verified using a separate program, which is made publicly
available together with our implemented CSP encoder in our website. This verification program simply
consists of selecting applicable strategies to the current grid from a set of predetermined strategies
and applying them until the grid is completed or no applicable strategy exists). The computational
environment is as follows:

OS: Ubuntu 18.04.4 LTS
Main memory: 16 GB
CPU: Intel R© Core TM i7-4600U 2.10GHz

The implementation of our method was checked for all possible arrangements of 3 and 4 clue
positions for a 4× 4 Sudoku. These instances are so small that a naive brute force search can quickly
decide. It was confirmed that the solvability results for our method completely coincide with those
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for the brute force search over all instances. Here all strategies allowed to be used are naked singles,
hidden singles, and locked candidates. It turned out that there is no strategy-solvable instance with
3 clue positions, and there are exactly 704 strategy-solvable instances with 4 clue positions. It is worth
noting, that all of the 704 instances are also solvable with naked singles only. Since there is no proper
4× 4 Sudoku with 3 clues, there is no gap between the minimum numbers of proper Sudokus and
strategy-solvable Sudokus with naked singles.

The implementation of the CSP encoding part of our method, tools such as the brute force
search program, and all instances used in the experiments are publicly available in our website
(http://www.disc.lab.uec.ac.jp/toda/code/scg.html, accessed on 27 May 2020).

7.2. Running Time Comparison

We compared our CSP-based method (CSP) with the generator of Zama and Sasano [2] (ZS).
The time limit was set to 600 s. In both methods, only naked singles, hidden singles, and locked
candidates were allowed to be used. Although other strategies are implemented in the generator of
Zama and Sasano, we restricted the program to the three strategies by modifying their program.

We made a total of 100 input instances (i.e., sets of cells) by repeating the following procedure:
select a number n from 20 to 79 at random, and generate distinct n cells at random. Table 1 shows the
distribution of input instances with respect to the number of clues. All instances are confirmed to be
strategy-solvable.

In preliminary experiments we confirmed that the brute force algorithm exceeded the time limit
(600 s) for all instances. Moreover, the implementation of a naive generate-and-test method (Clues
for specified positions were randomly generated and it was tested in a straightforward way whether
the set of the clues is strategy-solvable. The “naive” means that no elaborated heuristic is used in the
generation step) could solve only 4 instances within the time limit. As will be described in Section 8,
the naive generate-and-test method falls into one of the four major methods for Sudoku clue generation
(called a forward search), which admit both a strategy-solvability aspect and a geometric constraint
aspect. Both codes are made publicly available on our website.

Table 1. Distribution of input instances with respect to the number of clues.

Range of the number of clues 20–29 30–39 40–49 50–59 60–69 70–79

Number of input instances 19 30 20 10 11 10

Figure 6 shows a cactus plot of running time comparison. Each point is plotted so that the
x-coordinate is the number of instances solved within the time specified in the y-coordinate. The points
for our method (CSP) and the generator of Zama and Sasano (ZS) are indicated with + and ×,
respectively. The curve formed by the points for the same method shows an increase in the number of
solved instances over time.

Our method solved 95 of a total of 100 instances within the time limit, while the generator of
Zama and Sasano solved 65 instances. The curve of our method shows a linear increase up to around
90 in the x-axis, which indicates the number of solved instances. All such instances are solved within
about 1 minute. The curve grows rapidly after 90. All instances taking more than 1 min including
those exceeding the time limit have 25 or less cells.

On the other hand, the generator of Zama and Sasano can often find solutions much faster even
in near 20 cells, as the curve of Zama–Sasano almost overlaps the x-axis up to near 60, which indicates
the number of solved instances. The number of clue cells in such solved instances is 45 or less. After
that, the performance drops significantly as the curve sharply increases. All instances with 50 or more
cells cannot be solved within the time limit.

http://www.disc.lab.uec.ac.jp/toda/code/scg.html
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Figure 6. Comparison of running time.

7.3. Evaluation on Unsolvability

To see the efficiency for deciding unsolvablity, we made instances that seem to be on the border
between solvable cases and unsolvable cases by randomly selecting 30 minimum Sudokus from the
collection of Gordon F. Royle [5] and extracting only clue positions, simply forgetting placed digits.
In this experiment, all strategies allowed to be used were naked singles only. Note that although no
grid solvable with naked singles was included in the collection, it is possible that changing digits in
the same positions makes grids solvable.

Within 8 h, our method terminated for 14 of the 30 instances, and all of them were confirmed to
be not strategy-solvable. Table A1 in the Appendix A shows the chosen minimum Sudokus and the
running times. Although 10 instances took merely from 10 to 20 min, other instances took much more
time. It is still unknown whether there are 17 clues solvable with naked singles only. This appears
far from the settlement of the problem of the gap between the numbers of strategy-solvable Sudokus
and proper Sudokus by a computer program, considering a large number of possible arrangements of
17 positions.

8. Related Work

There are several methods for sudoku clue generation [11]. As far as we are aware, most methods
lack either a strategy-solvability aspect or a geometric constraint aspect, and they often aim at
controlling the difficulty levels of the Sudoku instances to be generated. Since both aspects are at the
heart of our present work, most methods are considered as intended to tackle different generation
problems from ours. In the following, we briefly summarize them in terms of the differences from ours.

Known Sudoku generation methods are mainly classified into four types: a local search, a forward
search, a backward search, and a logical modeling approach. The local search consists of starting with a
partially-completed grid, which may be randomly generated or selected from known proper Sudoku
instances, and then repeatedly searching neighbor grids by changing a portion of the current grid,
such as relocating a few clue positions, removing a few clues, or replacing digits with different ones
until a desired grid is found [12].

The forward search consists of repeatedly generating an initial grid (typically at random) and
checking if it has a unique solution using Sudoku solvers. The checking step is sometimes done without
verifying uniqueness in an exact sense. For example, Mantere and Koljonen used a Sudoku solver based
on genetic algorithms [13]. In their method, an initial grid consists of randomly generated 20–50 clues
and the check step is done in such a way that an initial grid is solved 10 times using their GA-based
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solver and it is checked if only one solution is obtained over the trials. Examples of other Sudoku
solving methods include stochastic local searches, CSP solvers, and dancing links [14]. The generator of
Zama and Sasano [2] falls into this group. Strategy-solvable Sudokus are guaranteed to be proper in an
exact sense, and checking solvability can be done quickly, unlike checking properness. A similar idea
is also mentioned in [3,4]. As far as we are aware, all known generators based on the forward search,
with a few exceptions, do not take the strategy-solvability of Sudoku instances into consideration.

The backward search consists of starting with a completed grid and repeatedly eliminating digits
so as not to violate properness; in other words, the resulting grid does not have distinct solutions [15].
Boothby et al. used inverse operations of some known strategies to eliminate digits and propose a
constrained breadth search [16]. Their method admits a strategy-solvability aspect; however no known
method based on the backward search can handle geometric constraints for an initial grid in the sense
that no grid satisfying geometric constraints might appear during a search. Xue el al. used a Las
Vegas algorithm to generate completed grids and used several operations (called dig-hole strategies)
to eliminate digits.

The logical modeling approach consists of converting generation problems into equivalent
constraints described in languages such as CSP (constraint satisfaction problem) and ASP (answer
set programming), and to apply a generic solver to solve them. Our method falls into this group.
Gebser provided an ASP encoding for proper Sudokus [17]. Fatemi el al. used a CSP encoding, but the
constraints were simply those ensuring that grids do not violate Sudoku rules [18].

9. Conclusions

Sudokus that appear in books, newspapers, and so on often have a regular pattern in the
arrangement of initial digits and are typically made so that all empty cells can be completed using
some known techniques, called strategies. We formally defined the problem of generating such Sudoku
instances by introducing the concept of strategy-solvability, which means that all empty cells can be
filled in with digits using only a given set of strategies. We proposed an exact method for solving this
problem. The key is to encode a given problem instance into an equivalent CSP instance and then
solve it by applying a CSP solver.

There are a few existing researches, but all of them are based on the generate-and-test method,
which repeatedly generates a set of clues and then tests whether it is strategy-solvable. There are some
drawbacks, such as not being able to recognize that a specified set of cells is strategy-unsolvable.

To the best of our knowledge, our method is the first exact method except for the trivial brute-force
search. Our method can eventually find strategy-solvable Sudoku clues if they exist, and otherwise
our method can eventually recognize strategy-unsolvability. Besides the clue generation, we presented
an application of our method to the problem of determining the minimum number of strategy-solvable
Sudoku clues, demonstrating that our method is easily customized with a small modification.

We conducted experiments to compare our method with the generator of Zama and Sasano, using
grids varying the positions and the numbers of clues at random. From the results we observed that
our method terminated within 1 min for many grids, showing our method to be stable in terms of
running time. However, as the number of clues got closer to 20, the running time rapidly increased
and exceeded the time limit, which was set to 600 s. On the other hand, the generator of Zama
and Sasano could often find solutions much faster even nearing 20 clues, while the performance
sharply deteriorated around 45 clues and exceeded the time limit for all grids with more clue positions.
We also evaluated our method for several instances with 17 clue positions taken from known minimum
Sudokus to see the efficiency for deciding unsolvability. It remains for future work to improve our
method for less clues.
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Appendix A

Table A1. The randomly chosen 30 minimum Sudokus and the running times (in s): each sequence of
9 digits is separated by a period, and such 9 sequences in each line represent the rows of a grid.

Grids Time (s)

090600000.000080300.000000010.060000800.000205000.000041000.000300702.401000000.500000000 -
050608000.300000070.000000000.000400601.700100500.200000000.061000000.000070020.000090000 926
000600370.801000000.000200000.070010060.000004500.200080000.060700000.000050800.000000000 -
005000060.000780000.000000000.200000407.001300000.000000800.000601030.040070000.580000000 -
031000000.000400006.000000200.600059000.000010030.400000000.000200800.050000010.700600000 1243
000000025.000601000.090000000.805000600.000020000.000000300.040250000.300000790.000800000 1255
600500300.000000010.000000000.000000596.010024000.000000000.704000800.000210000.300900000 -
000010600.050000030.000080000.700500020.000002000.008000000.530900000.000400807.000000100 -
000530800.700600000.400000000.100024000.000000630.000000000.050301000.000000042.080000000 1070
070060030.500400100.000000000.400501000.300000076.000800000.001000500.060020000.000000000 -
000700380.501000000.000200000.000000506.070400000.000000900.300056000.080010040.000000000 -
603001020.000800500.200000000.050040700.000003000.000200000.040750000.000000031.000000000 994
000030001.007500000.600000000.810002000.000600350.400000000.003000760.040080000.000000000 -
500300000.000000801.004000600.000600430.710000000.000500000.200000060.000078000.000010000 6564
080071000.000040600.000000000.040000008.000600010.200500000.603000500.500200000.000080000 1134
400000076.000081000.000000000.000630004.500000200.017000000.320400000.000000810.000000000 -
020540000.040000006.000000010.080700500.900020000.000006000.603000000.000300200.100000000 26,835
500060107.030200000.400000000.280000030.000007000.000010000.000800020.000400600.001000000 -
400010000.060000020.000000000.000500270.301400000.008000000.000600100.070002000.100000003 -
008000200.400050000.000600070.000082000.060000050.000300000.950100000.000000306.000000800 -
010000300.000042000.000090000.000800100.205000000.600000004.000310000.900000020.000700050 10,090
050000200.000700010.600080000.012000050.000600040.000030000.900000308.000001000.000000600 852
600050043.200000007.000400010.070200000.000060200.010000000.500000800.000730000.000000000 -
304050600.000200000.600000000.080000072.000031000.000000000.120700000.000000340.000000009 889
040000300.000072000.000010800.200000010.050700000.000050000.000800400.701000000.600300000 -
400080000.000500100.000000200.000034070.001000000.060000000.750000030.000001640.000200000 1021
000042500.100000070.000000000.400700000.000000208.000000650.025000000.000830000.060100000 869
600800000.000090500.000000020.025000700.090000300.000400001.100300008.000050060.000000000 849
200400000.000000031.000000007.000702500.301000000.900800000.080000400.000030090.070000000 -
007000010.400700000.000800030.200000400.000010000.000300000.000002709.530000000.080000600 -
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