
algorithms

Review

On the Relationship between Self-Admitted Technical
Debt Removals and Technical Debt Measures

Lerina Aversano * , Martina Iammarino, Mimmo Carapella, Andrea Del Vecchio and Laura Nardi

Department of Engineering, University of Sannio, 82100 Benevento, Italy; iammarino@unisannio.it (M.I.);
mimmo.carapella@studenti.unisannio.it (M.C.); andrea.delvecchio@studenti.unisannio.it (A.D.V.);
laura.nardi@studenti.unisannio.it (L.N.)
* Correspondence: aversano@unisannio.it

Received: 30 April 2020; Accepted: 9 July 2020; Published: 11 July 2020
����������
�������

Abstract: The technical debt (TD) in a software project refers to the adoption of an inadequate
solution from its design to the source code. When developers admit the presence of technical debt
in the source code, through comments or commit messages, it is called self-admitted technical debt
(SATD). This aspect of TD has been the subject of numerous research studies, which have investigated
its distribution, the impact on software quality, and removal. Therefore, this work focuses on the
relationship between SATD and TD values. In particular, the study aims to compare the admitted
technical debt with respect to its objective measure. In fact, the trends of TD values during SATD
removals have been studied. This was done thanks to the use of an SATD dataset and their related
removals in four open source projects. Instead, the SonarQube tool was used to measure TD values.
Thanks to this work, it turned out that SATD removals in a few cases correspond to an effective
reduction of TD values, while in numerous cases, the classes indicated are removed.

Keywords: software quality; technical debt; self-admitted technical debt; software maintenance;
software evolution; software measures

1. Introduction

During the evolution of a software system, several problems can occur leading to the decreasing
of the quality measures and introducing technical debt. Some of these approaches are more subjective,
while some others are more objective and based on the development assertions. In the literature,
there are some approaches based on the assessment of metrics to identify problems concerned
with well-known principles of object-oriented design [1,2]. While other studies focused on the
architectural-level proposed approach for the identification of technical debt at that level.

In [3], the metrics on a package are used for the identification of architectural technical debt,
while in other studies, the comments extracted from the code were used [4,5]. In [6], the authors
analyzed the structure of code with the aim of visualizing the technical debt at the architectural level.
Differently from these studies in [7], the authors used a scenario of changes to identify technical debt.

Self-admitted technical debt (SATD) refers to the admission of technical debt by developers
through the use of comments or references in commit messages. In the literature, several studies have
deepened the SATD, evaluating it from different perspectives, such as its diffusion, the consequences
that derive from it on the quality of the software, and the consequent removal.

In this document, we examine the removal of SATD to understand if it affects objective measures
of technical debt values. In particular, the goal is to verify whether the value of the technical debt for a
given file is reduced in the comments in which the developers report their removal.

Therefore, the trends of the technical debt values are evaluated in open source software projects.
In particular, the study aims to investigate the differences between the value of the technical debt

Algorithms 2020, 13, 168; doi:10.3390/a13070168 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0003-2436-6835
http://dx.doi.org/10.3390/a13070168
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/7/168?type=check_update&version=2

Algorithms 2020, 13, 168 2 of 16

obtained through an objective measure, namely measured with the SonarQube platform, and the
self-admitted technical debt reported by the developers and collected in a dataset [8].

This dataset labels four different types of change that can be used to remove the technical debt in
the source code: class removal, method removal, modified method, and unchanged method.

To perform a deeper investigation on what happens when SATD removals occur, a further analysis
has been performed to assess the correlation between the variations of the technical debt and the values
of the object-oriented metrics, including Chidamber and Kemerer metrics [9]. The analysis aims to
verify if it is possible to observe a consistency change between the results obtained for the technical
debt measure changes and the changes in the object-oriented metrics mentioned above.

Section 3 contains the research questions that have been studied. The results obtained show
that in the classes in which the removals of SATD were recorded, the value of the technical debt
decreases considerably, until it disappears. Moreover, the values of Object-Oriented (OO) quality
metrics, including Chidamber & Kemerer metrics, improve their values by a low percentage with
respect to the SATD removals considered. These findings can be used for a better understanding
of the numerous approaches used for the identification and measurement of technical debt in the
software system.

The rest of the paper is structured as follows: Section 2 describes primarily related works, Section 3
defines the design of the study, the obtained results are reported in Section 4, while conclusions and
future work are outlined in the last section.

2. Related Work

This section reports the literature related to (1) the detection of TD focusing more on “self-admitted”
TD; and (2) investigation of effects on SATD and quality metrics.

2.1. Detection of SATD

Potdar and Shihab [10] conducted a qualitative analysis on the technical debt (TD) in the source
code of open-source projects and observed that developers often ”self-admit” the technical debt by
inserting comments indicating that the code is temporary and will need to be reviewed in the future.
Furthermore, after a manual analysis of the code, they identify 62 different comment schemes indicating
SATD. They showed that in software projects, SATD is very common, and that it is introduced mainly by
experienced developers. Liu et al. [11] propose a SATD Detector, which is a tool that can automatically
detect SATD comments using text mining and highlight, list, and manage detected comments in an
integrated development environment (IDE). This tool consists of a Java library and an Eclipse plug-in.

Maldonado and Shihab [12] have developed an approach that allows identifying SATD instances
in the code through comments posted by the developers. The proposed approach is based on model
matching and classifies the SATD into five types: design, defect, documentation, requirements,
and tests.

Maldonado et al. [13] have also surveyed developers involved in the introduction and/or removal
of technical debt. They have found that SATD is predominantly removed when bugs are fixed or new
features are added, and that it is removed by the same person that introduced it.

Zampetti et al. [8] conducted a depth quantitative and qualitative study to understand how SATD
is removed in the source code. On the one hand, they assessed whether the SATD is “accidentally”
removed, and on the other hand to what extent the removal of the SATD is documented. Therefore,
they have deepened the study of the relationship between the removal of comments that document
SATD and the related changes to the source code, highlighting through their results that a large
percentage of removal of SATD comments occurs “accidentally” when the whole method is removed.
Furthermore, the removal of SATD is documented in commit messages in only 8% of cases.

In addition, Iammarino et al. [14], analyzed whether the refactoring operations coincide with the
removal of SATD to understand if it is a cause–effect relationship or a randomness. They found that

Algorithms 2020, 13, 168 3 of 16

there is a greater chance that refactoring will take place where there has been a removal of the SATD,
but that the two operations are unrelated because sometimes, the changes affect different parts of code.

The proposed study differently from the aforementioned research studies focuses on the measures
of technical debt to understand if and how they are related to each other. In particular, this study starts
from the results of Zampetti et al. [8], because we used their dataset consisting of a set of methods
labeled with SATD at the design level and the commit ID in which the SATD was removed.

2.2. Investigation of Effects on SATD and Quality Metrics

In the literature, there are numerous studies about the relationships between SATD and quality
metrics. In [15], the authors analyzed how technical debt and software quality are related. In particular,
they considered the defects occurrences in files with self-admitted technical debt respect to files
without self-admitted technical debt to investigate the possibility that differences of the debt lead to
the introduction of defects.

In [16], Griffith et al. reported about the relation between some relevant software quality metrics
(such as, Weighted Methods per Class, Coupling between Object Classes, and Readability) and SATD.

More recently, in [17], the authors described an analysis aimed at studying to what extent
self-admitted technical debt and software quality metrics are related. From their results, it emerged that
self-admitted technical debt will remain for extensive time in the source code and is often widespread.

The results of this study show that although technical debt can have negative effects, its impact is
not related to defects; rather, it makes the system more difficult to modify in the future.

For more detail on these aspects, in [5], an empirical study is reported about the SATD removals,
investigating the time they remain in the software project and the person removing them. Their results
confirmed that mainly the self-admitted technical debt is self-removed, but in some cases, it takes a
long time to be removed, which often occurs due to bug fixes and does not follow a specific removal
process. More recently, other researchers focusing on developing approaches for TD automated
documentation or automated suggestions for TD removal [18] must also focus on other actions
that change the program’s behavior, e.g., changing Application Programming Interfaces or pre and
post conditions. In [19], the authors investigate the possibility of using SATD comments to resolve
architectural divergences. They leverage a dataset of previously classified SATD comments to trace
them to the architectural divergences of a large open source system, namely ArgoUML.

3. Study Setup

The aim of this work is to investigate the different ways of referring to technical debt, comparing
subjective approaches with a more objective measure made on the source code of the software.
The following subsections contain the description of the research questions and the process used for
the extraction of data useful for the study.

3.1. Research Questions

This paper reports on the effects of removing the SATD, on the objective measurement of technical
debt, and other metrics of the main source code, in open source software projects. The study is based
on the following research questions:

RQ1: To what extent do self-admitted technical debt removals actually lead to lower technical debt value?

This research question aims to understand if self-admitted technical debt removals correspond
to lower values of the technical debt measure. To perform the assessment, a fine-grained analysis
has been performed, collecting and analyzing the data of open-source software systems, commit per
commit, and class per class. Descriptive statistics and graphs have been used to support the analysis.

RQ2: To what extent do self-admitted technical debt removals lead to lower Chidamber and Kemerer metrics
values?

Algorithms 2020, 13, 168 4 of 16

The goal of this research question is to look for empirical evidence to support the hypothesis about
the positive impact of SATD removals on software quality metrics. In particular, the study focused on
the OO metrics with the objective of understanding if their values improve when SATD removals occur.

3.2. Data Extraction

Figure 1 shows the toolchain used in this analysis, highlighting the tools adopted, and the input
provided, and the output obtained.

Algorithms 2020, 13, x FOR PEER REVIEW

This paper reports on the effects of removing the SATD, on the objective measurement of

technical debt, and other metrics of the main source code, in open source software projects. The

study is based on the following research questions:

RQ1: To what extent do self-admitted technical debt removals actually lead to lower technical debt value?

This research question aims to understand if self-admitted technical debt removals correspond

to lower values of the technical debt measure. To perform the assessment, a fine-grained analysis has

been performed, collecting and analyzing the data of open-source software systems, commit per

commit, and class per class. Descriptive statistics and graphs have been used to support the analysis.

RQ2: To what extent do self-admitted technical debt removals lead to lower Chidamber and Kemerer metrics

values?

The goal of this research question is to look for empirical evidence to support the hypothesis

about the positive impact of SATD removals on software quality metrics. In particular, the study

focused on the OO metrics with the objective of understanding if their values improve when SATD

removals occur.

3.2. Data Extraction

Figure 1 shows the toolchain used in this analysis, highlighting the tools adopted, and the input

provided, and the output obtained.

Figure 1. Process used to conduct the analysis.

As shown in the figure, to keep track of all the source code changes made to each file, the first

step was to analyze the source code repository. To this end, all changes made to the files have been

extracted and stored in a dataset. The SonarQube tool, an open-source platform capable of providing

information on the quality of a software system, was used to extract the TD value for each file.

SonarQube is based on using the Software Quality Assessment based on Lifecycle Expectations

method to measure code quality [20] and provides a dashboard for viewing results.

In particular, in this study, SonarQube has been used only for the TD measure, which quantifies

in minutes the effort in working time to fix existing issues in a file. The SonarQube Web API was

used to extract the value of the technical debt, using an http request query:

http://localhost:9000/api/measures/component=projectidcommitid&metricKeys=sqale_index.

OO metrics have been assessed using the CK tool [21]. More in detail, its functionality has been

integrated into the java code developed for analysis. In particular, CK calculates the class-level and

metric-level code metrics in Java projects using static analysis. Its analysis is performed on the source

code and not on the compiled code. In particular, it evaluates a large set of class-level metrics,

including the widely used CK class-level metrics. Specifically, the metrics included in the dataset are

listed in Table 1.

As previously pointed out, we have measured the trend of all CK metrics (the working dataset

with all metrics collected and analyzed is available for replication purposes

(https://drive.google.com/drive/folders/1k9wcjAus_wYmGSuGhvkq7qY3Tk6Uexht?usp=sharing). In detail,

Figure 1. Process used to conduct the analysis.

As shown in the figure, to keep track of all the source code changes made to each file, the first
step was to analyze the source code repository. To this end, all changes made to the files have been
extracted and stored in a dataset. The SonarQube tool, an open-source platform capable of providing
information on the quality of a software system, was used to extract the TD value for each file.

SonarQube is based on using the Software Quality Assessment based on Lifecycle Expectations
method to measure code quality [20] and provides a dashboard for viewing results.

In particular, in this study, SonarQube has been used only for the TD measure, which quantifies
in minutes the effort in working time to fix existing issues in a file. The SonarQube Web API
was used to extract the value of the technical debt, using an http request query: http://localhost:
9000/api/measures/component=projectidcommitid&metricKeys=sqale_index.

OO metrics have been assessed using the CK tool [21]. More in detail, its functionality has
been integrated into the java code developed for analysis. In particular, CK calculates the class-level
and metric-level code metrics in Java projects using static analysis. Its analysis is performed on the
source code and not on the compiled code. In particular, it evaluates a large set of class-level metrics,
including the widely used CK class-level metrics. Specifically, the metrics included in the dataset are
listed in Table 1.

As previously pointed out, we have measured the trend of all CK metrics (the working dataset
with all metrics collected and analyzed is available for replication purposes (https://drive.google.com/

drive/folders/1k9wcjAus_wYmGSuGhvkq7qY3Tk6Uexht?usp=sharing). In detail, for the metrics with
consolidated threshold values defined in the literature [22], which are lack of cohesion of methods
(LCOM), Depth of Inheritance Tree (DIT), Public fields, and Public methods, the analysis has been
performed respect to those thresholds. Meanwhile, all the other metrics values are compared to their
previous values to establish if they were improved or not.

http://localhost:9000/api/measures/component=projectidcommitid&metricKeys=sqale_index
http://localhost:9000/api/measures/component=projectidcommitid&metricKeys=sqale_index
https://drive.google.com/drive/folders/1k9wcjAus_wYmGSuGhvkq7qY3Tk6Uexht?usp=sharing
https://drive.google.com/drive/folders/1k9wcjAus_wYmGSuGhvkq7qY3Tk6Uexht?usp=sharing

Algorithms 2020, 13, 168 5 of 16

Table 1. Chidamber & Kemerer metrics included in the dataset.

Metric Description

CBO
Coupling between objects: a total of the number of classes that a class referenced
plus the number of classes that referenced the class. If a class appeared in both the
referenced and the referred classes, it was only counted once.

DIT

The Depth of Inheritance Tree (DIT) measures inheritance levels from the
hierarchy of objects above, so it is the maximum length of a path from a class to a
root class in a system’s inheritance structure. Measure how many superclasses
can affect a class. For a class, its minimum value is 1.

Number of fields Counts the number of fields. Specific numbers for the total number of fields,
static, public, private, protected, default, final, and synchronized fields.

NOSI Number of static invocations: Counts the number of invocations to static methods.
It can only count the ones that can be resolved by the Java Development Tools.

RFC
Response for a class: Shows the interaction of the class’s methods with other
methods, thus the total number of methods that can potentially be executed in
response to a message received from an object of a class.

WMC Weight method class or McCabe’s complexity. It counts the number of branch
instructions in a class.

LOC
Lines of code: It counts the lines of code, ignoring empty lines. The number of
lines here might be a bit different from the original file, as the JDT’s internal
representation of the source code is used to calculate it.

LCOM

Lack of cohesion of methods: measures the correlation within a class between
local methods and instance variables. If there is a high cohesion, it means that
there is a good division; on the contrary, the lack of cohesion or low cohesion
follows an increase in complexity. In this case, the solution is represented by the
subdivision of this class into several subclasses.

Public Fields

Counts the total number of public fields defined in a class. Publics fields refer to
an object that is directly accessible and edited by other objects. Therefore, its use
can cause a strong coupling between the classes within a software system,
reducing the modularity of the program.

Public Methods
Find the total number of public methods defined in a class. This metric can be
considered as an indicator of how large a class is, so it represents the number of
features that the class provides.

3.3. Linking SATD to Technical Debt Values

Moving from the SADT removals dataset [8], considering the list of commits where the SATD
removals occur and the temporally previous commits, a new dataset has been constructed measuring
for each of these commits the technical debt values, and the Chidamber and Kemerer metrics values,
as previously explained. Once this new dataset has been obtained, it was necessary to perform an inner
join between them. This was automatically obtained by a tool implementing the following Algorithm 1.

In the end, the dataset obtained for the analysis includes both the data on the clones and the data
on the technical debt.

3.4. Subject Projects

The study reports results involving four Java software projects: Log4j (https://github.com/apache/

log4j), Gerrit (https://github.com/GerritCodeReview/gerrit), Hadoop (https://github.com/apache/

hadoop), and Tomcat (https://github.com/apache/tomcat), which are different in size, number of
commits, and application domains. The choice fell on these systems because their programming
language is Java, they still have an active Git repository containing multiple versions, and there are
variations in the application domains, sizes, and revisions. Table 2 details for each system the versions
analyzed, the branch numbers, the number of commits, and the total number of commits in which at

https://github.com/apache/log4j
https://github.com/apache/log4j
https://github.com/GerritCodeReview/gerrit
https://github.com/apache/hadoop
https://github.com/apache/hadoop
https://github.com/apache/tomcat

Algorithms 2020, 13, 168 6 of 16

least one SATD Removal has been identified. Commits with SATD removals were identified by the
Maldonado et al. study [13], which created a dataset with an analysis that began on 15 March 2015.

Table 2. Systems analyzed.

System Projects Branches Commits SATD Removal

Log4j 7 14.296 37

Gerrit 15 318.362 61

Hadoop 274 2.721.039 154

Tomcat 4 22.215 302

Algorithm 1: Matching commits (SATD Removals

Algorithms 2020, 13, x FOR PEER REVIEW

Table 2. Systems analyzed.

System Projects Branches Commits SATD Removal

Log4j 7 14.296 37

Gerrit 15 318.362 61

Hadoop 274 2.721.039 154

Tomcat 4 22.215 302

Algorithm 1 Matching commits (SATD Removals ↔ TD values)

1. Input : C: Commits Sets, D: SATD Dataset

2. Output : Dataset (CSV format)

3. for all d Є D do

4. O : set of commits hash to be analyzed

5. r → hash of removal commit in d

6. previous → retrieve hash of previous commit of r from C

7. next → retrieve hash of next commit of r from C

8. push r , previous , next in O

9. for all o Є O do

10. clone repository at status of o

11. file → file to analyze

12. if file exists then

13. generates .properties file

14. executes sonar scanner analysis

15. recovers TD with sonar web API

16. deletes .properties file

17. run CK analysis

18. recovers CK object related to file

19. else if o is equal to r

20. write into the output file “-” for TD, delta and CK metrics

21. continue

22. end if

23. restore repository at current state

24. end for

25. if analyses of previous or next commit are equal to null then

26. write into the output file “-” for TD, delta and CK metrics

27. continue

28. end if

29. calculates the delta between the commit removal and the previous one

30. and between the next commit and the commit removal

31. write into the output file all commit attributes relating to the analyses performed

32. end for

4. Results

In this section, we summarize the analysis made and the obtained results.

4.1. RQ1: To What Extent Do Self-Admitted Technical Debt Removals Actually Lead to a Lower Technical

Debt Value?

To answer this research question, the delta of the TD value is measured by comparing its value

at the commit removal and the one at the previous commit. Then, the trend of TD has been analyzed

to obtain the percentages of cases in which the TD measure got worse, improved, or remained

unchanged. The case in which it was not possible to provide a measure, due to the absence of the

files at the commit analyzed, has also been considered.

TD values)

1. Input: C: Commits Sets, D: SATD Dataset
2. Output: Dataset (CSV format)
3. for all d ЄD do
4. O: set of commits hash to be analyzed
5. r→ hash of removal commit in d
6. previous→ retrieve hash of previous commit of r from C
7. next→ retrieve hash of next commit of r from C
8. push r, previous, next in O
9. for all o ЄO do
10. clone repository at status of o
11. file→ file to analyze
12. if file exists then
13. generates. properties file
14. executes sonar scanner analysis
15. recovers TD with sonar web API
16. deletes. properties file
17. run CK analysis
18. recovers CK object related to file
19. else if o is equal to r
20. write into the output file “-” for TD, delta and CK metrics
21. continue
22. end if
23. restore repository at current state
24. end for
25. if analyses of previous or next commit are equal to null then
26. write into the output file “-” for TD, delta and CK metrics
27. continue
28. end if
29. calculates the delta between the commit removal and the previous one
30. and between the next commit and the commit removal
31. write into the output file all commit attributes relating to the analyses performed
32. end for

4. Results

In this section, we summarize the analysis made and the obtained results.

4.1. RQ1: To What Extent Do Self-Admitted Technical Debt Removals Actually Lead to a Lower Technical
Debt Value?

To answer this research question, the delta of the TD value is measured by comparing its value at
the commit removal and the one at the previous commit. Then, the trend of TD has been analyzed to

Algorithms 2020, 13, 168 7 of 16

obtain the percentages of cases in which the TD measure got worse, improved, or remained unchanged.
The case in which it was not possible to provide a measure, due to the absence of the files at the commit
analyzed, has also been considered.

Furthermore, the stability of the decreasing trend of the TD value has also been investigated,
comparing the value at the commit removal with the one at the successive commit. Specifically,
the number of cases where an improvement of the TD in correspondence of a commit removal is
propagated also to the next commit has been computed. Therefore, the number of successive commits
with a value of the TD equal to or lower with respect to the commit removal has been identified.
Indeed, these cases could correspond to a positive action of the developers on the same metric.

Finally, an analysis to observe the impact of the SATD removals on the absence of some files in
correspondence with the commits analyzed has been carried out.

4.1.1. Change in TD Value between Commit Removal and Previous Commit

For each analyzed system, Table 3 shows, in the first column, the type of delta between the commit
removal and the previous commit, and in the second column, the number of files analyzed.

Table 3. Previous commit analysis vs. commit removal.

of Files

Delta Log4j Gerrit Hadoop Tomcat

File not
found 29 32 142 235

Unchanged 4 17 20 87

Increased 10 9 24 54

Decreased 20 13 19 100

The change in the technical debt values, delta, is distinguished in 4 types of possible change
observed: file not found, unchanged, increased, and decreased.

In the case of Log4j, Table 3 shows that for 46.03% (29 files), the variation in the TD could not be
assessed, as the analyzed file was absent in at least one of the commits to be analyzed.

However, for 31.75% of cases (20 files), there was a decrease in the value of the TD between the
previous commit and the commit removal considered, demonstrating that effectively, the changes
performed by the software developers lead to a lower value of the technical debt objectively measured
on the classes subject to the interventions. In particular, the effect of this reduction is not trivial; indeed,
the intensity of change observed in the TD value compared to one of the previous commits ranges
from 2 to 80%.

However, in 6.35% of cases (4 files), no change in the analyzed value was found.
Finally, for the remaining 15.87% of cases (10 files), the TD values increase. These results are not

expected, as it means that the percentages indicate that the changes in the source code made to perform
a SATD removal do not always lead to a more objective reduction of the TD. More specifically, in the
commits analyzed, there was an intensity of increase in the TD value that ranges between 2% and
100%, with a particular case where the increase is even equal to 173% because the TD value goes from
15 to 41 min.

In Gerrit, it can be observed that in 45.07% of cases (32 files), it was not possible to measure the
variation of the TD due to the absence of the file with SATD in the commit. However, for 23.94% of
the cases (17 files), there was no change in the TD, and for 12.68% of the cases (13 files), there was a
deterioration in the value. The worsening recorded corresponds to an increase in the TD value between
commits, which fluctuates in a range from 4 to 81%. Only in the remaining 18.31% of cases (9 files)
does the measure of the TD of the commit removal get an improvement compared to the previous
commit. In these commits, there was a decrease in the TD value ranging between 6% and 81%.

Algorithms 2020, 13, 168 8 of 16

Even for Hadoop, there is a high percentage of cases, 69.27% (142 files), in which it was not
possible to measure the variation of the technical debt due to the absence of the file to be examined in
correspondence with one of the commits to be analyzed. However, for 9.27% of the cases (20 files),
there was no change in the TD, in connection with the commit removal, and for 9.76% of the cases
(19 files), there was a worsening of the value. In fact, there was an increase in the value of TD which
varies between 0.9% and 197%. In fact, in several cases, the value of the TD between a commit
and the next commit increased more than double. Two cases have even been identified in which
the value increased by 400% and 500%, respectively from a value of 1 to 6 min, and 5 to 25 min.
Only in the remaining 11.71% of cases (24 files) does the measure of the TD of the commit removal
improve compared to the previous commit. In these cases, the decrease varied between 0.28% and 97%.
These percentages suggest that only in a few circumstances are the changes made by maintainers to
resolve the TD valid, while in most cases, the performed solutions do not lead to an effective decrease
of the metrics values.

As for the previous systems, also in the case of Tomcat, there is a high percentage of cases, 49.37%
(235 files), for which it was not possible to measure the TD due to the absence of the files.

In 21% of cases (100 files), there was a decrease in the TD value compared to the previous commit,
while in 11.35% (54 files), there was an increase in the value. Respectively, in the cases analyzed,
the decrease varied between 0.19% and 100%, while the increase varied between 0.2% and 120%.
Outliers were also identified in the increase; in fact, in one case, the TD increased by 800%, going from
2 to 18 min, in another by 346%, changing from 26 to 111 min.

Finally, 18.28% (87 files) of the times, there was no change in the value of the TD between the
analyzed commit and its previous one.

Figure 2 depicts an overview of the delta trend for each project, highlighting how in most cases,
the file is not found (blue bars), compared to the other cases, in which the TD value is unchanged
(orange bars), decreased (gray bars), and increased (yellow bars).

Algorithms 2020, 13, x FOR PEER REVIEW

varies between 0.9% and 197%. In fact, in several cases, the value of the TD between a commit and

the next commit increased more than double. Two cases have even been identified in which the

value increased by 400% and 500%, respectively from a value of 1 to 6 min, and 5 to 25 min. Only in

the remaining 11.71% of cases (24 files) does the measure of the TD of the commit removal improve

compared to the previous commit. In these cases, the decrease varied between 0.28% and 97%. These

percentages suggest that only in a few circumstances are the changes made by maintainers to resolve

the TD valid, while in most cases, the performed solutions do not lead to an effective decrease of the

metrics values.

As for the previous systems, also in the case of Tomcat, there is a high percentage of cases,

49.37% (235 files), for which it was not possible to measure the TD due to the absence of the files.

In 21% of cases (100 files), there was a decrease in the TD value compared to the previous

commit, while in 11.35% (54 files), there was an increase in the value. Respectively, in the cases

analyzed, the decrease varied between 0.19% and 100%, while the increase varied between 0.2% and

120%. Outliers were also identified in the increase; in fact, in one case, the TD increased by 800%,

going from 2 to 18 min, in another by 346%, changing from 26 to 111 min.

Finally, 18.28% (87 files) of the times, there was no change in the value of the TD between the

analyzed commit and its previous one.

Figure 2 depicts an overview of the delta trend for each project, highlighting how in most cases,

the file is not found (blue bars), compared to the other cases, in which the TD value is unchanged

(orange bars), decreased (gray bars), and increased (yellow bars).

Overall, the data obtained are different with respect to the expectations. It clearly emerged that

there is a high subjectivity in the processes leading to the identification and removal of the SATD. In

many cases, the SATD removals do not reflect on similar results from an automated evaluation

process, such as the objective measure provided by SonarQube. Undoubtedly, this is due to different

approaches used by developers and maintainers to implement the different solutions, but the

number of not aligned cases suggests at least the need for rethinking the subjective process on SATD

evaluations.

Figure 2. Overview of the change type percentage between the previous commit and the removal

commit for each project.

4.1.2. Change in TD Value between Commit Removal and Subsequent Commit

Differently from the previous case, this analysis considers the commit of the SATD removal and

its consecutive. For each system analyzed, Table 4 shows, in the first column, the type of delta trend

between the commit removal and the consecutive commit, and in next columns, the number of files

found for each projects.

Figure 2. Overview of the change type percentage between the previous commit and the removal
commit for each project.

Overall, the data obtained are different with respect to the expectations. It clearly emerged that
there is a high subjectivity in the processes leading to the identification and removal of the SATD.
In many cases, the SATD removals do not reflect on similar results from an automated evaluation
process, such as the objective measure provided by SonarQube. Undoubtedly, this is due to different
approaches used by developers and maintainers to implement the different solutions, but the number of
not aligned cases suggests at least the need for rethinking the subjective process on SATD evaluations.

Algorithms 2020, 13, 168 9 of 16

4.1.2. Change in TD Value between Commit Removal and Subsequent Commit

Differently from the previous case, this analysis considers the commit of the SATD removal and
its consecutive. For each system analyzed, Table 4 shows, in the first column, the type of delta trend
between the commit removal and the consecutive commit, and in next columns, the number of files
found for each projects.

Table 4. Removal commit analysis vs. consecutive commit.

Number of Files

Delta Log4j Gerrit Hadoop Tomcat Delta

File not
found 29 32 142 235 File not found

Unchanged 27 34 54 222 Unchanged

Increased 5 3 5 8 Increased

Table 4 shows that for Log4j in 46.03% of cases (29 files), the file has been removed, while in
42.86% of cases (27 files), the TD remains unchanged between subsequent commits. For 7.94% of cases
(5 files), there was an increase in the value of the metric under examination, while for the remaining
3.17% (2 files), a decrease in value was found. Specifically, the increase in TD changes in a range from
0.6 to 8%, while the decrease is between 25% and 50%.

In Gerrit, as in the previous case, there is a high percentage of cases 45.07% (32 files) where the
file has been removed. The table points out that in 47.89% of cases (34 files), the TD value remains
unchanged in subsequent commits. Instead, for 4.23% of cases (3 files), there is an increase in the
value of TD, while just 2.82% (2 files) correspond to a decrease in value. In the commits analyzed,
we observed the intensity of increase ranging from 5 to 48%, instead of the decrease from 7 to 40%.

In Hadoop, there is the highest percentage of files not found, 69.27% (142 files); in 26.34% of cases
(54 files), the TD value remains unchanged in subsequent commits. For 1.95% of the cases (5 files),
an increase in the value of the TD was found. Tomcat is the only system in which the percentage of the
increase varies in a much wider range, more in detail, between 0.27% and 160%, with a case in which it
even reaches 800% because it varies from 3 min to 27 min. Instead, for 2.44% (4 files), a decrease in the
value was found, with a percentage of change that varies between 3% and 9%.

As for Gerrit also in the case of Tomcat, the highest percentages refer to the number of cases for
which the files are not found, 49.36% (235 files), and there were no changes in the value of the TD
between the commit analyzed and its subsequent, 46.63% (222 files).

For 1.7% (8 files), there is an increase in the TD value with a percentage of change that varies
between 0.23% and 21%, while for 2.31% (11 files), there is an improvement in the TD value, which is
recorded as a decrease in the value itself. This decrease in the value varies between 0.81% and 67%.

Overall, these results confirm the ones obtained in the previous analysis and show that the impact
on the TD values is the maintained in subcommits. Then, if the removal of SATD leads to a change in
the TD values, this can be observed even in the subsequent commits.

Figure 3 highlights that the highest percentages concern cases of files not found, followed by
unchanged, unlike the previous analysis, where the highest percentage was recorded in the decrease
in the TD value. These results suggest that in most cases, developers tend not to reevaluate their
modification choices once they have intervened on a certain class, leaving the code for subsequent
commits unchanged or modifying it marginally.

Algorithms 2020, 13, 168 10 of 16

Algorithms 2020, 13, x FOR PEER REVIEW

Table 4. Removal commit analysis vs. consecutive commit.

 Number of Files

Delta Log4j Gerrit Hadoop Tomcat Delta

File not found 29 32 142 235 File not found

Unchanged 27 34 54 222 Unchanged

Increased 5 3 5 8 Increased

Table 4 shows that for Log4j in 46.03% of cases (29 files), the file has been removed, while in

42.86% of cases (27 files), the TD remains unchanged between subsequent commits. For 7.94% of

cases (5 files), there was an increase in the value of the metric under examination, while for the

remaining 3.17% (2 files), a decrease in value was found. Specifically, the increase in TD changes in a

range from 0.6% to 8%, while the decrease is between 25% and 50%.

In Gerrit, as in the previous case, there is a high percentage of cases 45.07% (32 files) where the

file has been removed. The table points out that in 47.89% of cases (34 files), the TD value remains

unchanged in subsequent commits. Instead, for 4.23% of cases (3 files), there is an increase in the

value of TD, while just 2.82% (2 files) correspond to a decrease in value. In the commits analyzed, we

observed the intensity of increase ranging from 5% to 48%, instead of the decrease from 7% to 40%.

In Hadoop, there is the highest percentage of files not found, 69.27% (142 files); in 26.34% of

cases (54 files), the TD value remains unchanged in subsequent commits. For 1.95% of the cases (5

files), an increase in the value of the TD was found. Tomcat is the only system in which the

percentage of the increase varies in a much wider range, more in detail, between 0.27% and 160%,

with a case in which it even reaches 800% because it varies from 3 min to 27 min. Instead, for 2.44%

(4 files), a decrease in the value was found, with a percentage of change that varies between 3% and

9%.

As for Gerrit also in the case of Tomcat, the highest percentages refer to the number of cases for

which the files are not found, 49.36% (235 files), and there were no changes in the value of the TD

between the commit analyzed and its subsequent, 46.63% (222 files).

For 1.7% (8 files), there is an increase in the TD value with a percentage of change that varies

between 0.23% and 21%, while for 2.31% (11 files), there is an improvement in the TD value, which is

recorded as a decrease in the value itself. This decrease in the value varies between 0.81% and 67%.

Overall, these results confirm the ones obtained in the previous analysis and show that the

impact on the TD values is the maintained in subcommits. Then, if the removal of SATD leads to a

change in the TD values, this can be observed even in the subsequent commits.

Figure 3 highlights that the highest percentages concern cases of files not found, followed by

unchanged, unlike the previous analysis, where the highest percentage was recorded in the decrease

in the TD value. These results suggest that in most cases, developers tend not to reevaluate their

modification choices once they have intervened on a certain class, leaving the code for subsequent

commits unchanged or modifying it marginally.

Figure 3. Overview of the change type percentage between the removal commit and the subsequent

commit for each project.

Figure 3. Overview of the change type percentage between the removal commit and the subsequent
commit for each project.

4.1.3. Preservation of the Trend between Negative Delta Commit Removal and Next Commit

After identifying the commit removals for which there was a decrease in the value of the TD
(negative Delta) compared to the previous commit, we proceeded to count for how many of these the
subsequent commit preserved the improvement.

For each system analyzed, Table 5 shows the number of cases in which the trend is preserved or
not in the next commit.

Table 5. Negative delta.

of Files

Delta Log4j Gerrit Hadoop Tomcat

Preserved trend in consecutive commit 16 11 21 185

Not preserved trend in consecutive commit 4 2 3 7

In log4j there are 16 cases, equivalent to 80%, in which the TD value was lower or otherwise
unchanged, while for the remaining 4 cases, an increase equivalent to 20% was found.

For Gerrit, in 85% of cases (11 files), the TD value for the next commit remained unchanged or
decreased compared to the commit removal, and for 15% of cases (2 files), the value of the TD gets
worse in the next commit.

The table also highlights that for Hadoop, in 87.5% of cases (21 files), the value of the TD relating
to the next commit remained unchanged or further improved, while in 12.5% of cases (3 files), the value
TD has worsened since commit removal.

For Tomcat, the results are similar, because in 96.35% of cases (185 files) the trend is preserved,
instead of in 3.65% of cases (7 files), where there is a worsening of the TD value, and therefore the
trend is not preserved.

Finally, Figure 4 depicts the percentage of the trend of the TD value, comparing the set of cases
in which the trend is preserved (blue bars), with the other cases in which the trend is not preserved
(orange bars). As the figure shows, the percentage is substantially higher—about four times higher—for
preserved trend than for not preserved. It means that developers tend not only to maintain the quality
of the code but also to try to improve it, following positive actions on the classes.

Algorithms 2020, 13, 168 11 of 16

Algorithms 2020, 13, x FOR PEER REVIEW

4.1.3. Preservation of the Trend between Negative Delta Commit Removal and Next Commit

After identifying the commit removals for which there was a decrease in the value of the TD

(negative Delta) compared to the previous commit, we proceeded to count for how many of these

the subsequent commit preserved the improvement.

For each system analyzed, Table 5 shows the number of cases in which the trend is preserved or

not in the next commit.

In log4j there are 16 cases, equivalent to 80%, in which the TD value was lower or otherwise

unchanged, while for the remaining 4 cases, an increase equivalent to 20% was found.

For Gerrit, in 85% of cases (11 files), the TD value for the next commit remained unchanged or

decreased compared to the commit removal, and for 15% of cases (2 files), the value of the TD gets

worse in the next commit.

Table 5. Negative delta.

 # of Files

Delta Log4j Gerrit Hadoop Tomcat

Preserved trend in consecutive commit 16 11 21 185

Not preserved trend in consecutive commit 4 2 3 7

The table also highlights that for Hadoop, in 87.5% of cases (21 files), the value of the TD

relating to the next commit remained unchanged or further improved, while in 12.5% of cases (3

files), the value TD has worsened since commit removal.

For Tomcat, the results are similar, because in 96.35% of cases (185 files) the trend is preserved,

instead of in 3.65% of cases (7 files), where there is a worsening of the TD value, and therefore the

trend is not preserved.

Finally, Figure 4 depicts the percentage of the trend of the TD value, comparing the set of cases

in which the trend is preserved (blue bars), with the other cases in which the trend is not preserved

(orange bars). As the figure shows, the percentage is substantially higher—about four times

higher—for preserved trend than for not preserved. It means that developers tend not only to

maintain the quality of the code but also to try to improve it, following positive actions on the

classes.

Figure 4. Overview of the trend preservation percentage between negative delta commits removal

and the next commit for each project.

4.1.4. Relationship between Change Type of Commit Removal and File not Found

Considering the 4 types of changes that can be made to remove the SATD, which are listed in

Section 1, the following Table 6 shows, for each project, the number of files not found, the changes

that had been applied to these files, and the relative percentage.

Figure 4. Overview of the trend preservation percentage between negative delta commits removal and
the next commit for each project.

4.1.4. Relationship between Change Type of Commit Removal and File not Found

Considering the 4 types of changes that can be made to remove the SATD, which are listed in
Section 1, the following Table 6 shows, for each project, the number of files not found, the changes that
had been applied to these files, and the relative percentage.

Table 6. Commits removals.

Number of Files

Change Type Log4j Gerrit Hadoop Tomcat

Class Removal 28 14 54 227

Method Removal 1 14 16 1

Method Changed 0 3 62 6

Method Unchanged 0 1 10 1

In Table 6, it is possible to observe that for Log4j, in 96.55% of cases (28 files) when the file
was absent, this was determined by a Class Removal operation, where the class to be analyzed was
deleted. However, for the remaining 3.45% of cases (1 file), the lack of the file was due to a Method
Removal operation.

For Gerrit, there is the same percentage of cases, 43.75% (14 files), where the file is not found,
and the removal is due to the removal of a method or class. Unlike log4j, it has been found that there
are some cases for which there is a change of method 9.38% (3 files), and the method is unchanged
3.12% (1 file).

Hadoop represents the only case in which the absence of the files is due to the change method with
a percentage of 43.66% (62 files). The removal of the class follows with 38.03% (54 files), followed by
the removal of the method 11.27% (16 files) and the unchanged method 7.04% (10 files).

Finally, Tomcat follows the same trend as Log4j and Gerrit, because the highest percentage, 96.60%
(227 files) occurs in the case of class removal, which is followed by 2.56% (6 files) Method Changed and
0.42% (1 file) for both Method Removal and Method Unchanged.

Figure 5 shows that in Log4j, Hadoop, and Tomcat, the most used type of modification to remove
the TD, when the file is not found, is the removal of the class. Instead, in the case of Gerrit, in addition
to the removal of the class, the method is removed as well. So, it means that in general, developers
tend to completely remove the file or method with the TD inside.

Algorithms 2020, 13, 168 12 of 16

Algorithms 2020, 13, x FOR PEER REVIEW

Table 6. Commits removals.

 Number of Files

Change Type Log4j Gerrit Hadoop Tomcat

Class Removal 28 14 54 227

Method Removal 1 14 16 1

Method Changed 0 3 62 6

Method Unchanged 0 1 10 1

In Table 6, it is possible to observe that for Log4j, in 96.55% of cases (28 files) when the file was

absent, this was determined by a Class Removal operation, where the class to be analyzed was

deleted. However, for the remaining 3.45% of cases (1 file), the lack of the file was due to a Method

Removal operation.

For Gerrit, there is the same percentage of cases, 43.75% (14 files), where the file is not found,

and the removal is due to the removal of a method or class. Unlike log4j, it has been found that there

are some cases for which there is a change of method 9.38% (3 files), and the method is unchanged

3.12% (1 file).

Hadoop represents the only case in which the absence of the files is due to the change method

with a percentage of 43.66% (62 files). The removal of the class follows with 38.03% (54 files),

followed by the removal of the method 11.27% (16 files) and the unchanged method 7.04% (10 files).

Finally, Tomcat follows the same trend as Log4j and Gerrit, because the highest percentage,

96.60% (227 files) occurs in the case of class removal, which is followed by 2.56% (6 files) Method

Changed and 0.42% (1 file) for both Method Removal and Method Unchanged.

Figure 5 shows that in Log4j, Hadoop, and Tomcat, the most used type of modification to

remove the TD, when the file is not found, is the removal of the class. Instead, in the case of Gerrit, in

addition to the removal of the class, the method is removed as well. So, it means that in general,

developers tend to completely remove the file or method with the TD inside.

Figure 5. Overview of the change type percentage when the file is not found.

4.2. RQ2: To What Extent Do Self-Admitted Technical Debt Removals Lead to Lower Chidamber and Kemerer

Metrics Values?

To understand to what extent the metrics of Chidamber and Kemerer vary following the

removal of the technical debt, the change in the value of the TD was evaluated concerning the CK

metrics. Then, concerning a subset of metrics (lack of cohesion in method, depth of inheritance tree,

public fields, and public methods), their fit with available thresholds was analyzed.

We compared the TD value trend between two successive commits with the values of CK

metrics. In particular, we verified whether a decrease in the TD corresponded to an improvement in

most of the metrics listed above. On the other hand, we investigated even if a decrease in the TD

value was associated with a worsening of most of the metrics.

Figure 5. Overview of the change type percentage when the file is not found.

4.2. RQ2: To What Extent Do Self-Admitted Technical Debt Removals Lead to Lower Chidamber and Kemerer
Metrics Values?

To understand to what extent the metrics of Chidamber and Kemerer vary following the removal
of the technical debt, the change in the value of the TD was evaluated concerning the CK metrics. Then,
concerning a subset of metrics (lack of cohesion in method, depth of inheritance tree, public fields,
and public methods), their fit with available thresholds was analyzed.

We compared the TD value trend between two successive commits with the values of CK metrics.
In particular, we verified whether a decrease in the TD corresponded to an improvement in most of
the metrics listed above. On the other hand, we investigated even if a decrease in the TD value was
associated with a worsening of most of the metrics.

Specifically, if the developers’ removal of the SATD did not produce improvements for the TD,
we evaluated its effect on the other quality metrics. In particular, if a non-improvement of the technical
debt (worsening or unchanged of the TD) found an improvement in most of the metrics, the action of
the developers had a beneficial side effect for the system, despite a negative impact on the TD. If, on the
contrary, the non-improvement of the TD is also associated with a worsening of most of the metrics
considered, then a completely pejorative effect has occurred on the system. The last case (NA) is one in
which the value of all the metrics described above remained unchanged, or there was an equal number
of improved and worsened metrics, or again, there was no change in the value of the TD among the
two successive commits; therefore, it was not possible to catalog.

For each project, Table 7 reports the number of cases in which (1) the TD has improved and
the metrics have improved, (2) the TD has improved and the metrics have deteriorated, (3) both
TD and metrics have deteriorated, and (4) the TD has deteriorated, but the metrics have improved,
and (5) other cases not considered.

Table 7. Metrics analysis. TD: technical debt.

Project
#Files

TD Improved &
Metrics Improved

#Files
TD Improved but
Metrics Got Worse

#Files
Both TD and Metrics

Got Worse

#Files
TD Got Worse but
Metrics Improved

#Files
NA

Log4j 13 6 12 1 36

Gerrit 7 6 10 10 45

Hadoop 12 2 13 11 88

Tomcat 38 15 11 12 135

For Log4j, for 19.12% of the cases (13), the result produced by SonarQube was validated, since an
improvement in the Technical Debt measure was matched by an improvement in the majority of
the metrics taken into consideration. For 8.82% of the cases (6), the result was not validated, as an

Algorithms 2020, 13, 168 13 of 16

improvement in the value of the TD was accompanied by a worsening of most of the metrics considered.
However, for 1.47% of cases (1), the non-improvement of the TD value had a positive side effect,
improving most of the metrics considered. However, for 17.65% of the cases (12), in addition to the
non-improvement of the TD, there was also a worsening of the majority of the metrics taken into
consideration. Finally, for 52.94% of cases (36), it was not possible to make considerations.

For Gerrit, in most cases, 12.82% (10 cases) of developers’ actions do not cause an improvement
in the TD but hurt both the TD and the metrics. With the same percentage, there is a worsening of
the TD, but at the same time, there was a considerable improvement of the metrics. Only in 8.97%
of cases (7) did the results show an improvement of both values under observation, while in 7.69%
of cases (6), there was an improvement in TD but a worsening of metrics. For the remaining 57.69%
of cases (45), it was not possible to express considerations. Therefore, it is observed that the cases in
which conclusions cannot be drawn represent a significant percentage.

For Hadoop, the table shows that for 9.52% of cases (12), an improvement in technical debt was
accompanied by an improvement in at least one of the metrics considered. In 1.59% of cases (2),
an improvement in the value of TD was accompanied by deterioration in at least one of the metrics
considered, and none of them improved.

For 8.73% of cases (13), the developers’ actions did not lead to any improvement in the value of the
TD but improved most of the metrics considered, thus obtaining a positive effect on them. For 10.32%
of cases (11), there was not an improvement in TD combined with a worsening of the metrics examined.
Finally, in 69.84% of cases (88), it was not possible to take these factors into consideration.

Tomcat also confirms the trend of the previous cases; in fact, the highest percentage belongs to the
case where no consideration was possible, 64% (135 cases).

This percentage was followed with 18% (38) cases in which both the TD value and metrics
improved, and with 7.10% of cases (15) in which there was an improvement in the TD value and at
the same time a worsening of the metrics. Finally, in 5.69% of cases, (12) there is a worsening of both
values, and for 5.21% of cases (11), the TD worsens but the metrics improve.

Figure 6 depicts the data about the trend of the TD value and the CK metrics. The Figure shows
that for Log4j, the cases with SATD removals correspond to improved metrics and improved TD in
more than half of the cases (52.95%). For Gerrit, the number of cases where there is an improvement is
roughly equal to the number of cases where this has not happened. We have also noticed how the
cases in which the developer’s activity produces negative effects on TD values, but positive effects on
the metrics, are almost the same as those in which all the metrics are negatively affected.

Algorithms 2020, 13, x FOR PEER REVIEW

the same time a worsening of the metrics. Finally, in 5.69% of cases, (12) there is a worsening of both

values, and for 5.21% of cases (11), the TD worsens but the metrics improve.

Figure 6 depicts the data about the trend of the TD value and the CK metrics. The Figure shows

that for Log4j, the cases with SATD removals correspond to improved metrics and improved TD in

more than half of the cases (52.95%). For Gerrit, the number of cases where there is an improvement

is roughly equal to the number of cases where this has not happened. We have also noticed how the

cases in which the developer’s activity produces negative effects on TD values, but positive effects

on the metrics, are almost the same as those in which all the metrics are negatively affected.

Figure 6. Overview of the trend of the TD value and the CK metrics.

Finally, unlike the previous project, for Hadoop and for Tomcat, it is possible to notice a greater

number, and therefore a great prevalence, of cases in which it is not possible to make assumptions

about the relationship between TD and metrics. However, for Hadoop, there is only a small

percentage for which there is an improvement in the TD and a worsening of the metrics, and the

number of cases in which the action of the developers led to a non-improvement of the technical

debt is approximately equal to a positive or negative effect on the metrics considered. Instead, in

Tomcat, it is clear that the number of cases in which an improvement in the TD has also led to an

improvement in the metrics is more than two times higher than the other cases in which the opposite

occurs, or the improvement of one and the worsening of the other.

5. Threats to Validity

The findings of the research proposed are subject to the following threats to the validity.

Construct Validity is related to the extent to which the technical debt measures used are

actually reliable. To deal with this issue, the technical debt values have been evaluated using

SonarQube tool. Actually, SonarQube is a widely used open-source tool allowing the identification

and the evaluation of technical debt.

The internal validity threat concerns whether the results obtained correctly follow from the

collected data—specifically, whether the metrics are significant to our conclusions and whether the

evaluations are suitable. In this study, the use of SonarQube to measure Technical Debt [20] has been

related to self-admitted technical debt [10] to assess human-based evaluation with respect to the

automatic assessing of technical debt.

The external validity threat refers to the possibility of generalizing the obtained results. Indeed,

the size of selected dataset is smaller with respect to the population of open source projects;

therefore, this could impact the generalizability of our conclusions. To mitigate this threat,

well-known software projects have been considered, which are continuously evolving and different

for different dimensions, domain, size, timeframes, and the number of versions. Nevertheless,

several limitations to the generalizability of the conclusions remain.

6. Conclusions

Figure 6. Overview of the trend of the TD value and the CK metrics.

Finally, unlike the previous project, for Hadoop and for Tomcat, it is possible to notice a greater
number, and therefore a great prevalence, of cases in which it is not possible to make assumptions
about the relationship between TD and metrics. However, for Hadoop, there is only a small percentage
for which there is an improvement in the TD and a worsening of the metrics, and the number of cases

Algorithms 2020, 13, 168 14 of 16

in which the action of the developers led to a non-improvement of the technical debt is approximately
equal to a positive or negative effect on the metrics considered. Instead, in Tomcat, it is clear that the
number of cases in which an improvement in the TD has also led to an improvement in the metrics is
more than two times higher than the other cases in which the opposite occurs, or the improvement of
one and the worsening of the other.

5. Threats to Validity

The findings of the research proposed are subject to the following threats to the validity.
Construct Validity is related to the extent to which the technical debt measures used are actually

reliable. To deal with this issue, the technical debt values have been evaluated using SonarQube tool.
Actually, SonarQube is a widely used open-source tool allowing the identification and the evaluation
of technical debt.

The internal validity threat concerns whether the results obtained correctly follow from the
collected data—specifically, whether the metrics are significant to our conclusions and whether the
evaluations are suitable. In this study, the use of SonarQube to measure Technical Debt [20] has
been related to self-admitted technical debt [10] to assess human-based evaluation with respect to the
automatic assessing of technical debt.

The external validity threat refers to the possibility of generalizing the obtained results. Indeed,
the size of selected dataset is smaller with respect to the population of open source projects; therefore,
this could impact the generalizability of our conclusions. To mitigate this threat, well-known software
projects have been considered, which are continuously evolving and different for different dimensions,
domain, size, timeframes, and the number of versions. Nevertheless, several limitations to the
generalizability of the conclusions remain.

6. Conclusions

In this study, the relationship between SATD removal and TD values measured has been
investigated using objective criteria. By leveraging a dataset of SATD and their removals in four
open-source projects and by using the SonarQube tool for measuring the TD values, the trends of TD
values when SATD removals occur have been analyzed. Overall, the results of the study indicate that
SATD removals in few cases correspond to an effective reduction of TD values, while in numerous
cases, the classes are indicated as SATD removals disappear from the repository. In particular, from the
obtained results, it clearly emerges that in about half of the cases, the files are removed when SATD
removals occur for all the four systems analyzed. Indeed, SATD removals correspond to class removal
operations in 59.44% of cases and method removal in 19.49% of cases. Intuitively, this may indicate that
developers tend to face technical debt resolution problems by eliminating the classes involved. This is
a strong solution from a software design point of view and suggests that it is possible to hypothesize
that the methods and functions belonging to the removed classes can be moved and integrated into
other classes. The Method Changed corresponds to 17.68% of cases and Method Unchanged represents
the remaining 3.39%.

Regarding the delta of the technical debt between commit removals and the following commits,
in 20.59% of cases, there is a negative value, while it increases or remains unchanged respectively for
12.61% and 13.35% of the cases.

These results indicate that self-admitted technical debt by developers and its removal are
too subjective, and this can lead to very different results from measurements made by means of
objective tools.

In the cases where commit removals correspond to a positive decrease of the technical debt, it is
possible to note that in 84.04% of cases, the next commit preserves the improvement, exhibiting the
same value of TD or the lower one. Then, developers tend to adopt strategies and carry out activities
aimed at preserving the results obtained through a specific commit removal. This can be observed in
the bar charts relating to the difference in the value of the Technical Debt between commits removal

Algorithms 2020, 13, 168 15 of 16

and its subsequent commit. In the graph, the highest percentage, excluding cases of class removals,
corresponds to the preservation of the TD value.

The study also considered the relationship with the OO metrics measured with the CK tool.
In 12.54% of cases, it emerged that an improvement in the measure of the technical debt corresponds
to an improvement of the part of metrics taken into consideration. In 6.03% of cases, the results are
not aligned, and the improvement in the value of the TD corresponds to the worsening of most of the
metrics considered. Finally, in the 7.67% of the cases, the not improved TD value has a positive effect,
improving most of the metrics considered. However, in 13.60% of cases, it can be observed that the
worsening of the TD also corresponds to the worsening of many of the metrics considered.

Overall, the results indicate that self-admitted technical debt is not adequately used by the
software developer. Indeed, their removals actually do not have a significant effect on the quality of
the metrics’ values.

The results obtained will be used to address future research studies to improve the analysis
about the technical debt objective and subjective measures. In the future, we envision to carry out a
quantitative and qualitative investigation on the effects on quality profiles of software project deriving
from the use of subjective measure of technical debt. Of course, in future work, more software
projects will be considered with different characteristics, such as different programming languages and
application domains. Moreover, the relationships with quality attributes will be extended to perform
an in-depth quantitative and qualitative analysis.

Author Contributions: Conceptualization, L.A., M.I.; Methodology, L.A., M.I.; Formal Analysis Investigation
M.C., A.D.V., L.N.; Data curation M.C., A.D.V., L.N.; Writing—original draft preparation, L.A., M.I., M.C., A.D.V.,
L.N.; Writing—review and editing, L.A., M.I. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Aldecoa, R.; Marín, I. Exploring the limits of community detection strategies in complex networks.
In Proceedings of the 2004. Proceedings. 20th IEEE Metrics-based rules for detecting design flaws
International Conference on in Software Maintenance, Chicago, IL, USA, 11–12 September 2004; IEEE:
Piscataway, NJ, USA, 2013.

2. Wong, S.; Cai, Y.; Kim, M.; Dalton, M. Detecting software modularity violations. In Proceedings of the
Proceeding of the 33rd international conference, Association for Computing Machinery (ACM), Granada,
Spain, May 2011.

3. Li, Z.; Liang, P.; Avgeriou, P.; Guelfi, N.; Ampatzoglou, A. An empirical investigation of modularity metrics
for indicating architectural technical debt. In Proceedings of the 10th international ACM Sigsoft conference
on Quality of software architectures (QoSA ’14). Association for Computing Machinery, New York, NY, USA,
27 June 2014; pp. 119–128. [CrossRef]

4. Farias, M.A.D.F.; Neto, M.G.D.M.; Da Silva, A.B.; Spinola, R.O. A Contextualized Vocabulary Model for
identifying technical debt on code comments. In Proceedings of the 2015 IEEE 7th International Workshop
on Managing Technical Debt MTD, Bremen Germany, 2 October 2015; pp. 25–32. [CrossRef]

5. Maldonado, E.D.S.; Shihab, E.; Tsantalis, N. Using Natural Language Processing to Automatically Detect
Self-Admitted Technical Debt. IEEE Trans. Softw. Eng. 2017, 43, 1044–1062. [CrossRef]

6. Brondum, J.; Zhu, L. Visualising architectural dependencies. In 2012 Third International Workshop on Managing
Technical Debt MTD; IEEE: Piscataway, NJ, USA, 2002; pp. 7–14. [CrossRef]

7. Li, Z.; Liang, P.; Avgeriou, P. Architectural Technical Debt Identification Based on Architecture Decisions and
Change Scenarios. In Proceedings of the 2015 12th Working IEEE/IFIP Conference on Software Architecture
Institute of Electrical and Electronics Engineers (IEEE), Victoria, BC, Canada, 29 September 2015; pp. 65–74.

8. Zampetti, F.; Serebrenik, A.; Di Penta, M. Was self-admitted technical debt removal a real removal?
In Proceedings of the 15th International Conference on Computer Systems and Technologies–CompSysTech
’14 Association for Computing Machinery (ACM), Gothenburg, Sweden, 27 May 2018; pp. 526–536.

http://dx.doi.org/10.1145/2602576.2602581
http://dx.doi.org/10.1109/mtd.2015.7332621
http://dx.doi.org/10.1109/TSE.2017.2654244
http://dx.doi.org/10.1109/mtd.2012.6226003

Algorithms 2020, 13, 168 16 of 16

9. Chidamber, S.; Kemerer, C. A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 1994, 20,
476–493. [CrossRef]

10. Aniket Potdar and Emad Shihab. An Exploratory Study on Self-Admitted Technical Debt. In Proceedings of
the 2014 IEEE International Conference on Software Maintenance and Evolution(ICSME ’14). IEEE Computer
Society, Washington, DC, USA, December 2014; pp. 91–100. [CrossRef]

11. Liu, Z.; Huang, Q.; Xia, X.; Shihab, E.; Lo, D.; Li, S. SATD Detector: A Text-Mining-Based Self-Admitted
Technical Debt Detection Tool. In Proceedings of the ICSE 2018, DEMO—Demonstrations, Gothenburg,
Sweden, 30 May 2018.

12. Maldonado, E.D.S.; Shihab, E. Detecting and quantifying different types of self-admitted technical Debt.
In Proceedings of the 2015 IEEE 7th International Workshop on Managing Technical Debt MTD, Bremen,
Germany, 2 October 2015; pp. 9–15. [CrossRef]

13. Maldonado, E.D.S.; Abdalkareem, R.; Shihab, E.; Serebrenik, A. An Empirical Study on the Removal of
Self-Admitted Technical Debt. In Proceedings of the 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME); Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA;
pp. 238–248.

14. Iammarino, M.; Zampetti, F.; Aversano, L.; Di Penta, M. Self-Admitted Technical Debt Removal and
Refactoring Actions: Co-Occurrence or More? In Proceedings of the 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Cleveland, OH, USA, 30 September–4 October 2019;
pp. 186–190. [CrossRef]

15. Wehaibi, S.; Shihab, E.; Guerrouj, L. Examining the Impact of Self-Admitted Technical Debt on Software
Quality. In Proceedings of the 2016 IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Suita, Japan, 14 March 2016; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA; Volume 1, pp. 179–188.

16. Griffith, I.; Reimanis, D.; Izurieta, C.; Codabux, Z.; Deo, A.; Williams, B.; Deo, A.; Williams, B.
The Correspondence between Software Quality Models and Technical Debt Estimation Approaches.
In Proceedings of the 2014 Sixth International Workshop on Managing Technical Debt, Washington, DC,
USA, 30 September 2014; pp. 19–26. [CrossRef]

17. Gabriele Bavota and Barbara Russo. A large-scale empirical study on self-admitted technical debt.
In Proceedings of the 13th International Conference on Mining Software Repositories (MSR ’16). Association
for Computing Machinery, New York, NY, USA, 14–15 May 2016; pp. 315–326. [CrossRef]

18. Zampetti, F.; Serebrenik, A.; Di Penta, M. Automatically learning patterns for self-admitted technical debt
removal. In Proceedings of the 27th IEEE Inter-National Conference on Software Analysis, Evolution and
Reengineering, SANER 2020, London, ON, Canada, 18–21 February 2020; pp. 355–366.

19. Sierra, G.; Tahmid, A.; Shihab, E.; Tsantalis, N. Is Self-Admitted Technical Debt a Good Indicator of
Architectural Divergences? In Proceedings of the 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), Hangzhou, China, 24 February 2019; Institute of Electrical
and Electronics Engineers (IEEE): Piscataway, NJ, USA; pp. 534–543.

20. Letouzey, J.-L.; Ilkiewicz, M. Managing Technical Debt with the SQALE Method. IEEE Softw. 2012, 29, 44–51.
[CrossRef]

21. Aniche, M. Java Code Metrics Calculator (CK). Available online: https://github.com/mauricioaniche/ck.
(accessed on 9 July 2020).

22. Ferreira, K.; Bigonha, M.A.; Bigonha, R.S.; Mendes, L.F.; Almeida, H.C. Identifying thresholds for
object-oriented software metrics. J. Syst. Softw. 2012, 85, 244–257. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/ICSME.2014.31
http://dx.doi.org/10.1109/mtd.2015.7332619
http://dx.doi.org/10.1109/ICSME.2019.00029
http://dx.doi.org/10.1109/mtd.2014.13
http://dx.doi.org/10.1145/2901739.2901742
http://dx.doi.org/10.1109/MS.2012.129
https://github.com/mauricioaniche/ck.
http://dx.doi.org/10.1016/j.jss.2011.05.044
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Detection of SATD
	Investigation of Effects on SATD and Quality Metrics

	Study Setup
	Research Questions
	Data Extraction
	Linking SATD to Technical Debt Values
	Subject Projects

	Results
	RQ1: To What Extent Do Self-Admitted Technical Debt Removals Actually Lead to a Lower Technical Debt Value?
	Change in TD Value between Commit Removal and Previous Commit
	Change in TD Value between Commit Removal and Subsequent Commit
	Preservation of the Trend between Negative Delta Commit Removal and Next Commit
	Relationship between Change Type of Commit Removal and File not Found

	RQ2: To What Extent Do Self-Admitted Technical Debt Removals Lead to Lower Chidamber and Kemerer Metrics Values?

	Threats to Validity
	Conclusions
	References

