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Abstract: We report the design of a Spiking Neural Network (SNN) edge detector with biologically
inspired neurons that has a conceptual similarity with both Hodgkin-Huxley (HH) model neurons
and Leaky Integrate-and-Fire (LIF) neurons. The computation of the membrane potential, which
is used to determine the occurrence or absence of spike events, at each time step, is carried out
by using the analytical solution to a simplified version of the HH neuron model. We find that the
SNN based edge detector detects more edge pixels in images than those obtained by a Sobel edge
detector. We designed a pipeline for image classification with a low-exposure frame simulation layer,
SNN edge detection layers as pre-processing layers and a Convolutional Neural Network (CNN)
as a classification module. We tested this pipeline for the task of classification with the Digits dataset,
which is available in MATLAB. We find that the SNN based edge detection layer increases the image
classification accuracy at lower exposure times, that is, for 1 < t < T/4, where t is the number
of milliseconds in a simulated exposure frame and T is the total exposure time, with reference to
a Sobel edge or Canny edge detection layer in the pipeline. These results pave the way for developing
novel cognitive neuromorphic computing architectures for millisecond timescale detection and object
classification applications using event or spike cameras.

Keywords: edge detection; spiking neural networks; bio-inspired image processing; computational
photography; machine learning and classification

1. Introduction

Advances in computational neuroscience and statistical learning have served as an inspiration
for artificial neural networks, leading to a Cambrian explosion in the field of machine learning with
deep learning architectures and algorithms. However, only a limited set of neural principles have
been fully explored in deep learning architectures. Novel approaches which incorporate models
closer to brain circuits and mechanisms into neural networks are key to extending the state-of-the-art
in deep learning [1–9]. Brain based object recognition is one key area advancing the state-of-the-art
in computer vision. The goal of this work is to understand how a spike based algorithm can detect
edges in scenes compared to human engineered image processing techniques and introduce those
ideas into deep learning architectures. Our general approach for improving deep learning is modular.
We introduce one brain-inspired function that is, spike based computing, at a time or in one layer
in the network and understand how it effects the overall network. Our approach does not result in
a complete brain-like object recognition in one shot, but we hope it contributes to the transition process
from artificial neural networks to brain-like computing neural networks which mimic neuron units
as computing blocks.

Artificial neural networks (ANNs) are based on neurons that use static and continuous valued
non-linear activation functions. Biological neurons use spikes to encode, compute, and transmit
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information using sparse spiking processes, defined by spike timing and spike firing rates. As a
result, biological neurons are mostly inactive and consume energy only when there are spike events.
Spiking neural networks use neuron models that have a biologically inspired computational or
functional representation and are biologically more realistic than ANNs. Spiking neural networks are
event driven and are more energy-efficient than ANNs, and are thus suitable for lower Size, Weight
and Power (SWaP) artificial intelligence devices based on neuromorphic computing architectures
such as IBM TrueNorth [10]. The Hodgkin–Huxley neuron model is the most realistic model of the
neuron [11]. While accurate, this model is computationally inefficient. The Izhikevich neuron model
is a simplified model based on Hodgkin-Huxley equations. It can successfully reproduce all known
neuron firing patterns with a better computational efficiency than the Hodgkin–Huxley model [12].
Hodgkin-Huxley model neurons also play an important role in the research aimed at understanding
the efficient processing of images and learning visual orientations in the visual cortex [13].

We have investigated the scope for computationally efficient use of Hodgkin-Huxley neurons
in a spiking neural network for low-SWaP applications in image processing, such as edge detection
and machine learning. The state-of-the-art in Spiking Neural Network (SNN) architectures is inspired
by Leaky-Integrate-and-Fire type neurons [14,15]. The Leaky-Integrate-and-Fire neuron model
has been extensively used in research. Close variants of the Leaky-Integrate-and-Fire neuron
mechanisms have been implemented in cognitive neuromorphic architectures (CNAs), for example
in IBM-TrueNorth [10] and in Intel-Loihi [16] neuromorphic processors. The Leaky Integrate-and-Fire
model and the Hodgkin-Huxley model are on the opposite ends of the spectrum in terms of accuracy,
where the former is simple but lacks detail, and the latter more complicated but also much more
accurate. Present models of neurons in CNAs solve a differential equation for the membrane potential
at each time step, and it is important to explore ways to incorporate more biologically possible
or accurate neuron models for cutting edge applications of artificial intelligence such as geospatial
analytics, robotic delivery, transit safety and multi-modal intelligence fusion.

2. Background

2.1. Edge Detection Algorithms

Edge detection has been a popular area of research in computer vision. The edge detectors
presented by Roberts [17], Canny [18] and Sobel [19] are commonly used for image processing
applications across domains. An edge in an image is a significant local change in the image
intensity at the pixel level, usually associated with a discontinuity in either the image intensity
or the first derivative of the image intensity across pixels. An edge detector is an algorithm that
produces a set of edge points or edge fragments from an image. Abrupt changes in images are either
step discontinuities or line discontinuities. The smoothing introduced by most sensors filters out
high-frequency components, hence sharp discontinuities rarely exist in images. One way of detecting
step edges in images is to find points that have locally large gradient magnitudes. There is a trade-off
between noise suppression and edge localization while detecting edges using an edge detection
operator. The Canny edge detector uses the first derivative of a Gaussian as an operator to optimize
the signal-to-noise ratio and edge localization.

2.2. Biologically Inspired Neuron Models

The model presented below was originally introduced by Hodgkin and Huxley to investigate
the behavior of a giant squid axon [11]. It has been adopted by many researchers as the benchmark
model for neural activity. Figure 1 shows the equivalent electrical circuits for the Hodgkin-Huxley
(HH) model and the Leaky Integrate-and-Fire (LIF) neuron model. One can see the HH model can
be reduced to the LIF model by removing the two branches of circuit representing the conductance
of Na and K ion channels. In this circuit, C is the capacitance per unit area of the lipid bi-layer
(membrane) separating the ions on the inside and the outside of the cell. The fixed resistance symbol
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indicates the current for a non-specific leak. Variable resistances indicate the voltage dependence of the
conductance on the Na+ and K+ ions. The emf indicates the driving force for the ions, which is given
in the model by the difference between membrane potential, V = Vin − Vout and reversal potential.
I is the total membrane current per unit area, GK and GNa are the potassium conductance per unit
area and sodium conductance per unit area, respectively. VK and VNa are the potassium and sodium
reverse potentials, respectively. GL and VL are the leak conductance per unit area, and leak reverse
voltage, respectively. The action potential of the axon follows the equations:

C
dV
dt

= I − GKn4(V −VK)− GNam3h(V −VNa)− GL(V −VL) (1)

dn
dt

= αn(V)(1− n)− βn(V)n (2)

dm
dt

= αm(V)(1−m)− βm(V)m (3)

dh
dt

= αh(V)(1− h)− βh(V)h, (4)

where, m and h are the activation and the inactivation variables for the Na+ channels, respectively;
n is the K+ inactivation variable; the α and β rates are functions of V at temperature T = 6.3 ◦C [11].
n, m and h are dimensionless quantities ranging from 0 to 1. These four partial differential equations
quantitatively describe the changes in the membrane as functions of space and time. We use the
conductance model to approximate the synaptic activity using the equation [20]:

I = gex(V − Eex) + gin(V − Ein), (5)

where gex and gin are, time-dependent excitatory and inhibitory conductances, respectively. Eex and Ein
are the reverse potentials for excitatory and inhibitory synapses, respectively.

Figure 1. The electrical equivalent circuit of (A) Hodgkin-Huxley neuron model and (B) Leaky
Integrate-and-Fire neuron model.

Img is the normalized intensity of the image in grayscale. The peak conductance is set equal to the
image intensity: qex = Img, qin = Img and synaptic decay times for excitatory and inhibitory synapses
are set to τex = 4 ms, τin = 10 ms, respectively.
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The time dependency of the conductances is given by two differential equations:

gex

dt
= − 1

τex
gex +

R

∑
r=−R

R

∑
f =−R

Wex(r, f )
Aex

qex(x− r, y− f ) (6)

gin
dt

= − 1
τin

gin +
R

∑
r=−R

R

∑
f =−R

Win(r, f )
Ain

qin(x− r, y− f ), (7)

where Aex = 0.0141 mV, Ain = 0.0281 mV. Wex(r, f ) and Win(r, f ) are the Gabor type filters representing
synaptic weight matrices with synaptic radius R for excitatory and inhibitory synapses, respectively.
We solve the above equation for the conductances in a loop over a time window T = 50 ms with the
time step dt = 1 ms with updates to the total synaptic current given by the equation:

Iz = −gexEex − ginEin. (8)

The dynamics of the neuron membrane potential is then governed by:

C
dV
dt

= Iz − GKn4(V −VK)− GNam3h(V −VNa)− GL(V −VL). (9)

We have set the parameters of the neuron model as follows: gl = 0.003, El = −44.42, Cm = 0.01,
Ein = −72.14 mV, Ein = −72.14 mV and Eex = 55.17 mV. The reset membrane potential, Vreset is set to
−70 mV and threshold voltage, Vth as −55 mV. The time constant τreset is set to 3 ms.

3. Spiking Neural Network

3.1. Membrane Potential and Spikes

We use the analytical solution of the Hodgkin-Huxley (HH) model obtained with the assumptions
of GNa = 0 and GK = 0 to solve the membrane potential defined by Equation (9) at each time step t.
According to Aaby [21] and Siciliano [22], this analytical solution is given by the following equation
for the membrane potential:

v1 = (
1
gl

){(−exp(
glt
Cm

))(Iz + 70gl + glEl) + Iz + glEl}. (10)

Aaby [21] and Siciliano [22] showed that the membrane potential obtained by solving the HH
model with numerical methods such as Runge-Kutta and the calculation using the analytical solution
are nearly the same, therefore the above assumptions are reasonable. We find that this approach
is successful in generating edge images, with an added advantage in processing low-exposure images.

At each time step t and for each neuron, the membrane potential v1 is compared with the threshold
voltage. If

v1 > VTh, (11)

the neuron will have a spike that is, S1 = 1 is assigned and v1 is reset to vreset, else the neuron will not
spike, that is, S1 = 0 is assigned.

We used six Gabor type filters, each filter representing a receptor field with a radius R = 5 pixels,
with two filters each for vertical, horizontal and diagonal directions, respectively. The non-zero
elements in the synaptic weight matrices of these Gabor type filters are derived using the scale factors:

Wex(r, f ) = Wmax
ex exp[− (r− xc)2

δ2
r

− ( f − yc)2

δ2
f

], (12)

Win(r, f ) = Wmax
in exp[− (r− xc)2

δ2
r

− ( f − yc)2

δ2
f

], (13)
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where (xc,yc) is the center of the receptor field, δr, δ f are constants, and Wmax
ex , Wmax

in are the maximum
weights for the excitatory synapses and inhibitory synapses, respectively. The magnitude and the ratio
of Wmax

ex and Wmax
in are adjusted such that the neuron does not fire in response to a uniform image

within its receptive field. The size of the receptor field can be set in the range of 2 × 2 to 6 × 6. δr and
δ f control the sensitiveness to edges. Larger receptor field and larger δr, δ f values make the detector
less sensitive to the noise, but edges become vague, so there is a trade-off between these values. The
values of Wmax

ex , Wmax
in , δr and δ f are chosen heuristically. Below, we list the weight matrices of the

six filters used for feature generation along with the parameters and the condition that are used to
generate these matrices.

Matrices for Filter A: Wmax
ex = 0.7093 , Wmax

in = 0.3455, δr = 2, δ f = 6, Wex(r, f ) = 0 for (r− xc) ≤ 0
and Win(r, f ) = 0 for (r− xc) > 0.

WA
ex = 

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.49 0.54 0.55 0.54 0.49
0.23 0.25 0.26 0.25 0.23


WA

in = 
0.11 0.12 0.13 0.12 0.11
0.24 0.26 0.27 0.26 0.24
0.31 0.34 0.35 0.34 0.31

0 0 0 0 0
0 0 0 0 0


Matrices for Filter B: Wmax

ex = 0.7093 , Wmax
in = 0.3455, δr = 2, δ f = 6, Wex(r, f ) = 0 for (r− xc) ≥ 0

and Win(r, f ) = 0 for (r− xc) < 0.
WB

ex = 
0.23 0.25 0.26 0.25 0.23
0.49 0.54 0.55 0.54 0.49

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


WB

in = 
0 0 0 0 0
0 0 0 0 0

0.31 0.34 0.35 0.34 0.31
0.24 0.26 0.27 0.26 0.24
0.11 0.12 0.13 0.12 0.11


Matrices for Filter C: If ( f − yc) = ±1, then Wmax

ex = Wmax
in = 0.4455, else Wex = Win = 0.3455. δr = 6,

δ f = 2, Wex(r, f ) = 0 for ( f − yc) ≤ 0 and Win(r, f ) = 0 for ( f − yc) ≥ 0.
WC

ex = 
0 0 0 0.31 0.11
0 0 0 0.34 0.12
0 0 0 0.35 0.13
0 0 0 0.34 0.12
0 0 0 0.31 0.11
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WC
in = 

0.11 0.31 0 0 0
0.12 0.34 0 0 0
0.13 0.35 0 0 0
0.12 0.34 0 0 0
0.11 0.31 0 0 0


Matrices for Filter D: Wmax

ex = 0.7093 , Wmax
in = 0.3455, δr = 6, δ f = 2, Wex(r, f ) = 0 for ( f − yc) ≥ 0

and Win(r, f ) = 0 for ( f − yc) < 0.
WD

ex = 
0.23 0.49 0 0 0
0.25 0.54 0 0 0
0.55 0.35 0 0 0
0.25 0.54 0 0 0
0.23 0.49 0 0 0


WD

in = 
0 0 0.31 0.24 0.11
0 0 0.34 0.26 0.12
0 0 0.35 0.27 0.13
0 0 0.34 0.26 0.12
0 0 0.31 0.24 0.11


Matrices for Filter E: Wmax

ex = 0.3455, Wmax
in = 0.7093, δr = 6, δ f = 2, Wex(r, f ) = 0 for (r + f − yc) ≤ 2

and Win(r, f ) = 0 for (r + f − yc) > 2.
WE

ex = 
0 0 0 0 0.1137
0 0 0 0.2617 0.1236
0 0 0.3455 0.2691 0.1271
0 0.2617 0.3360 0.2617 0.1236

0.1137 0.2408 0.3092 0.2408 0.1137


WE

in = 
0.2335 0.4943 0.6347 0.4943 0
0.2538 0.5373 0.6899 0 0
0.2609 0.5524 0 0 0
0.2538 0 0 0 0

0 0 0 0 0


Matrices for Filter F: Wmax

ex = 0.7093 , Wmax
in = 0.3455, δr = 6, δ f = 2, Wex(r, f ) = 0 for (r + f − yc) > 2

and Win(r, f ) = 0 for (r + f − yc) ≤ 2.
WF

ex = 
0.2335 0.4943 0.6347 0.4943 0
0.2538 0.5373 0.6899 0 0
0.2609 0.5524 0 0 0
0.2538 0 0 0 0

0 0 0 0 0
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WF
in = 

0 0 0 0 0.1137
0 0 0 0.2617 0.1236
0 0 0.3455 0.2691 0.1271
0 0.2617 0.3360 0.2617 0.1236

0.1137 0.2408 0.3092 0.2408 0.1137


3.2. Gabor Feature Based Edge Detector

Figure 2 displays the Spiking Neural Network architecture designed for spike processing with
four layers of edge detection. The first layer in the architecture is a receptor layer R with dimensions
identical to the input image. The second layer is made of six sets of Gabor filers, WL

nu (L = A to
F, nu = ex or in) where a set consists of a filter each for excitatory (ex) neurons and inhibitory (in)
neurons [8,14]. The third layer is an intermediate layer, consisting of six parallel layers of neurons
Ni (i = 1 to 6) with dimensions identical to the image. SA, SB, SC, SD, SE and SF are the output spike
trains from neuron layers N1, N2, N3, N4, N5 and N6, respectively. The fourth and final layer is the
spike output layer Sout with dimensions identical to the input image. The output of the image is then
an edge map generated by the SNN edge detector. As shown in Figure 2, the framework combines six
Gabor filters to generate an edge map of the image. The synaptic conductance of the Gabor feature is
calculated by combining the spikes from the six Gabor filters using the equation:

gex1(t) = gex(|SA(t)− SB(t)|+|SB(t)− SC(t)| + |SC(t)− SD(t)|+|SD(t)− SE(t)|+|SE(t)− SF(t)|) (14)

and the synaptic current is then evaluated as:

Iz1(t) = −gex1(t)Eex . (15)

Intermediate 
Layer

Gabor Filters

Output Layer
Receptor Layer Output Image 

(SNN Edge)

W
A
ex

W
A
in

R(x,y)

W
C
ex

W
D
ex

W
E
ex

W
F
ex

W
B
in

W
C
in

W
D
in

W
E
in

W
F
in

W
B
ex

xy x
y

N2

N1

N5

N3

N4

N6

y
x

Sout (x,y) I' (x,y)

Figure 2. Spiking Neural Network Architecture showing the neuron spike processing layers of the
edge detector.



Algorithms 2020, 13, 165 8 of 14

The dynamics of the membrane potential is then calculated by solving Equation (9) with gex =
gex1 and gin = 0. The analytical solution with VNa = 0 and VK = 0 is then given by:

v2 = (
1
gl

){(−exp(
glt
Cm

))× (Iz1 + 70gl + glEl) + Iz1 + glEl}, (16)

which is iteratively solved by updating the synaptic current using:

Iz1 = gex1(v2 − Eex) (17)

over the time window T to solve for the output spikes S2(t). The SNN edge map of the input image is
calculated using the 1’s complement of the normalized sum of spikes:

SNNEdge = 1−
T

∑
t=1

S2(t)
T

. (18)

Figure 3 shows a flow chart with the computational steps in the MATLAB implementation of the
SNN edge detector.

Figure 3. Flow chart showing the computational steps for the implementation of the Spiking Neural
Network (SNN) edge detector in MATLAB with I as the input image of m× n pixels.

4. Results and Discussion

4.1. Comparison of SNN Edges with Sobel and Canny Edge Detectors

The SNN edge detector presented in Section 3 is used to generate edges of three example images
from the Berkeley Segmentation Dataset and Benchmark collection, BSDS500 [23]. Figure 4 compares
these example images and their edge map based on the SNN detector with the results from the Sobel
edge and Canny edge detectors. As can be seen in Figure 5, the SNN edge detector generates thicker
edges that are brighter and offer higher contrast. In addition, the spatial extent of the edge features
generated by the SNN edge detector is qualitatively higher compared to the edge features of Sobel
edge and qualitatively lower compared to the edge features of the Canny edge. We also find that the
shape of the objects is more distinctive and recognizable in the SNN edge map than in the other two
edge maps.
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Figure 4. Examples images along with the comparison of edges generated by SNN, Canny and Sobel
edge detectors.

Figure 5. Comparison of edge detection methods for low exposure frames, t = 1 − 50 ms with an
example image from MIT Sun Database.

In order to test the potential of our SNN edge detector for applications in neuromorphic
computing, especially processors such as IBM-TrueNorth, we first simulated low-exposure image
frames with exposure times in the range of 1 to 50 ms using a Non-linear Subtraction Range (NSR)
low-exposure frame generation algorithm [24]. Then, we generated the SNN edges of the low
exposure frames. Figure 5 shows the SNN edges generated for an example image from the MIT Sun
Database [25] at various low exposure times in the range of 1 to 50 ms for the image. To compare the
quantity of pixels that are part of the edges in the image at different exposure times, we define Edge
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Pixel Metric (EPM):

EPM = ∑
i,j

δ(I′(i, j)− 1), (19)

where I′ is the edge map of the image generated by any of the three edge detectors and δ is the Dirac
delta function. Figure 6 shows the exposure time dependence of the edge pixel metric, EPM, for an
example image from the MIT Sun Database. As can be seen in the plot, the metric for SNN edge
is significantly higher compared to the respective metric values for both the Sobel and Canny edge
detectors. The higher metric for the SNN edge comes from the broader edge lines as a result of the
unique architecture used for the edge detector.

Figure 6. Total number of edge pixels in the SNN edge map of the input image as a function of
simulated exposure time t.

4.2. Edge Based Classification of Digits Using a Convolutional Neural Network (CNN)

Object classification using deep learning from a series of 1 ms image frames captured with
a camera is an interesting area of research for on-board signal processing and surveillance applications.
In this context, we investigated the potential use of the SNN edge detector as a feature extraction layer
in a CNN for object classification from low exposure image frames, each frame with an exposure time
of 1 ms, simulated by the Non-linear Subtraction Range (NSR) algorithm [24]. The NSR algorithm
is used to create low exposure frames with an assumed exposure time T of 40 ms for the Digits dataset,
which is available in MATLAB [26]. The Digits dataset consists of 1000 images for single digit numbers,
0–9. Low exposure frames are created for all 10,000 images in the dataset. Such low exposure image
versions of the Digits dataset are created with the following total exposure times; 1, 2, 3, 5, 10, 15,
20, 30 ms. We used the CNN architecture available in MATLAB [26] for digits classification with
the introduction of an additional edge detection layer before the input neuron layer. We explored
three cases of edge detection layers: the Canny edge detection layer, the Sobel edge detection layer
and the SNN edge detection layer to compare the role and performance of the edge detection layer
as a type of feature generation layer in classification. Then, each of these low exposure versions of
the Digits dataset is used for both the training and the testing of the CNN for classification. Figure
7 shows the process flow diagram used for combining the 1 ms frame generation algorithm, SNN
edge detection layer and a CNN for classification of digits in the Digits dataset. Therefore, our deep
learning network combines concepts from both the artificial neural network and the SNN in a single
network. Figure 8 illustrates the architecture of the CNN along with the details of the layers and
their sizes. The CNN part of the network consists of the following layers in the order given: A 28
× 28 × 1 neuron image input layer, a convolutional layer (3 × 3 × 16 filter), a batch normalization
layer, a Rectified Linear Units (ReLu) layer, a max pooling layer (pool size: 3) with a stride of 2, a
convolutional layer (3 × 3 × 32 filter), a batch normalization layer, a ReLu layer, a max pooling layer
(pool size of 2) with a stride of 2, a convolutional layer (3 × 3 × 64 filter), a batch normalization layer,
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a ReLu layer, a fully connected layer (10), a softmax layer and a classification layer. The first two
numbers in the parenthesis correspond to the size of the filter in the layer and the third number defines
the number of filters. Each convolution layer has a padding of 1. Figure 9 compares the example edge
images for the low exposure frames after the edge layer in the network. The training and testing is
performed for three epochs with a validation frequency of 30. The network is first trained with 75% of
a random (but equal) number of each class of images from the low exposure dataset and tested with
the remaining 25% of the low exposure dataset. The prediction accuracy of the SNN embedded CNN
network as a function of the exposure time is displayed in Figure 10. The uncertainty in the prediction
accuracy, displayed as error bars in the above figure, is determined from a 20-fold cross-validation
experiment. We find that the network with the Canny and Sobel edge detection layers has a superior
classification accuracy than the network with the SNN layer for t > T/2. We speculate that higher
spike rates at these exposure times suppress the gradients and makes the detector less sensitive to
edge features. Surprisingly, for exposure times t < T/2, the network with the SNN edge detection
layer outperforms the networks with either the Sobel edge or Canny edge detection layer. Another
noteworthy result is that the classification accuracy with the SNN edge detector layer in the network
remains in the 88% to 90% range, while the accuracy with the other two edge detector layers drops to
about 82% for the first 5 ms frames. The higher classification accuracy does not seem to arise from
higher number of edge pixels. As can be seen in Figure 6, the number of edge pixels is the highest for
the SNN edge at all the exposures times compared to the Canny edge and the Sobel edge, however
its classification accuracy is lower compared to the classification accuracy of the Canny edge and
the Sobel edge at higher exposure times. The edge pixel metric for the Canny edge and the Sobel
edge are constant over exposure times, yet their classification accuracy drops at lower exposure times.
The higher classification accuracy found for the SNN edge at low exposure times t < T/2 can be
attributed to more discriminating features, which are retained by the broader edges, between the
classes in the SNN edge images compared to Canny edge and Sobel edge images.

Figure 7. The process flow of the pipeline, which combines a 1 ms frame generator, SNN edge detector
and a Convolutional Neural Network (CNN), for Digits classification.

Figure 8. The architecture of the CNN used for Digits classification.
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Figure 9. Comparison of edge detection methods for low exposure frames, t = 1 − 40 ms with an
example image from Digits dataset.

Figure 10. Classification accuracy as a function of number of 1 ms in the image used for edge detection.

5. Conclusions

We have investigated how a Spiking Neural Network (SNN) can be designed with biologically
inspired neurons that closely resemble the Hodgkin-Huxley neurons for edge detection. We find that
the one-step calculation of the membrane potential using the analytical expression from the exact
solution of a Hodgkin-Huxley neuron model, with the assumption of zero conductance for Na and
K ion channels, is computationally less burdensome compared to solving the system of ordinary
differential equations for the Hodgkin-Huxley neuron model using a numerical method. The edge
maps generated with the SNN based edge detector have similar structural features as edge maps
created with popular edge detectors, specifically the Canny edge and Sobel edge detectors. We find
that the SNN edge detector has an advantage in object detection for images generated at low exposure
times on the order of a few milliseconds with 8-bit images. These results emphasize an alternative
and computationally easier approach for SNN based image processing layers for machine learning in
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the form of combining the best of the second generation networks that is, ANNs and third generation
networks, that is, SNNs. By combining an event camera like silicon retina that operates only in the
visible spectrum with a neuromorphic simulator and a neural network, novel AI applications that
target object detection in low-light conditions can be developed.
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