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Abstract: Determining contingency reserve is critical to project risk management. Classic methods
of determining contingency reserve significantly rely on historical data and fail to effectively
incorporate certain types of uncertainties such as vagueness, ambiguity, and subjectivity. In this
paper, an interval type-2 fuzzy risk analysis model (IT2FRAM) is introduced in order to determine
the contingency reserve. In IT2FRAM, the membership functions for the linguistic terms used
to describe the probability, impact of risk and the opportunity events are developed, optimized,
and aggregated using interval type-2 fuzzy sets and the principle of justifiable granularity. IT2FRAM is
an extension of a fuzzy arithmetic-based risk analysis method which considers such uncertainties and
addresses the limitations of probabilistic and deterministic techniques of contingency determination
methods. The contribution of IT2FRAM is that it considers the opinions of several subject matter
experts to develop the membership functions of linguistic terms. Moreover, the effect of outlier
opinions in developing the membership functions of linguistic terms are reduced. IT2FRAM also
enables the aggregation of non-linear membership functions into trapezoidal membership functions.
A hypothetical case study is presented in order to illustrate the application of IT2FRAM in Fuzzy
Risk Analyzer© (FRA©), a risk analysis software.

Keywords: risk analysis; contingency reserve; aggregation; interval type-2 fuzzy set; principle of
justifiable granularity; Fuzzy Risk Analyzer© (FRA©)

1. Introduction

Dealing with uncertainties is an unavoidable challenge of every project. The effect of uncertainties
on project objectives, which may be positive or negative, can be controlled by implementing a
risk management process. Risk management starts with developing the risk management plan,
which determines how risk management activities will be structured, funded, and performed.
Subsequently, the risk events must be identified and documented. Then, these events must be
analyzed qualitatively and quantitatively in order to be prioritized based on their probability and
impact, and to determine the contingency reserve. Response strategies must be identified, assessed,
and implemented in order to control the probability of occurrence and/or the impacts of the events.
Finally, the effectiveness of the risk management process throughout the project must be evaluated and
controlled. In this paper, to highlight the importance of uncertainties with positive effects, “risk event”
and “opportunity event” are defined as uncertain events or conditions that can negatively or positively
affect the project objectives, respectively.

To deal with uncertain events, there are two types of reserves in a project, namely management and
contingency reserves, that must be calculated and considered in the project budget. Contingency reserve
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is defined as the money or time allocated in the cost or schedule baseline to reduce the overruns of
project objectives due to known risks and opportunities [1,2]. The management reserve is an amount of
project budget that is reserved to handle unforeseen events [2]. The project budget is the summation of
the cost baseline and management reserve. The cost baseline is made up by adding the cost estimates
of all work packages with contingency reserve [2]. Ahmadi-Javid et al. [3] categorized uncertain
events into two main groups: (1) unknown unknowns that must be addressed with management
reserve, and (2) known unknowns that must be addressed proactively (i.e., by employing avoiding,
mitigating, and transferring strategies for risks and also exploiting, enhancing, and sharing strategies
for opportunities) or reactively (i.e., by employing active and passive accepting strategies). Those events
that are addressed by applying proactive response strategies or active acceptance response strategies are
dealt with using contingency reserve. Risk and opportunity events addressed with passive acceptance
response strategies are dealt with using management reserve [1,4]. Contingency reserve is a key tool
for the decision makers of a project for controlling and responding to risks and opportunities.

Allocating too little or too much for the contingency reserve amounts required for a project
may result in significant losses and inefficient resource management [5]. The accurate estimation of
contingency leads to achieving project objectives (e.g., schedule and cost objectives) [5,6]. Moreover,
different uncertainties need to be considered in calculating contingency reserve. Helton [7] first defined
the dual nature of uncertainty by categorizing it into “objective uncertainty” and “subjective uncertainty.”
Objective uncertainty refers to the variability that comes from the stochastic characteristic of an
environment and its concepts rooted in probability theory. Subjective uncertainty stems from employing
approximate reasoning and linguistically expressed expert knowledge. Fayek and Lourenzutti [8]
break down subjective uncertainty into vagueness, ambiguity, and subjectivity. Vagueness results from
the lack of sharpness of relevant distinctions. Ambiguity stems from the lack of certain distinctions
characterizing an object, from conflicting distinctions, or from both. Subjectivity results from the
influence of personal beliefs or feelings rather than facts [9]. Classic techniques of calculating the
contingency reserve have serious drawbacks and fail to consider vagueness, ambiguity, and subjectivity
uncertainties. On the one hand, deterministic approaches, which are based on the intuition and
experience of experts, have difficulty calculating the exposure of risk events and determining the
appropriate contingency applying to a single crisp value [10]. Moreover, deterministic techniques
fail to consider opportunities. On the other hand, in the probabilistic approaches, the value of
contingency reserve can be affected by the lack of quality and quantity in historical data, since these
techniques significantly rely on historical data [5]. Additionally, probabilistic techniques assume that
cost variations are inherently random. Many find it difficult to perform an accurate and precise risk
assessment, since the data are either scarce or of low quality [11].

Fuzzy logic, which is based on the fuzzy set theory developed by Zadeh [12,13], fills the gap for
classic techniques as it handles such uncertainties. Applying fuzzy logic, experts are able to assess the
probability and impact of events with linguistic terms such as very low, medium, and high, which can
be represented by fuzzy numbers [14]. Fuzzy numbers are a special type of fuzzy sets employed to
represent the values of real-world parameters when the exact amounts cannot be measured due to a
lack of information or knowledge [15]. Reviewing the literature shows that fuzzy logic alone or as
integrated with other techniques can be employed to address the limitations associated with classic
contingency reserve determination tools and techniques. A hybrid method that integrates the fuzzy
set theory with the Monte Carlo simulation, proposed by Iranmanesh et al. [10], can handle both
random and subjective uncertainties. However, this suggested method fails to determine the individual
effect of each risk event, and instead calculates the range estimation of the combined effect of risk
events. Another method proposed by Nieto-Morote and Ruz-Vila [16] combines the analytic hierarchy
process (AHP) with fuzzy set theory to prioritize different risk factors in a building project. However,
this proposed fuzzy AHP method [16] fails to deal with definite scales and has a high potential of
encountering inconsistencies during pairwise comparison. In another study [17], fault tree analysis
(FTA) and fuzzy set theory are integrated for the quantitative assessment of risk events; however,
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this hybrid approach is unable to handle the drawbacks of the FTA method, which does not model large
systems and is inflexible for incorporating later changes. Failure mode and effect analysis (FMEA),
AHP, and fuzzy set theory are combined by Abdelgawad et al. [15] to assess risks and determine
contingency; however, establishing clearly defined terms for its input and output variables requires a
significant effort. To capture the interdependencies among different risk events and variables, a fuzzy
system dynamic model [18] has been proposed; however, it has difficulty establishing the feedback
loops and the mathematical equations. Fateminia et al. [1] proposed using fuzzy arithmetic-based
risk analysis method (FRAM) to fill the gap by addressing the imprecision in measurement and the
subjective uncertainty inherent in experts’ estimations. FRAM applies a fuzzy arithmetic procedure
that solves the problem of substantial reliance on historical data in probabilistic methods. The fuzzy
arithmetic procedure employs expert judgment, linguistic scales, and fuzzy numbers resulting in the
flexibility of FRAM. Moreover, experts are able to customize linguistic scales and fuzzy numbers for
different types of projects and phases. FRAM also considers risk attitude in terms of its contingency
calculation and output determination methods. Compared to fuzzy FMEA [15], FRAM does not rely on
complicated failure cause-and-effect scenarios in its computation procedures. Moreover, FRAM does
not depend on feedback loops with complex mathematical equations when several variables are
considered in the fuzzy system dynamics model [18]. Moreover, FRAM addresses the measurement
imprecision and the subjective uncertainty of experts’ opinions when assessing the probability and
impact of risks and opportunities. Finally, FRAM enables risk analysts to estimate contingency at
different levels of confidence.

FRAM has limitation despite all the mentioned advantages. To implement FRAM in practice, it is
necessary to determine the membership functions of linguistic terms pertaining to risk probability,
risk impact, opportunity probability, and opportunity impact. FRAM does not propose a systematic
method for determining the membership functions of linguistic terms for probability and impact,
which are the foundations of its risk analysis process. Moreover, FRAM fails to aggregate the opinions
of different subject matter experts (SMEs) about the membership functions of the aforementioned
linguistic terms. The membership functions of linguistic terms can vary depending on how the
characteristics of each project affect experts’ judgements based on their risk attitude, knowledge,
experience, and so on. In general, the two main categories of estimating membership functions
are expert-driven and data-driven approaches [19]. In expert-driven approaches, the elicitation of
membership functions is considered as a process of knowledge acquisition via eligible experts. The most
common method in expert-driven approaches is the AHP [20], which enables experts to perform
pairwise evaluations of alternatives in order to determine their membership function. Membership
functions in data-driven approaches, however, are elicited based on the organization (structuring) of
data, such as in fuzzy clustering [21]. There are some limitations to eliciting membership functions
through the aforementioned approaches. For example, AHP, as the most common expert-driven
method, is not applicable in forming the membership functions of risk analysis linguistic terms in
FRAM. To employ AHP, all risks and opportunities must be considered as alternatives for pairwise
comparison, which can be impossible or very time-consuming. Moreover, the aggregation of different
opinions of SMEs is impossible through AHP. Besides, according to Pedrycz and Wang [19], there are
no explicit performance indexes invoked by the AHP approach. However, since industries suffer from
accessing qualified data about risk management, data-driven approaches are not applicable in most
cases. Moreover, they may cause fuzzy sets that are not semantically meaningful, which means that
fuzzy clustering could result in some “crowded” fuzzy sets with unclear meaning and they would
need to be optimized [19]. These further adjustments during the optimization process could hinder the
interpretability aspect. Various optimization methods are employed to adjust fuzzy sets including the
simulated annealing algorithm [22], genetic algorithm [23,24], and tabu search [25].

To address these gaps, the objective of this paper is to propose an interval type-2 fuzzy risk
analysis model (IT2FRAM) that extends FRAM [1] for determining contingency reserve. The proposed
method employs interval type-2 fuzzy sets (introduced by Zadeh [14]) in order to provide a broader
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knowledge representation and approximate reasoning for computing with words. Because “words
mean different things to different people” [26,27], wider knowledge representation in terms of
a spread in membership values through type-2 fuzzy sets is more useful as compared to the
standard fuzzy sets [27–31]. IT2FRAM aggregates the opinion of SMEs using optimized interval
type-2 fuzzy sets. The principle of justifiable granularity [11] is employed for determining the
optimized interval type-2 membership functions of risk analysis concepts (i.e., linguistic variables
including probability and impact). This principle provides an alternative to clustering methods
in constructing information granules based on the criteria of coverage and specificity of data [32].
However, fuzzy arithmetic using type-2 membership functions versus type-1 membership functions is
computationally more demanding [21]. Thus, type-2 membership functions are type-reduced to type-1
or a standard membership function to perform the fuzzy arithmetic and the calculate crisp output
values. The statistical representation of the optimized interval type-2 membership function is used to
form a standard membership function, consequently enabling it to be used in a software tool such as
the Fuzzy Risk Analyzer© (FRA©). A hypothetical case study is presented to illustrate the application
of IT2FRAM in FRA©.

The rest of this paper is organized as follows. First, the basic definitions of required fuzzy
arithmetic operations, type-2 fuzzy sets, and the principle of justifiable granularity are discussed and
are necessary to model. Second, the use of IT2FRAM to determine the contingency reserve of projects
is described. This model is developed to determine the optimized membership values of linguistic
terms of probability and impact for risk and opportunity events. Then, a hypothetical case study was
used to show how IT2FRAM can be implemented in practice using FRA©. Finally, the contributions
and results of this research are presented, and potential future extensions are discussed.

2. Preliminaries Required in IT2FRAM

Fuzzy arithmetic operations, type-2 fuzzy set concepts, and the principle of justifiable granularity
are applied in IT2FRAM. Fuzzy arithmetic enables IT2FRAM to employ natural language to assess
risk and opportunity events and in turn, determine project contingency reserve by employing fuzzy
numbers, which represent linguistic scales. The initial membership functions of linguistic terms are
formed using interval type-2 fuzzy set concepts. The intervals of type-2 fuzzy sets are optimized
applying the principle of justifiable granularity. Then, the optimized interval type-2 fuzzy sets are
converted into standard fuzzy sets.

2.1. Fuzzy Arithmetic Operations in IT2FRAM

A fuzzy set is defined as a set of elements with a degree of membership varying between 0 and 1.
The elements of crisp sets, however, have membership degrees of either 1 (fully belong in the set) or 0
(do not belong in the set) [12,33]. IT2FRAM uses either the α-cut technique (standard fuzzy arithmetic)
or the extension principle based on different t-norms (extended fuzzy arithmetic) to perform fuzzy
arithmetic operations. The standard fuzzy arithmetic is based on interval analysis and discretizes
the input fuzzy numbers into several α-cuts. Then, the α-cut of the output is achieved by interval
calculations on each α-level cut of the inputs. Subsequently, the union of the α-cuts is applied to gain
the final fuzzy set based on the representation theorem. The mathematical representation of standard
fuzzy arithmetic is illustrated in the following:

C(z) = A(x) ~ B(y) = supα∈[0,1] α((Aα ∗ Bα)(z)) (1)

where A(x) and B(y) are input fuzzy numbers and C(z) is an output fuzzy number. The α-cuts
of the input fuzzy numbers are represented by Aα and Bα, and ~ represents the basic arithmetic
operations. The accumulation of fuzziness results in the overestimation of uncertainty in a standard
fuzzy arithmetic method [34]. Extended fuzzy arithmetic is preferred in recent applications because
of its capability to reduce uncertainty overestimation problems using any t-norm other than min
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t-norm [35–37]. Extended fuzzy arithmetic, developed by Zadeh [12–14], extends the domain of a
function on fuzzy sets. It generalizes a common point-to-point mapping of a function to a mapping
between fuzzy sets. As presented, in extended fuzzy arithmetic, the membership degree of each output
is calculated by taking the supremum of the t-norms of the membership degrees of the inputs:

C(z) = A(x) ~ B(y) = supz=x∗y (t(A(x), B(y))) (2)

where t can be one of the common four t-norm operators on fuzzy sets, fuzzy number C(z) is
the output, and fuzzy numbers A(x) and B(y) are the inputs. The t-norm t is a binary operation,
T : [0, 1] × [0, 1]→ [0, 1] , which is commutative, associative, and non-decreasing in each argument,
and t(x, 1) = x for each x ∈ (0, 1). The strength and continuity of common fuzzy t-norms (minimum,
algebraic product, Lukasiewicz, and drastic product) are different. In terms of strength, the minimum
t-norm is the highest and the drastic product t-norm is the lowest [34]. Furthermore, the changes in
output fuzzy numbers result in continuous t-norms, which are less sensitive to the changes in input
fuzzy numbers compared to non-continuous t-norms.

Various defuzzification methods are suggested in the literature. As illustrated in Figure 1, the single
value (defuzzification) methods include the smallest of maximum (SOM), middle of maximum (MOM),
largest of maximum (LOM), and the center of area (COA). The best representation of the shape of the
output fuzzy number is the COA.
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Figure 1. Defuzzification methods used in the interval type-2 fuzzy arithmetic-based risk analysis
model (IT2FRAM) and implemented in Fuzzy Risk Analyzer (FRA©): smallest of maximum (SOM),
middle of maximum (MOM), largest of maximum (LOM), and center of area (COA).

The level of confidence associated with the range of output fuzzy number, represented by the
confidence level, can be determined from the corresponding α-cut level (or possibility degree) and
ranges between 0 and 1. The possibility degree is the difference between 1 and the confidence level
(1—confidence level).

2.2. Associated Concepts of Type-2 Fuzzy Set

In IT2FRAM, the interval type-2 fuzzy sets are employed to represent the different opinions of a
group of decision makers, or SMEs. This section presents brief introductions to the basic definitions,
equations, and theorems associated with type-2 fuzzy sets, and the detailed theoretical background
can be found in Mendel [26], Mendel and John [38], and Mendel et al. [39].
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Definition 1. A type-2 fuzzy set, denoted by Ã and represented by a type-2 fuzzy set membership function
µÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], is defined as

Ã =
{(
(x, u),µÃ(x, u)

)∣∣∣∣ ∀u ∈ Jx ⊆ [0, 1]
}
. , (3)

in which 0 ≤ µÃ(x, u) ≤ 1. Ã can be expressed as

Ã =

∫
x∈X

∫
u∈Jx

µÃ(x, u)/(x, u). Jx ⊆ [0, 1] (4)

where
∫ ∫

denotes union over all admissible x and u.

Definition 2. If µÃ(x, u) = 1, Ã is called an interval type-2 fuzzy set. Thus:

Ã =

∫
x∈X

∫
u∈Jx

1/(x, u) Jx ⊆ [0, 1] (5)

Interval type-2 fuzzy sets are a special case of general type-2 fuzzy set. Interval type-2 fuzzy sets can be defined
based on vertical slice representation as

Ã =

∫
x∈X

µÃ(x)/x =

∫
x∈X

[∫
u∈Jx

1/u
]
/x Jx ⊆ [0, 1]. (6)

Definition 3. Primary membership of x is the domain of a secondary membership function. Thus, in Equation (6),
the primary membership of x is Jx, Jx ⊆ [0, 1] ∀x ∈ X. The secondary grade is the amplitude of secondary
membership function. For an interval type-2 fuzzy set, all secondary grades are equal to 1.

Definition 4. Footprint of uncertainty (FOU) of Ã is the bounded region depicting the uncertainty in the
primary membership function. It can be represented as the union of all the primary membership functions:

FOU
(
Ã
)
=

⋃
x∈X

Jx. (7)

This is vertical slice representation of FOU.

In the case of an interval type-2 fuzzy set, FOU conveys all the necessary information; the secondary
grades do not convey any new information. Knowledge of FOU is highly useful, because it highlights
the inherent uncertainties of the type-2 fuzzy set membership functions whose shape indicates the
nature of uncertainties. Furthermore, it helps in choosing appropriate type-2 fuzzy set membership
functions. Some of the commonly used FOUs are shown in Figure 2.
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2.3. Interval Type-2 Fuzzy Set Modeling Using Uncertainty Degree

There are two methods of constructing interval type-2 fuzzy set models from data. One is the
interval approach [28,40] and the other is the fuzzistics approach [27,30,31]. The former method
involves the use of statistics to realize the interval type-2 fuzzy set modeling, whereas the latter uses a
kind of uncertainty measure (mostly centroid) of interval type-2 fuzzy sets in order to ensure that an
identified interval type-2 fuzzy set model captures the uncertainty of the collected data. In addition
to the well studied centroid of interval type-2 fuzzy sets [27,30,31], other uncertainty measures exist
in the literature [41]. In Li et al. [41], the uncertainty measure is called the “uncertainty degree of
interval type-2 fuzzy sets” and it is based on the lower and upper α-cuts of interval type-2 fuzzy sets.
This method provides a type-1 fuzzy set if all the uncertainties in the interval end points data vanish.
This method is applied in modeling the interval type-2 fuzzy sets from the data collected from surveys.
The brief description of uncertainty degree method in modeling interval type-2 fuzzy sets, as adapted
from Li et al. [41], is described below.

Suppose p words need to be modeled using interval type-2 fuzzy sets. To model these, data need
to be collected from a group of SMEs. Let us assume n subjects are surveyed. Thus, for each word we
get n intervals

[
xl

i, xr
i

]
. The sample mean xl

m for left end points, mean xr
m for right end points, and the

standard deviation sl for the left end points, sr for right end points are given as follows:

xl
m =

∑n
i=1 xl

i
n

(8)

xr
m =

∑n
i=1 xr

i
n

. (9)

sl =

√∑n
i=1

(
xl

i − xl
m

)2

n
. (10)

sr =

√∑n
i=1

(
xr

i − xr
m

)2

n
. (11)
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Statistically, the word should be contained within the
[
xl

m, xr
m

]
data. For some subjects, the word

should be contained in the data
[
xl

m − ∆x, xl
m

]
∪ [xr

m, xr
m + ∆x]. The following equation was used to

determine the end points’ uncertainty degree [41]:

ρx =
2∆x

xr
m − xl

m + 2∆x
(12)

Li et al. [41] have shown that in the case of ∆x = 0, the interval type-2 fuzzy set reduces to a type-1
fuzzy set.

2.4. Principle of Justifiable Granularity

The principle of justifiable granularity is used in IT2FRAM to determine the optimum value of
upper and lower bounds of intervals in interval type-2 fuzzy sets. One of the fundamentals of granular
computing is the principle of justifiable granularity, which is about constructing information granules
based on the available experimental evidence resulting in a form of a collection of one-dimensional
numeric data, D = {x1, x2, ..., xN} where xk ∈ R. A given information granule Ω must satisfy two
requirements of high specificity and appropriate experimental evidence (coverage). High specificity
refers to the required level of abstraction of information granules and implies their tangible semantic
of them. Higher specificity represents more specific (less abstract) information granules. Moreover,
an “experimentally justified information granule” means that an information granule should be
supported by the available experimental evidence. The following definitions and equations are
adapted from Pedrycz (2005) [21], Pedrycz and Homenda [32], and Pedrycz (2018) [42].

Definition 5. The numeric evidence accumulated within the bounds of information granule Ω (coverage) must
be as high as possible. Therefore, the existence of the information granule Ω is justified as it reflects the existing
experimental data D. For instance, if the information granule Ω is a set of numeric data, then the more data
contained within the bounds of Ω, the better, and the set is more legitimate. Coverage is related to the ability of
information granules to represent numeric data. Coverage is expressed as the cardinality (count) of the data X
included in the interval [m,b], assuming m in the numeric representative of a data set, such as a median.

cov = card
{
xk

∣∣∣xk ∈ [m, b]
}

(13)

Definition 6. The information granule Ω must be specific, which means that the resulting information granule
must be semantically meaningful. This implies that the smaller the information granule Ω is, the better. In general,
specificity is a measure of how detailed the formed information granule is. Some substantial requirements are:
(1) specificity is the highest when there is only one element in the formation granule, (i.e., sp({x}) = 1); (2) if two
information granules have the relationship A ⊂ B, then sp(A) > sp(B); and (3) specificity is the lowest when the
information granule Ω is constructed as an entire universe of discourse. We can view specificity as a decreasing
function of the size of information granules. In the case of an interval, we can relate specificity directly with
the length of the interval and define any decreasing function of the length that is |m−b| or |m−a|. For instance,
we can express the specificity of A = [m,b] in the following detailed form:

sp(A) = exp(−|m − b|) (14)

or exp(−|m − a|) for the lower bound of the interval. Alternatively, we can satisfy the formulation of the specificity
measure with the relative length of all the possible values assumed by numeric data (the length). The specificity
then is as follows:

sp = 1−
b−m

xmax −m
. (15)

Note that both Equations (14) and (15) result in the highest specificity amount when b = m, however Equation (15)
is equal to the zero value of specificity for b = xmax.
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Definition 7. Coverage and specificity measures are conflicting by nature, which means that increasing coverage
decreases specificity and vice versa, and constructing the information granules is a result of tradeoff between
them. Therefore, there is an optimization problem with a multiplicative form of the objective function:

V(b) = coverage × specificity (16)

Equation (16) can be realized independently for the lower and upper bound of the interval as follows:

V(b) = f1(card{xkD|med(D) < xk ≤ b}) ∗ f2(|med(D) − b|) (17)

V(a) = f1(card{xk ∈ D|a ≤ xk < med(D)}) ∗ f2(|med(D) −a|) (18)

By maximizing V(b), we achieve an optimal value of b, i.e.,

bopt = arg maxb V(b). (19)

3. Interval Type-2 Fuzzy Risk Analysis Model (IT2FRAM)

IT2FRAM is a multi-step model employing fuzzy arithmetic to analyze risk and opportunity
events to determine contingency reserve for construction projects. Figure 3 presents the five steps of
IT2FRAM and their outputs. In steps 1 and 2, the work, cost, and risk breakdown structures (WBS,
CBS, and RBS) are determined. In step 3, the membership functions of the linguistic terms for risks
and opportunities are determined using interval type-2 fuzzy sets and the principle of justifiable
granularity as explained in Sections 2.2–2.4. Then, in step 4, the identified risks and opportunities are
assessed by SMEs using linguistic terms and their related fuzzy numbers. Finally, the contingency
reserve can be calculated in step 5 using fuzzy arithmetic as explained in Section 2.1.
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Figure 3. Steps of IT2FRAM (modified from [1]).

In step 1, the WBS and CBS are developed. The WBS is the foundation of IT2FRAM assuming
that each project contains up to a three-level WBS, namely work package, activity, and task. As an
example, Figure 4 shows a three-level WBS of a wind farm project illustrated in FRA©. The CBS
must be developed after establishing the WBS to determine the cost of the work packages, activities,
and tasks. Developing the event breakdown structure (EBS) and the identification of potential risk and
opportunity events are step 2 in IT2FRAM. Since there is no consensus on the standard categorization of
risk and opportunity events [16], different combinations of risk and opportunity identification methods
can be employed, ranging from information-gathering methods to analysis-based techniques. Siraj and
Fayek [43] conducted a systematic review and content analysis of 130 papers from journals with high
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impact factors in the construction engineering and management area published between 1990 and 2017.
They propose eleven categories of risk and opportunity events, which are considered as the default
template of IT2FRAM. These event categories are depicted in Figure 5: resource-related, management,
technical, construction, site conditions, contractual and legal, economic, financial, environmental,
social, political, and health and safety.
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Figure 5. Two-level event breakdown structure (EBS) in FRA©.

In step 3, the linguistic terms and scales must be established and optimized to assess the
probability and impact of the events. Triangular or trapezoidal fuzzy numbers represent linguistic
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terms. According to Fayek and Lourenzutti [8], Pedrycz [44], and Proske [45], triangular and trapezoidal
shapes are the most common shapes for fuzzy numbers that have supports with the open intervals of
real numbers. Triangular fuzzy numbers are a special case of trapezoidal fuzzy numbers. In IT2FRAM
and according to Hall [46], the probability and impact of events are commonly determined by five
linguistic terms namely, very low, low, medium, high, and very high. A sample of triangular membership
functions for risk and opportunity probability with respective linguistic terms is presented in Figure 6.
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Figure 6. Membership functions of the linguistic terms for risk probability.

Different membership functions for probability and impact must be formed and aggregated to
benefit from the knowledge and experience of all decision makers and SMEs on a project. Type-1 fuzzy
sets project only one crisp number for the membership degree of each linguistic term, while interval
type-2 fuzzy sets return an interval. Therefore, interval type-2 fuzzy sets are preferable, and they
provide more information than type-1 fuzzy sets. An interval type-2 fuzzy set also covers all opinions.
Figure 7 shows a hypothetical case study of various membership functions of the linguistic term
very low for risk probability as determined by seven SMEs. For instance, in Figure 7, based on the opinion
of SME 1, the risks with very low probability are those risks with an occurrence probability of less
than 6 percent with the full membership degree in 0. Lower and upper limits of the intervals can be
determined by the lowest and the highest height of the triangular membership functions built based
on the opinions of different SMEs.
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Then, the optimal lower and upper limits of the interval type-2 fuzzy set for each linguistic
term are determined by maximizing the specificity and the coverage of each horizontal interval
and simultaneously applying the principle of justifiable granularity (see Section 2.4). The intrinsic
contradiction between the maximization of the coverage and the maximization of the specificity results
in an optimization problem with a multiplicative form of the objective function. Having these two
criteria in mind, a numeric representative, a robust estimator of the sample such as median med (D),
must be selected for each horizontal interval (horizontal information granule). The determination
of the upper and lower bound must be realized independently but in the same way. The optimal
upper bound must be obtained by maximizing the value of V(b) . in Equation (17). In the same
way, the lower bound must be realized based on Equation (18). This process must be repeated for
all intervals for each linguistic term. Then, the optimized horizontal intervals of each linguistic term
are converted into interval type-2 fuzzy sets. Such a constructed optimized interval type-2 fuzzy set
represents the aggregated opinions of all SMEs without the effect of outlier opinions. A statistically
representative embedded set of the constructed optimized interval type-2 fuzzy set is used in the next
steps of IT2FRAM.

In step 4, the probability and impact of events are assessed. Because of the neutral wording
of events, each event can be evaluated simultaneously as a risk and an opportunity. An event
allocation matrix (EAM) is employed to determine the relationships among the events and the project’s
work packages, activities, and tasks on the basis of expert judgment and project context. Events are
categorized as local and global. The global events impact several work packages, activities, and tasks
and are evaluated for the assigned group. On the contrary, local events can only be assessed individually
for each work package, activity, or task and so are assigned individually to individual work packages,
activities, and tasks. IT2FRAM considers two capabilities to improve the accuracy of the result:
(1) determining the percentage value (between 0 and 100 percent)f each work package, activity, or task
impacted by each local or global event, and (2) determining the portion of the estimated cost of the
work package, activity, or task (in terms of a percentage or dollar value) affected by each local or
global event.

Finally, the contingency of a work package, activity, or task is calculated applying the following
fuzzy arithmetic procedure with respect to local events. (1) First, the probability and impact of the
risk and opportunity events are evaluated by decision makers or SMEs in terms of the optimized
linguistic scales which were established in step 3. Due to the neutral wording, the local events are
assessed two times, both as risk and opportunity. (2) Risk and opportunity severities are calculated
as a percentage by the multiplication of probability and impact fuzzy numbers. (3) The net severity
percentage of each local event is calculated by a summation of risk severity and opportunity severity.
(4) The fuzzy number of net severity dollar value is calculated for each local event by the multiplication
of its net severity percentage by the affected cost of the work package, activity, or task. (5) The total
local contingency in dollars of the work package, activity, or task is calculated by the summation of
the net severity (in dollars) of all local events affecting it. (6) The same procedure (1–5) must then be
used to calculate the total global contingency in dollars, with the only difference being that assessing
the probability and impact of each global risk event is done for the affected group of work packages,
activities, and tasks, instead of each work package, activity, or task individually. (7) Finally, the total
contingency of the project is calculated by subtracting the total local contingency from total global
contingency, reported in dollars (see Section 2.1 for detailed fuzzy arithmetic).

4. Implementation of IT2FRAM in FRA© and Discussion

In this section, a hypothetical case study is presented as an illustration of how to implement
IT2FRAM in practice. FRA© is employed to implement the fuzzy arithmetic procedures of IT2FRAM.
The three-level WBS of a hypothetical onshore wind farm project includes six work packages,
11 activities, and 42 tasks. The budget is CAD 554,628,000, and the work packages and their respective
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costs are presented in Table 1. The default two-level EBS in FRA© (see Figure 5) was modified resulting
in new EBS with 26 risk and opportunity events, six of which were global and 20 were local.

Table 1. Cost of work packages.

Work Package Name Total Cost (CAD)

Conceptional phase $6,000,000
Design $3,000,000

Contracting/procurement $399,764,000
Construction $135,664,000

Handover checklists $5,000,000
Operation/maintenance $5,200,000

For step 3, linguistic terms and their scales and respective fuzzy sets are established in order to
evaluate the probability and impact of the risk and opportunity events. The opinions of different SMEs
must be collected for the linguistic terms of probability and impact of events. In this hypothetical
situation, it is assumed that there are seven SMEs whose opinions are essential for analyzing the risk
and opportunity events. Table 2 summarizes their opinions about the membership function of the
linguistic term very low for risk probability. Based on the opinion of SME 1, the linguistic term very low
for risk probability ranges from 0 to 6 percent with the membership value of 1 in 0 percent. However,
for SME 4 this value is different and ranges between 0 and 8 percent.

The interval type-2 fuzzy sets are used to consider all the membership functions suggested by
different SMEs. As illustrated in Figure 8, an interval type-2 fuzzy set is formed by taking the minimum
and maximum of each column in Table 2.

Table 2. The membership values of the very low risk probability suggested by seven SMEs.

Expert
Percentage Value

0 1 2 3 4 5 6 7 8 9 10

SME 1 1 0.9 0.7 0.5 0.4 0.2 0 0 0 0 0
SME 2 1 1 0.5 0.3 0.2 0.2 0.1 0 0 0 0
SME 3 1 0.4 0.2 0.1 0.1 0 0 0 0 0 0
SME 4 1 0.8 0.7 0.6 0.5 0.4 0.2 0.2 0 0 0
SME 5 1 0.6 0.5 0.5 0.4 0 0 0 0 0 0
SME 6 1 1 0.8 0.4 0.3 0.2 0.1 0.1 0 0 0
SME 7 1 0.8 0.7 0.4 0.4 0.1 0.1 0 0 0 0
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Then, by applying the principle of justifiable granularity and taking it as a multiplicative
optimization problem, the tradeoff between specificity and coverage are performed. The lower and
upper bounds of the interval type-2 fuzzy set membership function of all the intervals are calculated by
maximizing the coverage and the specificity of the interval simultaneously (see Section 2.4). Figure 9
shows the tradeoff results for horizontal intervals from 1 to 4 in Figure 8.Algorithms 2020, 13, x FOR PEER REVIEW 14 of 21 
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Figure 10 shows the optimized interval type-2 fuzzy set membership function of the linguistic
term very low for risk probability.Algorithms 2020, 13, x FOR PEER REVIEW 15 of 21 
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Figure 10. Optimized interval type-2 fuzzy set membership function of very low after optimization.

Based on the theories and concepts associated with interval type-2 fuzzy sets [26,38,39], it is
evident that interval type-2 fuzzy sets capture more uncertainty than their type-1 counterparts. Thus,
interval type-2 membership functions are used to aggregate the opinions of all the SMEs. However,
to minimize the effect of outlier opinions, the principle of justifiable granularity is used. These optimized
membership functions are then type-reduced to standard membership functions for crisp output
calculation. Figure 11 illustrates the process of converting interval type-2 membership function to
type-1 membership function based on Sections 2.2 and 2.3.
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Figure 11. Converting the optimized interval type-2 fuzzy set membership function of very low to a
type-1 fuzzy set.

The aim is to find the best fit line passing through these interval fuzzy values. Statistically,
the interval fuzzy values are represented by the mean and spread. The interval sets are represented
by their corresponding mean points in the x–y space, which are (0,1), (1,0.75), (2,0.6), (3,0.45), (4,0.4),
(5,0.2), (6,0.05) and (7,0.05). The mean values of all the interval fuzzy sets might not lie on a straight
line. To find the best fit linear equation, we solve linear equations between (0,1) and the mean point of
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each interval set that provides an intercept value at the x axis. Solving the linear equation between
points (0,1) and (1,0.75) yields the intercept on the x axis at x = 4. We draw other lines by solving
the line equations between (0,1) and the other mean points. The line between (0,1) and (7,0.05) gives
the intercept value on the x-axis at x = 7.37. Thus, all the calculated intercepts on the x-axis are at
x = {4, 5, 5.45, 6.67, 6.25, 6.31, 7.37}. This represents a region of uncertainty between x = 4 and x = 7.37,
which is a direct consequence of the differences in opinion of the SMEs. This region of uncertainty
forms the FOU of the interval type-2 fuzzy set with the triangular membership function. The interval
type-2 set can be modeled as described in Section 2.3. Statistically, the word being modeled should
be contained within

[
xl

m, xr
m

]
. Here, xl

m is the mean of the left end points of the interval type-2 fuzzy
set and xr

m is the mean of the right end points. Assuming that the end point uncertainties disappear,
then the above interval type-2 fuzzy set reduces to a type-1 fuzzy set with a = b = xr

m = xl
m . The mean

of these points is at xr
m = 5.86 with the standard deviation s = 1.046. The resulting type-1 fuzzy set

is highlighted with red color. Similarly, the optimized membership functions are obtained for other
linguistic terms. Figure 12 illustrates the optimized membership functions of all the linguistic terms
for risk probability.
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In step 4, as illustrated in Figure 13, the identified local and global risk and opportunity events are
assigned to work packages, activities, and tasks, and the probability and impact of these events are
assessed on the basis of linguistic terms (type-1 fuzzy sets determined in step 3).
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Finally, fuzzy arithmetic is employed to calculate the work package and project contingency
reserve using FRA©. IT2FRAM provides the user with the choice of standard fuzzy arithmetic or
extended fuzzy arithmetic, the latter of which uses four different t-norms. The resulting fuzzy value of
contingency reserve can be presented both as an interval value using the confidence level and as a crisp
value based on the selection of a single value (defuzzification) method (Figure 14). The defuzzified
single value of the total project contingency reserve based on the COA is CAD 7,307,032, and at an
α-cut level of 0.50 there is a confidence level (possibility degree) of 0.5 that the project contingency will
be between CAD 932,573 and CAD 9,890,760.
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In Table 3, several contingency reserve determination methods are summarized and compared
based on ten criteria. IT2FRAM provides a unique structured way to develop, optimize, and aggregate
the linguistic terms. IT2FRAM addresses the limitations of the other methods of contingency reserve
determination. The interval type-2 fuzzy sets in IT2FRAM capture more uncertainties, provide
better knowledge representation, and consider several experts’ opinions. The principle of justifiable
granularity optimizes these interval type-2 fuzzy sets by maximizing the performance index of two
criteria—coverage and specificity—which helps minimize the effects of outlier opinions of SMEs.
IT2FRAM provides an alternative to other methods for the elicitation of membership functions such
as fuzzy clustering and AHP, which cannot be effectively applied to form the membership functions
of risk analysis linguistic terms. Based on Table 3, it is clear that IT2FRAM has greater advantages
than the models developed in the past and extends FRAM [1] by proposing a structured method
to determine the membership functions of linguistic terms for probability and impact that are the
foundations of its risk analysis process. Moreover, IT2FRAM fulfills the need to (1) aggregate the
opinions of different SMEs about the membership functions of the identified linguistic terms and (2)
remove outlier opinions.
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Table 3. Comparison of the contingency reserve determination methods (Modified from [1]).

Methods

Criteria Providing
Quantitative

Analysis

Calculating
Contingency

Prioritizing
Risks

Considering
Range or

Distribution for
Contingency

Considering
Subjective

Uncertainty

Providing
Confidence

Level

Considering
Local and

Global Risk and
Opportunity

Events

Having Low
Reliance on

Data

Considering
Portion/Percentage

of Affected
Work Package,

Activity, or Task

Providing a
Structured Way

to Develop,
Optimize,

and Aggregate
the Linguistic

Terms

Deterministic
approaches

Probability-impact
matrix (PI matrix) -

√ √
- - - - - - -

Predefined percentages -
√

- - - - - - - -

Probabilistic
approaches

Monte Carlo simulation
(MCS) [10]

√ √ √ √
-

√
- - - -

Fuzzy-based
approaches

Fuzzy failure mode and
effect analysis (Fuzzy
FMEA) [15]

√
-

√
-

√
- -

√
- -

Fuzzy fault tree analysis
(Fuzzy FTA) [17]

√
-

√
-

√
- -

√
- -

Fuzzy risk analysis
model (FRAM) [1]

√ √ √ √ √ √ √ √ √
-

IT2FRAM (current
paper)

√ √ √ √ √ √ √ √ √ √
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5. Conclusions and Future Research

The uncertain events involved in projects make it challenging to achieve the project objectives
without performing a risk and opportunity analysis and determining the contingency reserve. In this
paper, type-1 fuzzy arithmetic, interval type-2 fuzzy sets, and the principle of justifiable granularity are
combined to improve the project contingency reserve determination. The new method, called interval
type-2 fuzzy risk analysis model (IT2FRAM), is introduced in order to develop, optimize, and aggregate
the membership functions for the probability and impact of risk and opportunity linguistic terms (e.g.,
very low). IT2FRAM is an extension of the fuzzy arithmetic-based risk analysis model proposed by
Fateminia et al. [1], which addresses the limitations of traditional techniques of project contingency
determination methods. Interval type-2 fuzzy sets are employed to capture more uncertainties, provide
better knowledge representation, and consider several experts’ opinions. The principle of justifiable
granularity is employed to optimize interval type-2 fuzzy sets by maximizing the performance index
of two criteria: coverage and specificity. IT2FRAM also provides an alternative to other methods for
the elicitation of membership functions, such as fuzzy clustering and the analytical hierarchy process
(AHP), which cannot be effectively applied to form the membership functions of risk analysis linguistic
terms. A software tool, Fuzzy Risk Analyzer© (FRA©), was introduced to illustrate the implementation
of IT2FRAM using a hypothetical case study.

The contributions of this paper are in addressing the following challenges associated with previous
methods of determining project contingency reserve: (1) considering the opinions of several SMEs
to develop the membership functions of linguistic terms for the probability and impact of events,
(2) decreasing the effect of outlier opinions in developing the membership functions of linguistic terms,
and (3) aggregating non-linear membership functions into trapezoidal membership functions.

Future research will focus on the validation of IT2FRAM using real project data and comparing
the results with traditional contingency determination methods. Since it is assumed in the proposed
method that WBS components and risk and opportunity events are independent, IT2FRAM will be
extended to consider the interdependencies among them.
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25. Baǧiş, A. Determining fuzzy membership functions with tabu search—An application to control.
Fuzzy Sets Syst. 2003, 139, 209–225. [CrossRef]

26. Mendel, J.M. Uncertain Rule-Based Fuzzy Logic. Systems: Introduction and New Directions, 2nd ed.; Prentice Hall:
Upper Saddle River, NJ, USA, 2001.

27. Mendel, J.M. Computing with words and its relationships with fuzzistics. Inf. Sci. 2007, 177, 988–1006.
[CrossRef]

28. Liu, F.; Mendel, J.M. Encoding words into interval type-2 fuzzy sets using an interval approach. IEEE Trans.
Fuzzy Syst. 2008, 16, 1503–1521. [CrossRef]

29. Wu, D.; Mendel, J.M. Perceptual reasoning for perceptual computing. IEEE Trans. Fuzzy Syst. 2008, 16,
1550–1564. [CrossRef]

http://dx.doi.org/10.1016/j.proeng.2014.10.528
http://dx.doi.org/10.1080/00949659708811803
http://dx.doi.org/10.1109/ICCIE.2009.5223859
http://dx.doi.org/10.1109/FUZZ-IEEE.2019.8858797
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1109/81.739259
http://dx.doi.org/10.1016/0020-0255(75)90046-8
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000210
http://dx.doi.org/10.1016/j.ijproman.2010.02.002
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0000285
http://dx.doi.org/10.1080/01446190802459924
http://dx.doi.org/10.1109/TFUZZ.2015.2453393
http://dx.doi.org/10.1016/0270-0255(87)90473-8
http://dx.doi.org/10.1016/S0020-0255(96)00141-7
http://dx.doi.org/10.1016/S0165-0114(99)00065-2
http://dx.doi.org/10.1109/FUZZY.1993.327418
http://dx.doi.org/10.1016/S0165-0114(02)00502-X
http://dx.doi.org/10.1016/j.ins.2006.06.008
http://dx.doi.org/10.1109/TFUZZ.2008.2005002
http://dx.doi.org/10.1109/TFUZZ.2009.2032652


Algorithms 2020, 13, 163 22 of 22

30. Mendel, J.M.; Wu, H. Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems.
IEEE Trans. Fuzzy Syst. 2006, 14, 781–792. [CrossRef]

31. Mendel, J.M.; Wu, H. Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 2, inverse problems.
IEEE Trans. Fuzzy Syst. 2001, 15, 301–308. [CrossRef]

32. Pedrycz, W.; Homenda, W. Building the fundamentals of granular computing: A principle of justifiable
granularity. Appl. Soft Comput. 2013, 13, 4209–4218. [CrossRef]

33. Bezdek, J.C. Pattern Recognition with Fuzzy Objective Function Algorithms; Springer Science & Business Media:
Berlin/Heidelberg, Germany, 2013.

34. Pedrycz, W.; Gomide, F. An Introduction to Fuzzy Sets: Analysis and Design; MIT Press: Cambridge, MA, USA,
1998.

35. Chang, P.; Pai, P.; Lin, K.; Wu, M. Applying fuzzy arithmetic to the system dynamics for the
customer–producer–employment model. Int. J. Syst. Sci. 2006, 37, 673–698. [CrossRef]

36. Lin, K.P.; Wen, W.; Chou, C.C.; Jen, C.H.; Hung, K.C. Applying fuzzy GERT with approximate fuzzy
arithmetic based on the weakest t-norm operations to evaluate repairable reliability. Appl. Math. Modell.
2011, 35, 5314–5325. [CrossRef]

37. Lin, K.P.; Wu, M.J.; Hung, K.C.; Kuo, Y. Developing a Tω (the weakest t-norm) fuzzy GERT for evaluating
uncertain process reliability in semiconductor manufacturing. Appl. Soft Comput. 2011, 11, 5165–5180.
[CrossRef]

38. Mendel, J.; John, R. Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 2002, 10, 117–127. [CrossRef]
39. Mendel, J.M.; John, R.I.; Liu, F. Interval type-2 fuzzy logic systems made simple. IEEE Trans. Fuzzy Syst.

2006, 14, 808–821. [CrossRef]
40. Wu, D.; Mendel, J.M.; Coupland, S. Enhanced interval approach for encoding words into interval type-2

fuzzy sets and its convergence analysis. IEEE Trans. Fuzzy Syst. 2012, 20, 499–513. [CrossRef]
41. Li, C.; Zhang, G.; Yi, J.; Wang, M. Uncertainty degree and modeling of interval type-2 fuzzy sets: Definition,

method and application. Comp. Math. Appl. 2013, 66, 1822–1835. [CrossRef]
42. Pedrycz, W. Granular Computing: Analysis and Design of Intelligent Systems; CRC Press: Boca Raton, FL, USA,

2018.
43. Siraj, N.B.; Fayek, A.R. Risk identification and common risks in construction: Literature review and content

analysis. J. Constr. Eng. Manag. 2019, 145, 03119004. [CrossRef]
44. Pedrycz, W. Why triangular membership functions? Fuzzy Sets Syst. 1994, 64, 21–30. [CrossRef]
45. Proske, D. Catalogue of Risks: Natural, Technical, Social and Health Risks; Springer Science & Business Media:

Berlin/Heidelberg, Germany, 2008.
46. Hall, E.M. Managing Risk: Methods for Software Systems Development; Pearson Education: Upper Saddle River,

NJ, USA, 1998.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TFUZZ.2006.881441
http://dx.doi.org/10.1109/TFUZZ.2006.881447
http://dx.doi.org/10.1016/j.asoc.2013.06.017
http://dx.doi.org/10.1080/00207720600774222
http://dx.doi.org/10.1016/j.apm.2011.04.022
http://dx.doi.org/10.1016/j.asoc.2011.05.043
http://dx.doi.org/10.1109/91.995115
http://dx.doi.org/10.1109/TFUZZ.2006.879986
http://dx.doi.org/10.1109/TFUZZ.2011.2177272
http://dx.doi.org/10.1016/j.camwa.2013.07.021
http://dx.doi.org/10.1061/(ASCE)CO.1943-7862.0001685
http://dx.doi.org/10.1016/0165-0114(94)90003-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Preliminaries Required in IT2FRAM 
	Fuzzy Arithmetic Operations in IT2FRAM 
	Associated Concepts of Type-2 Fuzzy Set 
	Interval Type-2 Fuzzy Set Modeling Using Uncertainty Degree 
	Principle of Justifiable Granularity 

	Interval Type-2 Fuzzy Risk Analysis Model (IT2FRAM) 
	Implementation of IT2FRAM in FRA© and Discussion 
	Conclusions and Future Research 
	References

