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Abstract: Microscopic crowd simulation can help to enhance the safety of pedestrians in situations
that range from museum visits to music festivals. To obtain a useful prediction, the input parameters
must be chosen carefully. In many cases, a lack of knowledge or limited measurement accuracy
add uncertainty to the input. In addition, for meaningful parameter studies, we first need to
identify the most influential parameters of our parametric computer models. The field of uncertainty
quantification offers standardized and fully automatized methods that we believe to be beneficial
for pedestrian dynamics. In addition, many methods come at a comparatively low cost, even for
computationally expensive problems. This allows for their application to larger scenarios. We aim to
identify and adapt fitting methods to microscopic crowd simulation in order to explore their potential
in pedestrian dynamics. In this work, we first perform a variance-based sensitivity analysis using
Sobol’ indices and then crosscheck the results by a derivative-based measure, the activity scores.
We apply both methods to a typical scenario in crowd simulation, a bottleneck. Because constrictions
can lead to high crowd densities and delays in evacuations, several experiments and simulation
studies have been conducted for this setting. We show qualitative agreement between the results of
both methods. Additionally, we identify a one-dimensional subspace in the input parameter space
and discuss its impact on the simulation. Moreover, we analyze and interpret the sensitivity indices
with respect to the bottleneck scenario.
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1. Introduction

Pedestrian dynamics is an interdisciplinary research field that aims to understand pedestrian
movement and crowd behavior. Social scientists from psychology and sociology, natural scientists,
such as physicists, mathematicians, and computer scientists, as well as engineers from civil engineering
and fire safety study different aspects of the subject. Lately, there have been several collaborations
combining the different backgrounds and experiences [1,2].

Researchers mainly follow two approaches: on the one hand, there are empirical investigations [3],
comprising field observations and surveys, as well as experiments to study behavior in a controlled
environment. On the other hand, there are simulations to help explain and predict crowd phenomena.
While each approach on its own has its advantages and disadvantages, there are multiple links among
them that can and should be used. Observation of crowds reveals important situations to be studied
in experiments or simulations. Experiments can be used to validate and calibrate the simulations.
Simulations allow for studying phenomena for which experiments would be too costly, too time
consuming, or, when human participants are involved, unethical.

Algorithms 2020, 13, 162; doi:10.3390/a13070162 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-1572-842X
https://orcid.org/0000-0002-5157-8799
https://orcid.org/0000-0002-3369-6206
http://dx.doi.org/10.3390/a13070162
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/7/162?type=check_update&version=2


Algorithms 2020, 13, 162 2 of 26

The main application for pedestrian dynamics is the evaluation of building designs and evacuation
concepts. This includes planning emergency routes, identifying potential bottlenecks, and estimating
capacity at events, in public spaces, or in large infrastructures, such as airports or railway stations.
Independent of the approach, application, or background, the community shares an overall objective:
making crowds safer.

In this contribution, we look at prediction of crowd movement through microscopic simulations.
Crowd simulation software often describes three behavioral layers: strategical layer (activity choice),
tactical layer (route choice), and operational layer (locomotion) [4]. Our focus in this work is on a
small scenario in which the movement can be solely modeled by a locomotion model, which is, on the
operational layer.

Common model choices for the locomotion layer can be categorized according to their treatment
of time and space: (1) time and space discrete models are, for example, cellular automata approaches [5]
(2) discrete time and continuous space models are typically differential equations based approaches,
such as the social force model [6,7], or velocity-based models [8,9], due to discretization. An extensive
overview over modeling of crowd behavior is given in [10]. Here, we use the Optimal Steps Model [11,12],
which is pseudo-continuous in time and continuous in space.

1.1. Parameter Studies in Crowd Simulations

Independent of the model choice, microscopic crowd simulations have a medium-sized (∼10–100)
list of input parameters. The first step towards reliable simulations is a careful verification and
validation of the models. In the case of our simulation framework, Vadere, verification is ensured by a
continuous integration setup with unit tests. The interested reader is referred to [13]. The validity of
the models, especially the Optimal Steps Model and its extensions, in comparison to empirical data,
has been investigated in several studies [11,12,14,15]. In addition, Vadere simulations are regularly
tested against the RiMEA guidelines [16] with integration tests as part of the continuous integration
setup.

Once the model has been verified and validated as far as possible, the quality and validity of the
simulation outcome depends strongly on the input parameter choice. While the input parameters for
crowd simulations are chosen with great care, there are still uncertainties due to limited measurement
accuracy, non-physical parameters, or simply a lack of knowledge (epistemic uncertainties).

Sensitivity analyses reveal the magnitude of the impact of single input parameters. They also
indicate in which areas experiments and observations are necessary to identify the range of those
parameters that greatly contribute to the output variance [17]. This setting is often referred to as
Factor Prioritization.

Furthermore, sensitivity indices often are a starting point for model reduction by identifying
non-influential parameters or an inactive subspace in the input parameter space. One straight-forward
approach for model simplification is factor fixing. If a parameter has no impact on the quantity of
interest over the chosen range and it is not involved in interaction terms, the parameter can be fixed at
an arbitrary value within its range [18]. Some methods also provide surrogate models that are based on
the important parameters or directions that can be used for faster evaluation [19]. In crowd simulation,
this is of particular interest for large scenarios as well as for real-time predictions.

1.2. Overview of Sensitivity Analysis Methods

We start with a brief overview of sensitivity analysis methods. The two main types of sensitivity
analyses are local and global sensitivity analysis. Local approaches study the sensitivity of the model
output around a fixed base point. These approaches are often deterministic. On the other hand, global
sensitivity analysis can be used to study the impact of parameters over a wider range. In contrast
to local sensitivity analysis, it typically requires probability distributions for the uncertain input
parameters. Often, local methods can be expanded towards a global analysis. Consequently, there is
no clear distinction between local and global methods. Instead, they can be seen as general concepts.
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A typical local method is the one-at-a-time approach. The idea behind it is intuitive: only one
parameter is varied around a base point, while all others are held constant. One-at-a-time methods and
their generalizations are subsumed under the umbrella term screening methods. Screening methods
study models locally, but not necessarily at only one base point. Another approach that is commonly
used on local sensitivity analysis is based on differentiation in the neighborhood of a base point.
Partial derivatives indicate in which parameter directions the model output changes most. Often,
the derivatives are not available analytically, but need to be estimated.

We differentiate between five types of global sensitivity analysis methods: first, in
regression-based methods, a linear surrogate is defined and investigated instead of the actual
model. If the hypothesis of a linear relationship between inputs and quantity of interest does not
hold, rank-based methods can be used to circumvent that problem. Based on the linear regression,
performance indices as correlation coefficients are evaluated in order to gain insights on the parameter
sensitivities. Second, variance-based methods are the most popular approach for global sensitivity
analysis. Using an analysis of variance, or ANOVA, decomposition, a non-linear regression is
performed. Subsequently, the variance in the quantity of interest is studied based on the regression
model. A well-known variance-based metric is Sobol’ indices [20]. Third, moment-independent or
density-based methods investigate the full probability density function of the quantity of interest
instead of focusing on moments, such as the variance [21]. Fourth, screening methods with several
base points serve as a generalization of the local one-at-a-time idea. In order to use these local
approaches globally, the model is evaluated at a number of locations in the parameter space. A common
method of this type is Morris screening [22]. The main use of screening methods is to identify
non-influential variables among a large number of input parameters [23]. One-at-a-time methods
can also be adapted for global sensitivity analysis, but they are not suited for non-linear models [24].
Lastly, derivative-based approaches can also be applied for global sensitivity analysis. As for screening
methods, the derivative-based approach can be extended from a single base point to several base points
to approximate global sensitivity. Measures of this type are the derivative-based global sensitivity
metrics that rely on randomized samples for the base points [25]. In addition, Constantine and Diaz
proposed activity scores that are calculated from gradients as a new sensitivity metric [26].

Because there is a vast variety of global sensitivity methods available, users must choose
the most suitable method for their application. The choice can be supported by decision trees as
provided in [27]. In addition, several publications deal with links between different metrics: links
between derivative-based and variance-based indices are e.g., shown in [28] for derivative-based
global sensitivity measures [29] and Sobol’ indices and in [26] for activity scores and Sobol’ indices.
The derivative-based global sensitivity metrics [25] are upper bounds for the Sobol’ indices [28,30] at
reduced computational cost. Furthermore, they are also an upper bound for activity scores [26].

A more detailed overview of global sensitivity analysis methods is provided in [23]. In addition,
Borgonovo et al. look at local and global methods focusing on recent advances in the methodology [31].

1.3. State-of-the-Art of Sensitivity Analysis for Crowd Simulations

Pedestrian simulation experiences similar challenges as other (engineering) disciplines, in which
methods for uncertainty quantification are already state-of-the-art: uncertainties in the model input
parameters due to a lack of knowledge or limited measurement accuracy. Modelers are interested
in the impact of the uncertainty in the input parameters on the simulation outputs, as well as the
sensitivities that are associated with each input parameter.

The interpretation of the term "sensitivity analysis among crowd modelers differs from the one
common in the uncertainty quantification community, a phenomenon that is not restricted to our
application [24]. In the latter, the results of sensitivity analysis typically lie in the input parameter
space. The analysis assigns an index to each input parameter and ranks them according to their impact
on the simulation outcome. In pedestrian dynamics, sensitivity analysis usually refers to studying
the impact of the uncertainties in input parameters on the simulation results [32,33]. That means
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the results lie in the space of the quantity of interest. This kind of study is usually named forward
propagation or uncertainty analysis in uncertainty quantification literature. In this work, we use the
terminology common to the uncertainty quantification literature.

We are only aware of a few publications that are related to crowd simulation where sensitivity
indices are obtained: Chen et al. use a one-at-a-time method to calculate sensitivity indices for eight
input parameters of a Random Forest model for pre-evacuation times while observing the total
evacuation time as quantity of interest [34].

A common approach for crowd simulation is to use force-based models. They are not only applied
in pedestrian dynamics, but also in traffic simulation. Punzo et al. calculate Sobol’ total indices for
six parameters of a social force model for car-following [35]. In addition, they identify non-influential
parameters by a factor fixing setting and obtain a reduced model version. Systematic sensitivity
analysis is generally more common in the adjacent traffic simulation community [36].

To summarize, global sensitivity analysis methods have barely been used for crowd simulations.
We argue that they would be beneficial for our community, because they provide a systematic approach
to rank input parameters by their importance. In addition, they can serve as a first step for both
calibration and for model analysis. Furthermore, common indices, such as Sobol’ indices simplify the
comparison of sensitivity studies. Finally, many of the methods are specifically suited for non-linear
models, which is the case in pedestrian dynamics.

1.4. Outline of Our Work

In this work, we use two different types of sensitivity measures. On the one hand, we apply Sobol’
indices, which focus on parameter importance. They are widely used among applications ([18], p. 237ff).
In addition, other than regression-based indices, they do not require linearity or monotonicity and can
therefore be applied to many models. On the other hand, the identification of important parameter
directions can reveal more information, especially if the single parameter ranking is inconclusive.
Therefore, we choose a derivative-based global approach that focuses on parameter directions [26] as a
second measure.

Constantine and Diaz point out that activity scores and Sobol’ indices align in most applications,
and they demonstrate agreement for two example functions [26]. Inspired by their publication, we
study both indices in a specific microscopic crowd simulation setup.

This paper is organized, as follows: in Section 2, we briefly introduce our model for microscopic
crowd simulation, the Optimal Steps Model [11,12], and the bottleneck scenario that we investigate.
We explain our choice of methods for sensitivity analysis in more detail and provide a short description
of both methods. Section 3 presents the configuration of the analysis with the input parameters as well
as the sensitivity indices obtained with both methods. Finally, in Section 4, we analyze and interpret
our findings, draw conclusions, and provide an outlook on future work.

2. Materials and Methods

Our sensitivity analysis is based on microscopic crowd simulations of a bottleneck scenario while
using the Optimal Steps Model. We start with an introduction to the locomotion model and scenario,
followed by a description of the sensitivity measures that we use.

2.1. Crowd Simulation with the Optimal Steps Model

The Optimal Steps Model [2,11,12] is based on a natural discretization, the stepping behavior.
The model describes every step of an agent (virtual pedestrian). Each agent optimizes its next position
on a disc around its current position. The radius of the disc models that agents’ step length. The utility
Ul of an agent l is maximized according to the idea of the homo economicus or economic man by John
Kells Ingram [37]. It considers three goals that are also represented by utility functions: reaching the
agent’s destination based on the distance between the current position of the agent and its destination,
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Ut(x), avoiding obstacles, Uo,j , and keeping a distance from other pedestrians, Up,l,i [12,13]. The utility
Ul is a superposition of the three sub-utilities:

Ul(x) = Ut(x) +
n

∑
i=1,i 6=l

Up,l,i(x) + maxj∈{1,...,m}Uo,j(x). (1)

The full utility for an arbitrary agent in the bottleneck scenario is visualized in Figure 1. Agents
that are regarded for the personal space utility Up,l,i of agent l can be identified by the strong gradient
in the utility around them.

Figure 1. Utility of possible positions in the topography for a selected agent (white) modeling the goals
of the agent: reaching its destination (orange square), avoiding obstacles (light gray areas), and keeping
a distance to other agents (blue). Here, the (dark) gray areas contain the all positions with a low utility,
not only the obstacle itself.

The target utility Ut(x) encodes the distance to the argent’s destination and can be interpreted as
a cognitive map of the environment [13]. The distance to the destination is measured in the geodesic
distance that considers obstacles, so that agents do not get stuck in more complex topographies.
We solve the eikonal equation with the Fast Marching Method [38] to obtain the geodesic distances
from all targets to every (grid) point in the topography.

While the floor field Ut(x) is calculated for the complete topography either once at the beginning
of the simulation (static floor field) or at each simulation step (dynamic floor field) and belongs to a
certain target or a list of targets that belong together, the combined utility Ul belongs to agent l and it
is only evaluated at current and prospective positions of agent l.

Each agent is assigned a personal space utility Up,l,i that represents pedestrians’ need for personal
space in order to avoid collisions between agents. The implementation takes up the theory of (inter-)
personal space by Hall [39], as described in [12]. Accordingly, the agent utility is divided into three
parts, the intimate space—reserved for children and partners, the personal space, and the social space.
More details can be found in Appendix A.1. Analogously, the behavior of agents around obstacles is
handled by the utility function Uo,j (see Appendix A.2).

Each agent in the simulation is assigned a free-flow speed. The free-flow speed is presumed to be
the natural speed of an agent when the path is free. The agent accelerates to its free-flow speed if it
moves unhindered through a free space. From the free-flow speed, a step length and step frequency are
derived [11]. Based on the step frequency, steps of each agent are added to an event queue. This event
queue enables a (pseudo-) continuous timeline. At a fixed rate, typically every 0.4 s, the accumulated
events are processed in their order in the queue. For each event of an agent, the next position is
calculated by maximizing the utility while using the Nelder–Mead method.
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2.2. Bottleneck Scenario: Crucial for Improving Safety

Bottleneck scenarios are widely investigated in experiments [40–44] and simulations [45–47]
within the pedestrian dynamics community, since constrictions can lead to increased densities
and delays in evacuations. In addition, the flow through the bottleneck can be used for capacity
estimation [42]. We recreate the setup of the experiments by Liddle et al. [41] in our crowd simulation
tool Vadere [13].

Our investigation of the bottleneck scenario focuses on the density in front of the bottleneck,
similar to [41]. There are several ways to measure the pedestrian density. A common measure is
Voronoi density [48,49], since it provides high accuracy and provides an output in number of agents
per area, which is easy to understand. The Voronoi diagram identifies a Voronoi cell for each agent
consisting of all points closer to this agent than to any other [49]. The density within the measurement
area is calculated as the ratio between the number of agents in the measurement area to the sum of the
areas of the Voronoi cells allocated to the agents within the area [11]. Figure 2 shows an exemplary
Voronoi diagram. Agents who have more free space around them are assigned a larger Voronoi cell.

Figure 2. Voronoi diagram: For each agent, a Voronoi cell is shown which contains all points that are
closer to this agent than to any other agent. The size of a Voronoi cell gives an indication of the agents
free space and it is used to determine the density.

Figure 3 depicts a snapshot of the simulation at 30 s. In this setup, 220 agents (blue) are moving
from their origin (green) through the bottleneck, which is constructed with obstacles (grey) to their
destination (orange). In addition, two measurement areas are shown in front of the bottleneck (red).
The density is calculated for the smaller area, the larger area is used for calculating the Voronoi diagram
in order to avoid artifacts on the edge.

Figure 3. Snapshot of a simulation of the bottleneck scenario used for the sensitivity analysis after 30 s.

2.3. Choice of Sensitivity Analysis Methods

As discussed in the Introduction (Section 1.1), we are interested in a ranking of model parameters
by their impact on the simulation outcomes to learn more about our models and, possibly, to reduce
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complexity. Variance-based approaches and, in particular, Sobol’ indices, have proved their worth
in many applications ([18], p. 237ff). There are several open-source libraries for the approximation
of Sobol’ indices due to their popularity. Furthermore, variance-based approaches need only model
evaluations; gradients or further outputs are not necessary. Moreover, Sobol’ indices can be calculated
as part of a forward propagation when using an approximation based on polynomial chaos [50]
with reduced computational costs. All of these advantages make them an attractive choice for
our application.

Variance-based methods serve to identify important parameters in the input parameter space.
Based on the results, single parameters that were classified non-influential can be fixed to an arbitrary
value within the range. This procedure is typically referred to as factor fixing. However, the analysis
of parameter importance by itself may not point out enough potential for model reduction. Therefore,
we also aim to identify important directions, which is, linear combinations of the input parameters
that are particularly relevant. For this, we harness the theory of active subspaces [19,51]. Constantine
and Diaz [26] also define activity scores as a sensitivity metric on single parameters that, in many
situations, are similar to other sensitivity metrics, such as Sobol’ indices. Note that they are less
versatile than Sobol’ indices, because they require (approximations of) model gradients. Generally,
gradients are not directly available for most quantities of interest in locomotion models, even for
differential equation-based models. In the case of the Optimal Steps Model, we approximate gradients
through finite differences.

In this contribution, we combine all three aspects: we compute Sobol’ indices as a robust and
dependable single-parameter sensitivity metric. They serve as reference for the activity scores, where
we need to assure that the approximation of the gradients is sufficiently accurate. Finally, we identify
an active subspace of important parameter directions.

From now on, the following nomenclature is used: we study a model f (x) that depends on a set
of n input parameters x ∈ Rn. The output of the model y = f (x), y ∈ R is our quantity of interest.
Both of the methods require a scalar simulation output.

2.3.1. Sobol’ Indices (Variance-Based Method)

For the description of Sobol’ indices, we assume that our model f is a square-integrable function
defined over a k-dimensional unit hypercube Ω. This description follows [52]. Any model that
fulfills these assumptions can be represented by an analysis of variance, or ANOVA, decomposition.
The decomposition splits f into a set of orthogonal functions, depending on the factors xi, i = 1, . . . , n
and their interactions:

f (x) = f0 + ∑
i

fi(xi) + ∑
i

∑
j,j>i

fij(xi, xj) + · · ·+ f12···n(x1, x2, . . . , xn). (2)

First-order univariate functions fi represent independent contributions due to the individual
parameters. Interaction terms fij to f12···n quantify the interactions of several input parameters xi on
the response y. When all 2n terms are used, the decomposition is an exact representation of f .

Sobol’ indices are a measure related to the variance of the model response y. This variance can be
split into the variance of the functions in (2). Subsequently, the total variance of the response y can be
written as

V[y] =
∫

Ω
f 2(x)dx− f 2

0 = ∑
i

V[ fi] + ∑
i

∑
j>i

V[ fij] + . . . + V[ f12...n] (3)

with f0 = E[y]. First order indices Si and total order indices STi are defined as

Si =
V[E[y|xi]]

V[y]
and STi =

E[V[y|x∼i]]

V[y]
= 1− V[E[y|x∼i]]

V[y]
, (4)
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where V[E[y|xi]] = V[ fi(xi)]. First order indices Si describe the variance in the response due to the
variance in input parameter xi. In contrast to first order indices that only consider the effects of a
single parameter, total order indices also consider interaction effects among parameters. The relation
between the total order indices STi and the first and higher order indices is:

STi = Si + ∑
j>i

Sij + ∑
j>i

∑
k>j

Sijk + . . . + S123...n. (5)

The total index STi for parameter i is the sum over all indices that contain a contribution of xi.
The interaction effects can also be measured by the higher order indices defined by Sobol’. Total indices
STi measure the variability of the output if all parameters, except xi, could be fixed.

For most problems in practice, these indices cannot be analytically calculated, since they require
solving high-dimensional integrals. Instead, we approximate the Sobol’ indices by Jansen’s method [53].
For a given sampling factor M, the number of Monte Carlo samples generated is N = bM/(m + 1)c.
We generate two matrices, A and B, with N samples each according to the input parameter density.
The variation of all input factors except one is modeled by constructing matrices A(i)

B that are identical
to matrix A, except for column i, which originates from matrix B. Subsequently, variances of model
evaluations at row j of A and B to A(i)

B , respectively, are approximated. The first order indices Si are
approximated by

Ŝi = 1− 1
2Nvy

N

∑
j=1

(
f (B)j − f (A(i)

B )j

)2
, (6)

where the variance of the model response V[y] is approximated by the sample variance vy of the
evaluations f (A) and the subscript j stands for row j of the matrix. The total order indices STi are
approximated by

ŜTi =
1

2Nvy

N

∑
j=1

(
f (A)j − f (A(i)

B )j

)2
. (7)

2.3.2. Activity Scores (Derivative-Based Method)

The main idea of active subspaces [19] is to identify important parameter directions, which can
be any linear combination of the input parameters. While they were originally designed for model
reduction, Constantine and Diaz [26] suggest a way to use the interim results of this process to perform
a global sensitivity analysis. The method described by Constantine et al. [19] is based on gradients.
Central to the method is the calculation of the matrix

C =
∫
∇ f (x)∇ f (x)Tρdx (8)

which is described as “(uncentered) covariance matrix of the gradient” ([51], p. 22) with input
parameter density ρ.

In practice, these high-dimensional integrals can neither be computed analytically nor by
numerical quadrature and, therefore, C is typically approximated with a Monte Carlo approach
while using M samples xi which are drawn ρ:

C ≈ Ĉ =
M

∑
i=1
∇ f (xi)∇ f (xi)

T = ŴΛ̂Ŵ. (9)

We refer to the approximations by adding a hat (·̂) to the variable names. From now on, we
describe the computation of the active subspaces and activity scores while using Ĉ instead of C.
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The steps are identical for the true matrix C. We approximate the gradients ∇ f (xi) by central finite
difference quotients. Entry j, j = 1, . . . , n of the gradient is then calculated as

∇ f (xi)j ≈
f (xi + h)− f (xi − h)

2h
(10)

with step size h. In the next step, the eigenvalues of Ĉ are analyzed using a spectral decomposition of
the matrix:

Ĉ = ŴΛ̂ŴT = [ŵ1 · · · ŵn] diag(λ̂1, . . . , λ̂n)[ŵ1 · · · ŵn]
T . (11)

A spectral gap in the eigenvalues λ̂i identifies an active subspace: the largest gap separates
the eigenvalues in two groups. We use the largest gap among the logarithmic representation of
the eigenvalues. The eigenvectors ŵi, i = 1, . . . , k associated with the first k eigenvalues above the
eigenvalue gap form the active subspace Ŵ1. The remaining eigenvectors form the inactive subspace
Ŵ2. If C is approximated by Ĉ, Constantine shows that the distance between true and estimated
subspace depends on the size of the spectral gap ([51], p. 54).

The i-th activity score [26] is calculated by summing over the k active eigenvalues multiplied with
the squared entries of the i-th eigenvector:

α̂i = α̂i(k) =
k

∑
j=1

λ̂jŵ2
i,j, i = 1, . . . , n (12)

Consequently, the activity scores α̂i depend on the user’s choice where to settle the eigenvalue
gap therefore on the resulting size of the subspace k. While the largest gap in the eigenvalues should be
used in theory, there might not always be a clear gap or only a certain size of subspace may be feasible.

2.4. Implementation of the Methods

We implemented both the approximation of activity scores and the approximation of the Sobol’
indices in Python. The scripts are available at https://github.com/pedestrian-dynamics-HM/mdpi-
2020-vadere-sensitivity-analysis. The code is tested by comparison with the Ishigami function [54].
In addition, the results for the circuit model are reproduced and compare to [26]. Moreover, the results
for the quadratic model from ([51], p. 38ff) are tested. Furthermore, unit tests, for example, for the
approximation of the gradients have been implemented.

3. Results and Discussion

In this section, we first describe the setup of our sensitivity study, that is, the parameters we
study, and how we run the crowd simulations. Next, we briefly show the impact of the parameters
on the quantity of interest by analyzing scatterplots. Subsequently, we present and compare results
of sensitivity analyses with first Jansen’s method for Sobol’ indices [52,53] and the active subspace
method with corresponding activity scores [26].

3.1. Configuration of the Simulation

In contrast to many other applications, the initialization of a crowd simulation is typically
stochastic, at least in parts. This is also the case for the Optimal Steps Model.

With the simulation start, agents are created and assigned a random free-flow speed and starting
position. The free-flow speeds are drawn from a truncated normal distribution, the starting positions
from a two-dimensional uniform distribution to cover a so-called origin area.

Consequently, different simulation runs lead to different results, unless the seed of the
pseudo-random generator is fixed. Since positions and speeds are indeed unknown and do vary,
fixing the seed would unduly simplify the model. This confronts us with a problem because the

https://github.com/pedestrian-dynamics-HM/mdpi-2020-vadere-sensitivity-analysis
https://github.com/pedestrian-dynamics-HM/mdpi-2020-vadere-sensitivity-analysis
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methods for sensitivity analysis presuppose deterministic outcomes. We adopt a pragmatic approach
and use an average over 10 simulation runs for our quantity of interest. This has been successfully
applied in [55] for occupant-evacuation time curves.

3.2. Uncertain Input Parameters in the Bottleneck Scenario

As briefly introduced in Section 2.2, we investigate a bottleneck scenario that is shown in Figure 3.
We choose six uncertain parameters that are listed in Table 1. The first two, mean and standard

deviation of the free-flow speed, refer to the truncated Gaussian distribution from which the free-flow
speeds are drawn. Note that truncating the normal distribution means that the two parameters are
not independent. Because the goal of our contribution is rather a proof of concept for a valuable
methodology than an in-depth analysis of queuing behavior at a bottleneck, we decided to treat them
as independent parameters. In the simulation, the free-flow speed of an agent is also used to derive
a dependent parameter [11], the individual step size of each agent. As third parameter, we vary the
number of agents between 160 and 200. Typically, bottleneck experiments in experimental pedestrian
dynamics study the effect of door widths on the density in front of the opening. Thus, we also vary
the bottleneck width. Lastly, we vary a parameter that corresponds to each agent’s need for personal
space, or distance to others: it is coded in the parameter hp of a function that expresses the utility of a
position for an agent. See Appendix A.1 for more details on hp.

Table 1. Uncertain parameters and their distribution used for the sensitivity analysis.

Index Parameter Unit Range Type

1 Control parameter U (1.0, 5.0) float
2 Free-flow speed mean m/s U (0.5, 2.2) float
3 Free-flow speed std m/s U (0.1, 1.0) float
4 Number of agents U (160, 200) int
5 Bottleneck width m U (1.6, 3.0) float
6 Personal space strength hp U (30, 70) float

We want to point out that the parameters are of different character. Free-flow speed as well as
personal space are properties of the agents, while the other two parameters, bottleneck width and
number of agents, are parameters of the topography. It is important to keep this in mind when choosing
the ranges for the parameters: Changes to topography parameters might change the dynamics of the
system. Consequently, in our study, we had to make sure that within our parameter limits we maintain
a bottleneck dynamic, that is, congestion in front of the constriction.

Figure 4 shows snapshots of the simulation of the bottleneck scenario. On the left, the lower limits
of all parameters are chosen, on the right the upper limits of all parameters are chosen. The topography
changes with the bottleneck width.

Because we study the feasibility of the methods in crowd simulation, we add a control parameter
that is not actively used in the configuration of the simulation. We test whether the methods correctly
detect the absence of an impact. Through the remaining "impact" of the control parameter, we also
gain a measure for the inaccuracy that is caused by averaging several simulations. This procedure
increases the number of evaluations and, therefore, the computation time, substantially. Hence, while
a control parameter might be desirable, in principle, it will be out of question in computationally more
demanding scenarios.
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(a) (b)

Figure 4. Effect of the uncertain parameters on the distribution of agents in front of and within the
bottleneck. (a) Simulation where each parameter is set to its lower limit; (b) Simulation where each
parameter is set to its upper limit.

3.3. Relation between Parameter and Quantity of Interest

A starting point for a sensitivity analysis is to look at scatterplots between each input parameter
and the quantity of interest, according to ([23], p. 113). Our quantity of interest is the crowd density
in front of the opening, more precisely the maximum Voronoi density that is described in Section 2.2,
measured in persons per square meter. We use the maximum of the Voronoi density over simulation
time in order to obtain a scalar quantity of interest. Figure 5 shows the scatterplots. Please note that all
parameters are varied at the same time. Each scatterplot shows a projection for the parameter that is
shown on the horizontal axis.

(a) Control parameter. (b) Free-flow speed mean. (c) Free-flow speed standard
deviation.

(d) Number of agents. (e) Bottleneck width. (f) Personal space strength.

Figure 5. Scatterplot of input-output relation for each input parameter. We use the model evaluations
from the derivative-based method. Each run is shown, that means 10 data points for each configuration.
In total, 81 gradient samples are evaluated which leads to a total of 9720 runs.
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There is only one parameter with a clear correlation to the maximum Voronoi density: the strength
of the need for personal space. As expected, a more pronounced need for personal space results in
a lower density in the front of the bottleneck, where our measurement area is placed. In addition,
we observe a slight trend for the bottleneck width. The density decreases with a wider opening.
For the other three parameters, there is no clear trend visible, their responses are similar to the control
parameter’s response.

In summary, the scatterplots indicate a strong impact of the need for personal space and a medium
impact of the bottleneck width on the maximum Voronoi density. The other parameters do not seem to
have a clear individual impact. However, interaction terms among them might have a strong impact.
To identify higher order relations, we study the sensitivities in more detail with Sobol’ indices and
activity scores. Note that the choice of the quantity of interest has an impact on the strength of the
correlation between input parameters and the simulation outcome. Therefore, it is important to choose
a quantity of interest tailored to the research question of the study.

3.4. Sobol’ First and Total Order Indices

We approximate Sobol’ total and first order indices with Jansen’s method [53]. The variance-based
approach of this metric is suited for most models, since it requires only model evaluations.
Nevertheless, a high number of model evaluations is typically required.

Figure 6 depicts the first order indices for the bottleneck scenario. The first order index Si describes
the variance in the output stemming solely from parameter i. The negative indices are due to numerical
errors, a commonly observed issue especially with a small sample size [52]. We can observe fewer
negative entries with larger M, which is larger sample sizes.

We observe a high influence by the bottleneck width. In addition, we observe the lowest variation
between the runs for this parameter. The indices reflect that the control parameter has no impact on
the quantity of interest. In addition, the mean free-flow speed as well the number of agents do not
have a measurable individual impact on the density in front of the bottleneck. However, they might be
influential in interaction terms. Therefore, we investigate the total order indices next.

Figure 6. Sobol’ first order indices for our bottleneck scenario. Calculated with Monte Carlo approach
using Saltelli’s method [52]. For each sampling factor M, 3 runs were performed. The parameter index
is mapped as follows: 1—control parameter, 2—free-flow speed mean, 3—free-flow speed standard
deviation, 4 —number of agents, 5—bottleneck width, and 6—personal space strength.

In addition, Figure 7 plots Sobol’ total indices. The sum of the first order indices is almost
identical to the sum of the total order indices. That means there are no strong interactions among
the factors, compare (5). The number of samples for the matrices A and B for Jansen’s method are
defined by N = bM/(m + 1)c. For each sampling factor M, three runs are performed in order to
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study the variation in the results. The average (solid lines) is shown together with the extremes (area).
As expected, the variation decreases with an increasing number of samples. From the total indices, we
can conclude that the first (control parameter), second (free-flow speed mean), and fourth (number of
agents) parameter are non-influential. The personal space strength (parameter index 6) is the most
influential parameter.

Figure 7. Normalized Sobol’ total indices for bottleneck scenario. Calculated with Monte Carlo
approach while using Jansen’s method [53]. For each sampling factor M, three runs were performed.
The parameter index is mapped as follows: 1—control parameter, 2—free-flow speed mean,
3—free-flow speed standard deviation, 4—number of agents, 5—bottleneck width, 6—personal
space strength.

3.5. First Eigenvector and Activity Scores

When looking for active subspaces in crowd simulations, it is important to keep in mind that the
method cannot be used for purely rule-based models where the concept of gradients is meaningless.
This especially applies for cellular automaton models. For most other models, as for the Optimal Steps
Model used here, gradients for the quantity of interest may not be directly available, but they can be
approximated. We use central difference quotients for this.

According to [26], we normalize each input parameter to the interval [−1, 1]. For each parameter,
the step-size h for the central difference is scaled by the parameter’s range. We choose the smallest
possible step size for h: since the number of agents is a natural number, h has to scale to at least one
agent. Based on the range of the parameter “number of agents”, the step size is set to h = 0.025. All of
the sensitivity results are presented for the normalized model.

Figure 8a presents the eigenvalues of the matrix Ĉ, obtained from the gradient samples according
to (9). A spectral gap is present between the first and second eigenvalue. That means we identify a
one-dimensional active subspace defined by the first eigenvector. Since the gap is clearly above the
chosen step size (including the first eigenvalue below the gap), we can assume that the gap is real and
not based on a phantom eigenvalue. The first eigenvector is shown in Figure 8b. From the scatterplots
in Figure 5, we know that the personal space strength correlates negatively with the maximum Voronoi
density. Accordingly, we rotate the first eigenvector. Now, the first eigenvector entries show the
direction in which each parameter contributes to the quantity of interest. The standard deviation of the
free-flow speed, bottleneck width, and personal space strength have a negative impact on the outcome.
That means, if these parameters are increased, a reduced (maximum Voronoi) density will be observed.
The first eigenvector is the most dominant parameter direction in the input parameter space.
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(a) Eigenvalues of matrix C. (b) First eigenvector of matrix C.

Figure 8. Eigenvalues and first eigenvector components of the matrix C. A one-dimensional subspace
was identified based on the spectral gap between the first and second eigenvalue. The parameter index
is mapped as follows: 1—control parameter, 2—free-flow speed mean, 3—free-flow speed standard
deviation, 4—number of agents, 5—bottleneck width, 6—personal space strength. The index for the
eigenvalue plot refers to the directions identified by the decomposition.

Independent of the size of the active subspace, the first eigenvector entries also constitute a
sensitivity metric. Therefore, we normalized the absolute first eigenvector according to [26] by the
length of the vector. The resulting measures are shown in Figure 9.

Figure 9. Normalized first eigenvector metric for the bottleneck scenario. The mean eigenvector
entries obtained from three runs (solid lines) are shown together with the extrema of the scores
(patches). The parameter index is mapped as follows: 1—control parameter, 2—free-flow speed
mean, 3—free-flow speed standard deviation, 4 —number of agents, 5—bottleneck width, 6—personal
space strength.

From the active subspace we identified, we can now derive the activity scores while using (12).
Figure 10 presents the activity scores for different oversampling factors α. The oversampling factor
determines the number of gradient samples used for the approximation of C: M = αkln(m). Here,
m is the number of parameters and k − 1 is the expected size of the subspace. According to ([51],
p. 35), M evaluations of the gradient approximate the first k eigenvalues of C sufficiently accurate. The
oversampling factor α is typically chosen between 2 and 10 ([51], p.35). As expected, the variation of
the activity scores for a fixed oversampling factor, represented by the area around the mean, diminishes
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with larger oversampling factors. In accordance with the first eigenvector metric, the personal space
strength is clearly the most influential parameter. The method recovers a small activity score for
the control parameter. We use this value as a threshold that a parameter must exceed in order to be
considered influential. Two other parameters, the mean of the free-flow speed and the number of
agents seem to fail that criterion, and, thus, are deemed non-influential.

Figure 10. Activity scores from derivative-based method for the bottleneck scenario. For each value
of the oversampling factor α, three runs are performed. The mean activity scores obtained for the
runs (solid lines) are shown together with the extrema of the scores (patches). The parameter index
is mapped as follows: 1—control parameter, 2—free-flow speed mean, 3—free-flow speed standard
deviation, 4—number of agents, 5—bottleneck width, 6—personal space strength.

The one-dimensional subspace can be used to construct a surrogate model for our original model
with a lower-dimensional input parameter space, in our case, a one-dimensional input space.

Any input parameter vector can be projected onto this subspace by the active subspace W1,
here, just the first eigenvector w1. The transformation of a parameter vector x in the active subspace
yield the corresponding value of the so-called active variable wT

1 x. Figure 11 shows the sufficient
summary plots: the one-dimensional sufficient summary plot depicts the quantity of interest against
the active variable. The linear regression reveals a strong correlation between input and output.
The coefficient of determination R2 is significantly higher than for each single parameter, compare
Figure 5. The two-dimensional summary plot shows the active variable wT

1 x against the inactive
variable wT

2 x. w2 is the highest ranked eigenvector of the inactive subspace, i.e., this parameter
direction has the largest impact among the direction in the inactive subspace. This plot confirms that
the one-dimensional subspace is well chosen, since the change in the maximum Voronoi density (color
coded) is mainly visible in the direction of the active variable of the one-dimensional subspace wT

1 x.
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(a) 1D summary plot. (b) 2D summary plot.
Figure 11. Sufficient summary plots of the active variable in the active subspace to the maximum
Voronoi density (quantity of interest) using the gradient samples for 81 samples (α = 20).

3.6. Sensitivity Ranking

In Figure 12, we present the normalized indices for visual comparison. According to [26], we also
show the first eigenvector as a sensitivity metric additionally to the Sobol’ indices and the activity
scores. The parameters are ranked consistently for all three indices. In addition, Sobol’ indices and
activity scores assign the control parameter a ranking that is close to zero, reflecting that it has no
impact on the outcome.

Figure 12. Normalized activity scores, first eigenvector entries, and Sobol’ indices for the bottleneck
scenario. The parameter index is mapped as follows: 1—control parameter, 2—free-flow speed
mean, 3—free-flow speed standard deviation, 4—number of agents, 5—bottleneck width, 6—personal
space strength.

The agreement between the results of both Sobol’ indices and activity scores support the
hypothesis that activity scores with finite difference approximation of the gradients can be applied to
crowd simulation, and more specifically the Optimal Steps Model.

All the metrics assign small indices with the control parameter. This indicates that they are
able to recover that this parameter has no impact on the chosen quantity of interest. We use the
non-zero sensitivity index assigned with the control parameter as indication: each parameter that
is assigned an index smaller than the control parameter’s index is classified as a non-influential
parameter. If the control parameter is assigned a sensitivity index of zero, a different threshold must
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be found. In our setup, the mean of the free-flow speed, as well as the number of agents are—within
their respective ranges—non-influential for the maximum Voronoi density in front of the bottleneck.
The most influential parameter is clearly the personal space strength. This is plausible because the
mean free-flow speed is not directly related to the density, neither is the number of agents. If resources
are available to determine uncertain factors (and it is possible), the personal space strength should be
studied first in order to reduce the uncertainty in the prediction.

3.7. Impact of the Parameter Range

So far, all of the measures have shown that varying the personal space strength parameter hp over
the interval (30, 70) has the largest impact on the maximum Voronoi density. However, the range of
the personal space strength parameter is difficult to determine. First, it is a non-physical parameter,
which means that we cannot measure it directly. Second, we know that personal space also depends
on the society and on cultural effects [56]. Third, other factors, such as groups and social identities,
will have an impact on the need for personal space [57].

In view of this complexity, we decided to run our analysis for a second, much smaller parameter
interval. The changed parameter limits are listed in Table 2, all other parameter ranges are set as before,
according to Table 1.

Table 2. Alternative range for the personal space strength parameter.

Index Parameter Range Type

6 Personal space strength hp U (40, 60) float

The result of the analysis is shown in Figure 13. We observe three effects: first, there is a
larger variation between different runs—even for a high number of samples (for M = 1000 or
α = 20, respectively). Appendix B contains the results with both methods. Second, the indices
differ significantly from the indices obtained with the original parameter ranges, as shown in Figure 12,
especially for the personal space strength parameter. Third, while the relative ranking of the parameters
is still similar, there are larger differences between indices among the methods than for the original
interval (Figure 12).

Figure 13. Normalized activity scores, and Sobol’ indices for the bottleneck scenario with the new
range for the personal space strength ([40, 60]). The parameter index is mapped as follows: 1—control
parameter, 2—free-flow speed mean, 3—free-flow speed standard deviation, 4—number of agents,
5—bottleneck width, 6—personal space strength.
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We conclude that a trustworthy sensitivity study of the personal space strength parameter requires
a pre-calibration of the parameter to empirical data. However, while controlled experiments for the
bottleneck exist, e.g., [41], they do not deal with psychological parameters. We argue that, in this
case, the method helps to indicate a direction for future research. An approach to pre-calibration is
discussed in Appendix B.3.

4. Conclusions

We studied the sensitivities of a set of input parameters in a simulation model of a fundamental
scenario in pedestrian dynamics: a bottleneck. We looked at the crowd density in front of the opening
as quantity of interest.

We used variance-based and derivative-based sensitivity measures. As a variance-based
sensitivity metric, we chose Sobol’ first order and total indices. They purely rely on model evaluations.
Both other measures, the first eigenvector and the so-called activity scores, stem from the active
subspace ansatz. This approach is based on gradient evaluations that we approximated through
central finite difference quotients.

The results of all measures coincided and thus confirmed each other. We were able to identify
two of the input parameters as non-influential with respect to the quantity of interest: the mean
free-flow speed and the number of agents. These parameters can be fixed for further studies, such as
uncertainty analysis or model calibration to any value within the investigated range. It also supports
the informative value of many controlled bottleneck experiments, where the number or participants
was not or was hardly varied.

Most interestingly, we identified a one-dimensional active subspace in the input parameter space.
That means a single linear combination of the input parameters shows a dominant correlation with the
simulation results. The active subspace can be used to find a so-called ridge approximation, which is a
surrogate model that is based on the important input parameter direction.

The sensitivity metrics were plausible: they agreed with our expectations in size and direction
of their relationship with the quantity of interest. For our application, pedestrian dynamics, the
results demonstrate that sensitivity metrics from uncertainty quantification are not only systematic and
standardized, but also powerful tools to study parameter sensitivities. They point out non-influential
and identity most influential parameters. Thus, they help with research prioritization, notably for
empirical research.
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Appendix A. Optimal Steps Model Utilities

The Optimal Steps Model is implemented in our open-source simulation framework
Vadere, available at www.vadere.org. The utility functions are implemented in the package
org.vadere.simulator.models.potential. Table A1 maps the symbols from the equations to
the variable names in the implementation. In addition, the default parameter value defined in

www.vadere.org
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AttributesPotentialCompactSoftshell for each value is given. The radii of the personal and
intimate space stem from Hall [39].

Table A1. Mapping between the notation in the Vadere code and the mathematical description of the
utility functions.

Variable (Equation) Variable (Code) Default Value Unit

ap intimateSpaceFactor 1.2
bp intimateSpacePower 1
cp personalSpacePower 1

δ
per
l pedPotentialPersonalSpaceWidth 1.2 m

δint
l pedPotentialIntimateSpaceWidth 0.45 m
hp pedPotentialHeight 50.0
ho obstPotentialHeight 6.0
wo obstPotentialWidth 0.8

Appendix A.1. Agent Utility

To assure that agents keep a distance to other distance, we introduce the personal space utility.
The model for the personal space utility can be written as [12,13]

Up,l,i(x) = −Pp,l,i(x) = −


pper

l,i (x) + pint
l,i (x) + ptor

l,i (x) if di(x) < (ri + rl)

pper
l,i (x) + pint

l,i (x) if (ri + rl) ≤ di(x) < δint
l + rl + ri

pper
l,i (x) if δint

l + rl + ri ≤ di(x) < δ
per
l + rl + ri

0 else

(A1)

with

ptor
l,i (x) = hp · exp

 4(
di(x)

δ
per
l +ri+rl

)2·cp

−1

 (A2)

pint
l,i (x) = hp

ap
· exp

 4(
di(x)

δint
l +ri+rl

)2·bp

−1

 (A3)

pper
l,i (x) = 103 + exp

 1(
di(x)
ri+rl

)4
−1

 (A4)

Here ri the radius of agent i’s torso and δ
per
l , δint

l are the radii of the personal and intimate space
of agent l. di(x) is the Euclidean distance between the position yi of agent i and x of agent l, that
is, di(x) = ||yi − x||. This model is implemented in PotentialFieldPedestrianCompactSoftshell.
In the current implementation of the Optimal Steps Model, the personal spaces and radii of all agents
are identical. This so-called soft-shell utility is depicted in Figure A1.
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Figure A1. Soft-shell agent utility Up,l,i models the personal and intimate space of agents.

Appendix A.2. Obstacle Utility

Additionally, to assure that agents are not colliding with obstacles an obstacle utility Uo,j is defined.
Since the floor field is not defined inside obstacles, agents cannot step on an obstacle. The obstacle utility
models the natural behavior of pedestrians around obstacles: If there is enough space, pedestrians
keep a distance from obstacles. The fewer space they have, the closer they might move towards the
obstacle. The obstacle utility is implemented in PotentialFieldObstacleCompactSoftshell. It is
based on the theory of Hall [39] and defined in [12] as:

Uo,j(x) = −po,j = −


ψ2

o(x) + ψ1
o(x) if do(x) < ri

ψ1
o(x) if ri ≤ do,j(x) < wo

0 else.

(A5)

with

ψ1
o(x) = ho · exp

(
2(

do(x)
wo

)2
−1

)
(A6)

ψ2
o(x) = 105 · exp

(
1(

do(x)
r

)2
−1

)
(A7)

where do,j(x) is the distance between position x and the closest point of the obstacle, ho and wo are the
height and width of the obstacle utility, respectively, and ri is radius of agent i. The obstacle utility
function is visualized in Figure A2.

Figure A2. Soft-shell obstacle utility Uo,j models the behavior of an agent around an obstacle.



Algorithms 2020, 13, 162 21 of 26

Appendix B. Impact of Parameter Ranges

The full set of the adapted input parameters are shown in Table A2.

Table A2. Uncertain parameters and their distribution used for the sensitivity analysis.

Index Parameter Range Type

1 Control parameter U (1.0, 5.0) float
2 Free-flow speed mean [m/s] U (0.5, 2.2) float
3 Free-flow speed std [m/s] U (0.1, 1.0) float
4 Number of agents [1] U (160, 200) int
5 Bottleneck width [m] U (1.6, 3.0) float
6 Personal space strength hp [1] U (40, 60) float

Appendix B.1. Sobol’ First and Total Order Indices

The first and total Sobol’ indices for the new range of the personal space strength parameter are
shown in Figures A3 and A4, respectively.

Figure A3. First order Sobol’ indices for the new range of the personal space strength parameter.
The parameter index is mapped as follows: 1—control parameter, 2—free-flow speed mean, 3—free-flow
speed standard deviation, 4—number of agents, 5—bottleneck width, 6—personal space strength.

Figure A4. Total order Sobol’ indices for the new range of the personal space strength parameter.
The parameter index is mapped as follows: 1—control parameter, 2—free-flow speed mean, 3—free-flow
speed standard deviation, 4—number of agents, 5—bottleneck width, 6—personal space strength.
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Appendix B.2. First Eigenvector and Activity Scores

Figure A5 depicts the activity scores for the updated limits on the personal space strength
parameter. In addition, the first eigenvector metric is shown in Figure A6. The eigenvalues and first
eigenvector of the matrix C are presented in Figure A7.

Figure A5. Activity scores for the new range of the personal space strength parameter. Runs that
identify a one-dimensional subspace are shown with solid lines, in some runs a 5-dimensional subspace is
identified (dotted). The parameter index is mapped as follows: 1—control parameter, 2—free-flow speed
mean, 3—free-flow speed standard deviation, 4—number of agents, 5—bottleneck width, 6—personal
space strength.

Figure A6. Normalized first eigenvector metric for the new range of the personal space strength
parameter. Runs that identify a one-dimensional subspace are shown with solid lines, in some runs
a higher dimensional subspace is identified (dotted). The parameter index is mapped as follows:
1—control parameter, 2—free-flow speed mean, 3—free-flow speed standard deviation, 4—number of
agents, 5—bottleneck width, 6—-personal space strength.
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Figure A7. Eigenvalues and first eigenvector of the matrix C for the new range of the personal space
strength parameter. Runs that identify a one-dimensional subspace are shown with solid lines, in
some runs a 5-dimensional subspace is identified (dotted). The parameter index is mapped as follows:
1—control parameter, 2—free-flow speed mean, 3—free-flow speed standard deviation, 4—number of
agents, 5—bottleneck width, 6—personal space strength. The index for the eigenvalue plot refers to the
directions identified by the decomposition.

Appendix B.3. Sensitivity Study for a Use Case Study with Non-Physical Parameters

To carry out pre-calibration for a non-physical parameter, such as the personal space strength,
we propose the following general approach:

We believe that this type of sensitivity study should be performed for a targeted use case study.
That means the quantity of interest should be derived from the purpose of the study. For example, if
the study’s aim is to perform a capacity estimation for an ingress to an urban event, the quantity of
interest should reflect this. Flow rates would be an option in this case.

In addition, empirical data that fit the planned simulation study should be used wherever
possible to validate the simulation. Ideally, the empirical data would also reflect the population and
the circumstances. For example, when considering personal space, we expect the population to have a
significant impact. If there is no empirical data available, it may be necessary to conduct a new study,
which is a complex and expensive project.

In the next step, we would develop a metric to measure the effect of each non-physical parameter.
This is a non-trivial task. In the case of personal space, a metric could be defined based on the distances
observed among subjects in the experiment and in the simulation. Then, the metric can be applied to
both experimental data. For the simulated data, the parameter under investigation should be varied to
find a range that fits the empirical observations.
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