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Abstract: Geomechanical modelling of the processes associated to the exploitation of subsurface
resources, such as land subsidence or triggered/induced seismicity, is a common practice of
major interest. The prediction reliability depends on different sources of uncertainty, such as
the parameterization of the constitutive model characterizing the deep rock behaviour. In this
study, we focus on a Sobol’-based sensitivity analysis and uncertainty reduction via assimilation
of land deformations. A synthetic test case application on a deep hydrocarbon reservoir is
considered, where land settlements are predicted with the aid of a 3-D Finite Element (FE) model.
Data assimilation is performed via the Ensemble Smoother (ES) technique and its variation in the
form of Multiple Data Assimilation (ES-MDA). However, the ES convergence is guaranteed with
a large number of Monte Carlo (MC) simulations, that may be computationally infeasible in large
scale and complex systems. For this reason, a surrogate model based on the generalized Polynomial
Chaos Expansion (gPCE) is proposed as an approximation of the forward problem. This approach
allows to efficiently compute the Sobol’ indices for the sensitivity analysis and greatly reduce the
computational cost of the original ES and MDA formulations, also enhancing the accuracy of the
overall prediction process.

Keywords: geomechanical modelling; polynomial chaos expansion; bayesian update

1. Introduction

Geomechanical modelling is a scientific and engineering activity of paramount importance
to evaluate the safety and predict possible environmental impacts related to the exploitation of
subsurface resources. The reliability of the predictions depends on different sources of uncertainty,
which are somewhat intrinsically introduced in any modelling process. Uncertainty typically affects the
knowledge of the constitutive rock behaviour, the geometry of the depleted formations, the diffusion
of the pressure perturbation, just to mention a few important occurrences. In this study, we focus
on the reduction of uncertainty affecting the constitutive model parameters and the land subsidence
prediction via assimilation of ground surface displacements.

A synthetic test case application dealing with the depletion of a deep hydrocarbon reservoir
is considered. Land settlements are predicted with the aid of a 3-D Finite Element (FE) model
using a one-way coupled approach [1–3]. The focus is on the calibration of the rock constitutive
parameters that mainly control the compaction of the rock formation caused by the hydrocarbon
production. Assuming the use of some well-established constitutive models, such as Mohr-Coulomb,
Modified Cam-Clay, hypo-elastic, hypo-plastic or visco-elasto-plastic laws [4–7], different approaches
can be used to estimate the governing parameters. If the required parameters have a measurable
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physical meaning, a major investigation branch concerns either laboratory tests, properly developed
for characterization of geological formations [8], or in-situ observations employed to study reservoir
deformation with specific measurement apparatus, for example, well-logs equipped with radioactive
markers [9]. Another important approach, which is especially related to those parameters that are not
directly associated to measurable quantities, deals with inverse models to infer the uncertain model
parameters using either deterministic or stochastic techniques. The latter approaches are increasingly
employed in geomechanics. For example, in References [10,11] the Ensemble Smoother (ES), that is,
a Monte Carlo (MC)-based method, is used to estimate the parameters of a transversely isotropic
and isotropic constitutive law by the joint assimilation of horizontal and vertical displacements.
Later developments of the ES algorithm in the form of Multiple Data Assimilation (ES-MDA) are
used in Reference [12] to constrain the reservoir compaction coefficient and the subsurface basement
elastic modulus by assimilation of ascending and descending line-of-sight displacements revealed
by Permanent Scatterer Interferometry (PSI). Recently, Reference [13] compares the results obtained
from applying the ES and the ES-MDA to estimate the parameters of the modified Cam-Clay and the
Vermeer-Neher (VN) visco-elasto-plastic models [3].

The growing interest on the ES as a data assimilation technique is mainly due to its straightforward
implementation and the capability of using simultaneously the measurements collected at different
times and locations in a 4-D assimilation. However, its convergence is guaranteed only with a
large number of MC simulations that may be computationally unfeasible in demanding large-scale
problems. Moreover, its effectiveness in constraining the model for a strongly non-linear dependence
of the outcome on the uncertain parameters is theoretically questionable. This limitation can be
overcome by employing the ES in a multiple assimilation fashion, with the introduction of the ES-MDA
technique [14], but this implies a further significant increase of the computational cost for the overall
procedure, with the ES algorithm repeatedly applied to different ensembles. It follows the need for fast
model predictions that can be achieved by approximating the forward model operators with surrogate
solutions, obtained at a highly reduced computational cost.

In geomechanical applications, surrogate models have been recently employed for uncertainty
quantification (UQ) and sensitivity analysis (SA). A functional data analysis technique is used
to perform a vertical displacements UQ on a synthetic field-scale test by setting the oedometric
compressibility as uncertain parameter [15]. Polynomial chaos proxies of the linear poroelastic problem
with hydromechanical coupling allows a variance-based SA on Lamé’s constants, the Biot-Willis
coefficient and the hydraulic mobility [16]. Another non-intrusive approach is used in sequentially
coupled reservoir-geomechanical simulations to estimate the caprock safety factor in a probabilistic
setting [17]. Global SA and parameter identification are carried out by means of Gaussian processes
in a carbon capture and storage test case to model fault poromechanics and induced seismicity in a
stochastic framework [18]. A similar approach is used in Reference [19] to investigate the onset of
fault activation in deep hydrocarbon reservoirs with surrogates based on polynomial chaos expansion.
Global SA are also employed to investigate geomechanical fractured reservoirs [20] and hydraulically
fractured wells with reduced order models [21].

In this work, we focus our attention on the generalized polynomial chaos expansion
(gPCE) [22–26]. Using a spectral representation in the random space, gPCE-stochastic solutions are
expressed by orthogonal polynomials of the input parameters [27]. This approach has already proved
successful in several different engineering applications [28,29] with a growing interest in the Earth
science community for UQ and SA [30–35]. Moreover, gPCE is suitable for identification problems in
the Bayesian inference framework as documented in previous studies [36–40], to cite just a few.

Here we present an approach where we further extend the use of the gPCE as surrogate for
regional geomechanical models with the aim of land subsidence prediction due to the exploitation
of subsurface resources. Our contribution is threefold: (i) to validate the gPCE surrogate model
for a highly non-linear consitutive law such as the VN visco-elasto-plastic model, (ii) to perform a
global SA and rank the influence of the model parameters and their combinations, and (iii) based on
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sensitivity results, to adapt accordingly the probabilistic framework for the ultimate goal of solving a
parameter identification problem via ensemble-based Bayesian updating schemes. The gPCE surrogate
is used in combination with the ES (gPCE-ES) and ES-MDA (gPCE-MDA) to solve the inverse problem
based on measurements of vertical displacements , by sampling the ensemble members from the
gPCE expansion. This is possible at a very low computational cost, because only direct polynomial
evaluations are involved instead of running a full ensemble of forward models, provided that the
gPCE approximation is sufficiently representative of the actual geomechanical outcome.

The paper is organized as follows. Section 2 includes the description of the governing equations
of the forward simulation model, their approximation via gPCE expansion, the derivation of the Sobol’
indices and the Bayesian-based updating schemes (ES and ES-MDA). Section 3 presents the numerical
test case focusing on the variability range of the significant uncertain parameters. The results are
provided in Section 4, where uncertainty propagation via gPCE approximation is first presented,
with further assimilation of surface displacements to update the model outcome and provide the best
estimate of the model parameters. The result of the gPCE-ES updating is compared with the solution
from the classical ES formulation and with the gPCE-MDA approach, showing the computational
efficiency and algorithmic effectiveness of the proposed surrogate model for uncertainty quantification
and numerical prediction purposes. Finally, some conclusive remarks close the presentation.

2. Mathematical Framework

2.1. Geomechanical Governing Equations and Model Parameterization

The geomechanical model of a producing reservoir computes the stress and displacement
fields generated by spatial and temporal pore pressure changes due to fluid withdrawal.
The analysis is carried out by solving numerically the governing partial differential equations of
3-D poro-mechanics [41,42] with the aid of the FE method. A one-way coupled approach is used, as it
is usually accepted in petroleum engineering. This implies that the pore pressure change in space and
time is first computed by a dynamic flow model, and then used as an external source of strength in the
equilibrium equations.

Let Ω ⊂ R3 denote a 3-D domain in the x-y-z reference system with boundary Γ. Neumann and
Dirichlet boundary conditions are imposed on boundaries ΓN and ΓD, respectively, with Γ = ΓN ∪ ΓD
and ΓN ∩ ΓD = ∅. The equilibrium equations governing the consolidation of a porous medium at
some instant t ∈ I =]0, T[, with T the simulation period read:

∇ · σ − α∇p = b on Ω

u = û on ΓD

σ · n = f on ΓN ,

(1)

where σ(x, t) is the effective stress tensor, α(x) the Biot coefficient, p(x, t) the pore pressure change,
b(x, t) the external body forces, and n(x) the outer normal to ΓN . The system of Equations (1) is solved
in terms of displacements u(x, t), subject to the prescribed displacements û(x, t) along ΓD and the
force per unit surface f(x, t) along ΓN . To close the system, a non-linear constitutive relationship is
introduced to link the effective stress to the strain tensor ε(x, t):

σ = D (ε) , (2)

where ε is related to u according to the small strain hypothesis:

ε =
1
2

(
∇+∇T

)
u. (3)
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In this study, the VN [43] visco-elasto-plastic constitutive law is used. Equation (2) is written in
differential form as:

σ̇ = C :
(

ε̇− γ̇
∂pc

∂σ

)
, (4)

where C is the standard rank-4 elasticity tensor, γ̇ is the plastic multiplier rate and pc is the plastic
potential. The elasticity tensor C depends on Poisson’s ratio ν and a stress-dependent Young’s
modulus E:

E = (1− 2ν)
3ρκ p
λ∗

, (5)

with p the volumetric stress (first stress invariant), λ∗ the modified compression index, and ρκ the ratio
between the modified compression and swelling index. The plastic multiplier rate is defined as:

γ̇ =
λ∗

ρµτ∗ ∂pc
∂p

 pc

Rpc,0exp
(
−ρκε

p
v

λ∗(ρκ−1)

)


ρµ(ρκ−1)/ρκ

, (6)

where ρµ is the ratio between the modified compression and creep index, τ∗ is a reference time value,
ε

p
v is the volumetric plastic strain, and pc is set equal to a lumped scalar representation of the stress

state in the plane of the first and second stress invariants (p, q):

pc = p +
c

tan ϕ
+

q2

M2
(

p + c
tan ϕ

) . (7)

In this last equation, c is the material cohesion, ϕ the friction angle, and M the slope of the Critical
State Line in the (p, q) plane:

M = 3

√(
1− K0

1 + 2K0

)2
+

(1− K0)(1− 2ν)(ρκ − 1)
(1 + 2K0)(1− 2ν)ρκ − (1− K0)(1 + ν)

, (8)

with K0 the ratio between the vertical and horizontal stress in normal consolidation state, also known
as confinement factor. Finally, in Equation (6) R is the geotechnical initial overconsolidation ratio
defined as pc,r,0/pc,0, where pc,0 is a representation of the stress state at initial conditions and pc,r,0

is a parameter related to the plastic strain developed by the material before loading. For details on
the numerical implementation of Equations (4)–(8) in the forward model, the reader is referred to
Reference [3].

The VN visco-elasto-plastic model requires a significant number of independent material
parameters, which may vary according to the selected implementation. In particular, for the
formulation presented herein we need: ν, λ∗, ρκ , ρµ, τ∗, R, c, ϕ, and K0. The present analysis focuses
on the parameters that mostly characterize the VN constitutive law with respect to more traditional
ones, specifically, (1) λ∗, (2) ρκ , (3) ρµ, and (4) R. Parameter λ∗ represents the slope of the normal
consolidation profile of volumetric strain vs axial stress in a logarithmic plot, while ρκ allows to obtain
the slope of the same profile in unloading/reloading conditions. The parameter ρµ depends on the
slope of the volumetric strain vs. time profile, in natural logarithmic scale. Finally, the ratio R provides
the over-consolidation degree of the porous rock and describes the size of the implicit yield surface
defined by the VN model in the plane of the first two stress invariants (p, q). This set of parameters is
also selected because of the availability of literature estimates and the independence on the employed
unity of measure. All the remaining parameters have been fixed to standard values generally accepted
for a wide range of materials (ν = 0.3, τ∗ = 1 day, c = 1 MPa, ϕ = 30o, and K0 = ν/(1− ν) = 0.43).



Algorithms 2020, 13, 156 5 of 23

2.2. gPCE Surrogate Model

Running the forward geomechanical model multiple times for large and complex systems can be
a very demanding task, both in terms of CPU and memory requirements. A gPCE approach [22,44] is
therefore proposed to approximate the outcome of the deterministic simulator and then compute the
propagation of the input uncertainty through the forward model. The main idea of gPCE surrogate
models is based on using orthogonal polynomial approximations of the random input to project the
stochastic model output. In the following, we provide the basic mathematical framework as derived in
Reference [44].

Let us consider the random vector U = (U1, . . . , U`) ∈ R` written as a function of the random
vector Z of mutually independent random variables Z = (Z1, . . . , Zn) and distribution function
FZ(z1, . . . , zn) = P(Z1 ≤ z1, . . . , Zn ≤ zn), where we are considering a stochastic process in the
probability space (Ω,F ,P) with space of events Ω, σ-algebra F and probability measure P on F ,
see for example Reference [27]. As usual, the independence assumption implies FZ(z) = ∏n

i=1 FZi (zi),
where FZi (zi) = P(Zi ≤ zi) is the marginal distribution function with i = 1, . . . , n. Since any random
variable may be represented as a series of polynomials in uncorrelated and independent Gaussian
variables [22] and, in its generalized extension, in non-Gaussian measures, gPCE basis functions of a
univariate random variable Zi are defined as the polynomials {φk(Zi)}N

k=0 of Nth-degree satisfying
the orthogonality conditions

E[φs(Zi)φr(Zi)] =
∫

Σi

φs(zi)φr(zi)dFZi (zi) = γsδs,r 0 ≤ s, r ≤ N, (9)

with γs = E[φ2
s (Zi)] the normalization factors, δs,r the Kronecker delta function and Σi is the support

of Zi. In the multivariate case, the gPCE basis functions Φα(Z) of degree up to N are products of the
univariate orthogonal polynomials:

Φα(Z) = φα1(Z1) . . . φαn(Zn) with 0 ≤ |α| ≤ N, (10)

where α = (α1, ..., αn) ∈ Nn
0 is a multi-index with |α| = α1 + · · ·+ αn. The multivariate basis functions

are orthogonal polynomials in L2
dFz

, that is, the space of all mean-square integrable functions of Z with
respect to the inner product based on the measure dFZ:

E[Φα(Z)Φζ(Z)] =
∫

Σ
Φα(z)Φζ(z)dFZ(z) = γαδαζ , (11)

where Σ is defined by Σ = Σ1 × Σ2 · · · × Σn. As a consequence, the class of orthogonal polynomials is
selected according to the measure FZi . The polynomials orthogonal for the standard normal distribution
are the Hermite polynomials, which form an ideal basis for the output stochastic domain [27].

In the gPCE context, we aim at finding an approximation ŨN(Z) of the random function
U(Z) ∈ R` in the N-th degree polynomial space generated by the basis functions Φα(Z):

U(Z) ≈ ŨN(Z) = ∑
|α|≤N

cαΦα(Z), (12)

where cα ∈ R` are the coefficients of the expansion. For U(Z) ∈ L2
dFz

, the coefficients cα can be
computed by defining ŨN as the orthogonal projection of U onto the polynomial space Z = span{Φα}.
By prescribing the orthogonality condition U − ŨN ⊥ span{Φα}:∫

Σ

[
U(Z)− ŨN(Z)

]
ΦαdFZ = 0 (13)
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the coefficients cα simply read

cα =
1

γα
E[U(Z)Φα(Z)] =

1
γα

∫
Σ

U(z)Φα(z)dFZ(z) |α| ≤ N, (14)

that is, they can be numerically computed as an integral of the product of Φα and U. The expansion
terms of Equation (14) guarantees the optimal approximation of U in the sense of the norm defined
in L2

dFZ
.

The coefficients cα of the approximating gPCE are numerically computed by a non-intrusive
approach, where the forward model providing U(Z) is used in a black-box fashion. We use
a pseudo-spectral projection, with the integral term approximated by a high-dimensional
quadrature rule:

cα ≈ c̃α =
nq

∑
j=1

U(zj)Φα(zj)w(zj) (15)

with zj and w(zj) the nq integration nodes and weights, respectively. Since Φα is at most of degree
N, the integrand function has at most degree 2N. In the univariate case, this requires the use of a
(nq,1 = N + 1)-point Gaussian quadrature rule, while in the multivariate case with n random variables
the number of points grows up to nq = (N + 1)n. Using this approximation, the surrogate model needs
the evaluation of U through the the numerical solver S of the forward model at the nq integration
points zj.

In our application, we denote with U the vector of state variables, that is, displacements and
stresses on the points and times of interest, provided by the solution of problem (1) via a FE numerical
solver S . The random variables Z are the material parameters defined by the visco-elasto-plastic VN
constitutive law, that is, λ∗, ρκ , ρµ, and R, with n at most equal to 4.

2.3. Sobol’ Indices in the gPCE Framework

The objective of a preliminary SA is to quantify the influence of the uncertain input parameters and
their combinations on the model output, so as to retain only the most significant contributions. This is
important to (i) focus the design of laboratory/field experiments on the collection of measurements
of the most important parameters, and (ii) reduce the number of calibration parameters for an easier
solution of the inverse problem, especially in real-world applications. In this work, we propose the
use of the variance-based SA according to the framework developed in Reference [45]. A variance
decomposition of the model output into partial variances of the model input (and combination of more
than one parameter), allows to estimate the so-called Sobol’ indices, which provide a measure of the
relative importance of each uncertain parameter to the model outcome. In the sequel, we provide a
brief description of the ideas lying behind Sobol’ indices. For completeness, the reader is referred to
the work of Reference [45] or to the application developed in Reference [19].

For the sake of simplicity, let us consider the model outcome U, that is, the quantity of interest,
as a one-dimensional variable function f of the n-variate random vector Z = (Z1, Z2, . . . , Zn) of
mutually independent components defined over an n-dimensional hypercube Σn. Assuming f to be a
square-integrable function, the functional decomposition of U = f (Z) reads

f = f0 +
n

∑
i=1

fi +
n

∑
i=1

n

∑
j>i

fi,j + · · ·+ f1,2,...,n, (16)

where f0 is a constant representing the mean value of f , and fi, fi,j, . . . , f1,2,...,n are the uncorrelated
random effects associated to the factors in their indices, for example, fi = fi(Zi) are the main effects
due to the factors Zi and fi,j = fi,j(Zi, Zj) are the effects related to interactions between the factors
Zi and Zj with j > i. It has been proved in Reference [45] that a unique expansion of Equation (16)
exists for any function f (Z) integrable in Σn under the hypothesis of zero mean of all expansion
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terms with respect to each variable. The expansion (16) for the quantity of interest U is used to derive
the associated variance V(U). In fact, squaring Equation (16) and using the orthogonality condition
holding for the expansion terms [45], it can be demonstrated that V(U) reads:

V(U) =
n

∑
i=1

Vi +
n

∑
i=1

n

∑
j>i

Vi,j + · · ·+ V1,2,...,n, (17)

where Vi, Vj, . . . , V1,2,...,n are the partial variances of fi, f j, . . . , f1,2,...,n, respectively. Generally, the partial
variance Vi1,...,is in (17) reads:

Vi1,...,is =
∫

Σs
f 2
i1,...,is(Zi1 , . . . , Zis)d(Zi1 , . . . , Zis) (18)

which can be written in terms of conditional expectations as:

Vi = V(E(U|Zi))

Vi,j = V(E(U|Zi, Zj))−Vi −Vj

Vi,j,k = V(E(U|Zi, Zj, Zk))−Vi −Vj −Vk −Vi,j −Vi,k −Vj,k (19)

...

V1,...,n = V(U)−
n

∑
i=1

Vi −
n

∑
i=1

n

∑
j>i

Vi,j − . . .−
n

∑
1≤i1<···<in−1≤n

Vi1,...,in−1 .

Equations (19) provide practical relationships for the computation of partial variances for any indices
combination. The Sobol’ first and higher-order indices are defined as:

Si =
Vi(U)

V(U)
(20)

S1,...,s =
V1,...,s(U)

V(U)
, (21)

where Si measures the relative importance of a single factor Zi on the total model variance and the
higher-order indices S1,...,s represent a measure of the combined model sensitivity to the group of
factors Z1, . . . , Zs. The total effects ST,i are also computed to quantify the contribution of the i-th factor
to the total output variation as [46]:

ST,i = 1− V(E(U|Z∼i))

V(U)
, (22)

where V(E(U|Z∼i))/V(U) include first and higher-order interactions of all factors except Zi.
Sobol’ indices can be easily obtained by MC sampling. However, the computational cost of

the evaluations can be prohibitive for large scale problems and the use of gPCE approximation is
straightforward for the purpose, being the Sobol’ indices readily evaluated from the coefficients of
the gPCE [33,47,48]. The idea is to replace the functional decomposition of Equation (16) with the
Nth-degree polynomial expansion of Equation (12) by defining [48]:

fi1,...,is(Zi1 , . . . , Zis) ' ∑
|β|≤N

cβΦβ(Zi1 , . . . , Zis) (23)

where the multi-index β = (β1, ..., βs) ∈ Ns
0 satisfies |β| = β1 + · · ·+ βs and Φβ(Zi1 , . . . , Zis) are the

s-variate Nth-degree gPC basis functions.



Algorithms 2020, 13, 156 8 of 23

2.4. gPCE-ES and gPCE-MDA

In this section, we provide the mathematical framework for the Bayesian inverse modelling
approach based on gPCE. We aim at estimating the state variable and model parameter distributions
where few information is available on such inputs. This is pursued by establishing a Bayesian
inverse modelling approach with the model outcome constrained by spatio-temporal observations of
measurable quantities.

Let us assume that d ∈ Rm is the vector of noisy empirical measurements of the true observable
vector dt ∈ Rm:

d = dt + ε, (24)

where dt = H(ut) with H a measurement operator mapping the true state variables ut ∈ R` into
the true observable vector. The vector ε ∈ Rm is the additive observational error with probability
distribution function ρ(ε) = ∏m

i=1 ρ(ei), that is, assuming ei with i = 1, ..., m mutually independent
and identically distributed variables. Of course, ut is not available because of the uncertainties of the
mathematical modelling process. Through inverse modelling we aim at providing the best estimate
of the “true” state/parameters variables conditioned by (i) available mathematical models, (ii) prior
parameters knowledge, and (iii) measurement data. Here, we employ the ES technique and its iterative
version in form of ES-MDA [14,49,50]. The linear unbiased smoother estimate can be written in a
matrix form as:

Xu = X f + K(D− HX f ), (25)

where X f = (U f , Pp)T ∈ R(`+n)×nMC is the augmented matrix of the forecast ensemble states u f and
prior parameters pp, with U f obtained as the collection of the outcome of nMC MC simulations and Pp

the corresponding prior parameters for every simulations assuming no model errors. The augmented
matrix Xu = (Uu, Pu)T ∈ R(`+n)×nMC is the updated solution by correction of X f with assimilated
measurements. Matrix D ∈ Rm×nMC contains the perturbed measurements matrix with ε ∼ N(0, R)
and R ∈ Rm×m the error covariance matrix, while H is a linearization of the measurement operatorH.
The innovation (D− HX f ) is weighted over the so-called Kalman gain K calculated as:

K = C f HT(HC f HT + R)−1, (26)

where C f is the covariance matrix of the forecast augmented state X f . In the form of gPCE-ES, the MC
simulation of the forward operator are approximated by straightforward polynomial evaluations to
cast the matrix X f by using the surrogate solution provided by Equation (12). Thus, a large number of
MC samples can be adopted for the forecast ensemble and reduce sampling errors [27].

It is sometimes difficult to achieve a proper constraining of the model through the available data
with the single-update of ES, especially when the forward model outcome have a strongly non-linear
dependence on the uncertain parameters [14,51]. For this reason, Reference [50] introduced the MDA
technique, that was later combined with ES [14], in order to improve the results of a single assimilation
for history-matching problems. The ES-MDA is widely recognized as a tool to refine the conditioning
of the model especially when non-linearities are significant, even if there is no rigorous proof about its
convergence [52]. The idea behind ES-MDA is to repeat the assimilation of the same measurement
data for nMDA times. In order to avoid an over confidence in the available data, the covariance matrix
R is inflated by a coefficient αMDA ≥ 1. The choice of the coefficient αMDA for every assimilation step
is arbitrary as long as the sum of their inverses is unitary:

nMDA

∑
i=1

1
αMDA(i)

= 1. (27)

The condition (27) ensures the equivalence between ES and ES-MDA for Gaussian-linear problems [14].
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3. Numerical Results

The sequence of steps resulting from the mathematical framework defined in the previous section
is summarized in Algorithm 1. After the initialization, the gPCE surrogate model is built taking
into account only the most significant parameters, whose selection is based on the computation of
the total Sobol’ index ST . We retain in the final model only the parameters with ST larger than a
user-specified threshold εS, which can be conveniently adjusted so as to provide a good balance
between model representativeness and cost. Whenever a parameter is excluded from the uncertainty
analysis, the gPCE model has to be recomputed. The most expensive task, that is, the nq full model S
runs for a variable number of sweeps, is carried out at this stage, which must be therefore carefully
designed. Once the surrogate model is available, the uncertainty quantification step can be completed
by means of the classical ES or ES-MDA algorithms, where a very large number of MC realizations can
be now computed at a low computational cost.

Algorithm 1 gPCE-ES and gPCE-MDA for the forward model S .

1: % Initialization
2: Define n uncertain parameters in the vector p
3: Set N, εS, nMC, nMDA and αMDA
4: Input d and H
5: % gPCE model and sensitivity analysis
6: Check = True
7: while Check do

8: Check = False
9: Set the gPCE basis functions Φα

10: nq = (N + 1)n

11: cα = 0
12: for j = 1, ..., nq do

13: Set the nodes zj ∈ Σ and the weights w(zj)
14: U j = S(zj)
15: cα ← cα + U jΦα(zj)w(zj)
16: end for
17: Set s as the total number of Sobol’ indices
18: for i = 1, . . . , s do

19: Compute Si = Vi/V
20: end for
21: for k = 1, ..., n do

22: Compute ST,k
23: if ST,k < εS then

24: Remove the k-th parameter from p
25: n← n− 1
26: Check = True
27: end if
28: end for
29: end while
30: % Constrain the model via Data Assimilation
31: Set the prior parameter set pp

32: for i = 1, ..., nMDA do

33: Compute D and R using αMDA
34: for j = 1, ..., nMC do

35: u f = ∑|α| cαΦα(pp)
36: end for
37: Compute C f

38: K = C f HT(HC f HT + R)−1

39: Xu = X f + K(D− HX f )
40: end for
41: uu = ∑|α| cαΦα(pp)
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3.1. Model Set-Up and Random Parameters

The proposed approach is tested in a realistic geomechanical analysis concerning the development
of a production program from a synthetic hydrocarbon reservoir. For the sake of realism, the model
is built by introducing some of the typical features of the off-shore reservoirs buried in the Northern
Adriatic basin, Italy [9,10,53].

The model domain covers an area of 50 km × 50 km and extends down to 5 km depth.
It is discretized into the 3-D FE mesh shown in Figure 1a consisting of 71,734 nodes and 410,030
tetrahedrons. The rock in the reservoir and the hydraulically connected aquifer has a strongly
non-linear visco-elasto-plastic behaviour described by the VN model, while the overburden and
the underburden, that is the portions of the domain that are not filled by color in Figure 1a, are linear
elastic. Homogeneous essential conditions apply on the outer and the bottom boundaries, with the top
of the domain modeled as a traction-free surface. We assume the hydrocarbon production program
from the reservoir to last for 3 years, then start again after a 2-year stop and be completed after 7 years,
with the monitoring continuing for 3 additional years after the production stop. The average pressure
variation occurring within the reservoir in time is shown in Figure 1b. The pressure distribution in
space, also within the connected aquifer, is predicted by means of a dynamic reservoir flow model.
The reader can refer to Reference [13] for more details.

(a)

(b)
Figure 1. (a) View of the three-dimensional finite element grid of the regional geomechanical model.
The hydrocarbon reservoir is blue, while the connected aquifer is red. The vertical axis is exaggerated
by a factor 3. (b) Average pore pressure variation in time within the reservoir.

Model uncertainty is connected to the four parameters of the material constitutive law mentioned
in Section 2.1. Based on physical considerations and a possible prior knowledge, if available, a range
of variability is associated to such parameters. In particular, we set:

1. ln (λ∗) ∼ U (−5.60;−4.28)

2. ρκ ∼ U (5; 20)

3. ρµ ∼ U (40; 80)

4. R ∼ U (1.2; 1.5)

(28)

The range for λ∗ has been chosen recalling the physical relationship between λ∗ and the vertical
compressibility cm, which has been derived in References [9,53] for the Northern Adriatic basin.
For the other parameters typical values reported in the literature, for example in Reference [3],
have been taken into account. Hence, we initialize the gPCE algorithm by defining a vector of
n = 4 random parameters p = (λ∗, ρκ , ρµ, R). Note that since we employ uniform distributions
for the random variables, the Legendre polynomials are used as gPCE basis functions. All the other
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modelling assumptions, including initial and boundary conditions, geometry and pressure distribution,
are considered as deterministic.

As quantities of interest, collected in the vector U given as output from the full forward
geomechanical model S , we consider the time series of the vertical displacement at a single-point
of the top surface showed in Figure 2a, corresponding to land subsidence in time. Measurements of
this quantity are supposed to be collected every three months for ten years, for example, by a GPS
station. The true observations are collected in the vector dt. They are synthetically obtained by running
the forward model with what is assumed to be the true material parameter set (continuous lines in
Figure 2b). Then, the observation vector d is obtained by adding an error ε sampled from a zero-mean
Gaussian noise with standard deviation σε = 0.01 m (dots and squares in Figure 2b).

(a)

Time [yr]

u
z [m

]

pt=(0.011, 1.25)

pt=(0.005, 1.50)

(b)
Figure 2. (a) 2D view of the model top with the green point indicating the location where the
measurements are supposed to be recorded. (b) Synthetic sequence of vertical displacements uz used
in the assimilation process for two different parameter sets pt. The continuous and dashed lines are the
outcomes of the geomechanical model, while dots and squares indicate the assimilated observations.

3.2. gPCE Surrogate Model

Since we use uniform distributions for the input parameters, the gPCE basis functions are
multivariate Legendre polynomials, which are orthogonal with respect to the uniform measure.
The first objective of this analysis is to test the quality of gPCE as a surrogate of the exact outcome of
the forward model. We provide results for different degrees of the polynomial truncation, N =1,2,3.
A full tensor approach is used for N = 1 and N = 2, leading to a total number nq of forward model
runs equal to 16 and 81, respectively. Since with N = 3 we would have needed nq = 256 full model
runs, a sparse grid approach based on Smolyak’s coarse tensorization [54] is used, thus reducing
nq to 137. It should be noticed that the use of such sparse grid numerical integration might lead to
unacceptable errors in the expansion coefficients with higher order polynomials [55]. This issue is not
encountered in the present application, however alternative accurate approaches can be also employed
if needed, such as those advanced in References [55,56].

A quantitative evaluation of the fitting quality of the gPCE surrogate is provided by employing
the leave-one-out (LOO) cross-validation [57,58], where an estimate of the mean-square error of the
residuals between the full model and surrogate solution is given by the SSELOO defined as:

SSELOO =
1
nq

nq

∑
i=1

(uz,i − û∼i
z,i )

2, (29)

where uz,i is the full model result at a certain time t and parameter combination i and û∼i
z,i is the

surrogate solution at the same t and i with the gPCE built without the point denoted by i. In practice,
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the nq residuals can be obtained without building nq different gPCE but using the original gPCE
constructed with the whole set of collocation points [57]. The coefficient Q2, similar to the coefficient
of determination R2, can be defined as:

Q2 = 1− SSELOO

SST
, (30)

where SST is the sum of the squared deviations of uz,i from their mean values µu at the instant t.
Values of Q2 close to 1.0 indicates a good match between the model outcome and the gPCE surrogate
approximation. Table 1 reports the mean and variance of vertical displacements at the times t =1, 5,
and 10 years, along with the Q2 value. Q2 progressively increases to the upper limit of 1 for increasing
N, proving the convergence of both the polynomial expansion and the high-dimensional quadrature
formula. This holds true for t > 5 years with a gPCE-surrogate solution less accurate at the onset of
the simulation.

Table 1. Mean µu, variance σ2
u and coefficient Q2 with the generalized Polynomial Chaos Expansion

(gPCE) approximation up to degree N = 1, N = 2 and N = 3 (sparse grid).

N = 1 (nq = 16) N = 2 (nq = 81) N = 3 (nq = 137)

t [yr] µu [m] σ2
u [m2] Q2 µu [m] σ2

u [m2] Q2 µu [m] σ2
u [m2] Q2

1 −2.1× 10−3 2.0× 10−6 0.820 −2.3× 10−3 3.1× 10−6 0.931 −2.3× 10−3 3.0× 10−6 0.823
5 −1.7× 10−1 1.4× 10−2 0.860 −1.7× 10−1 1.5× 10−2 0.995 −1.7× 10−1 1.5× 10−2 0.999

10 −3.6× 10−1 2.6× 10−2 0.904 −3.7× 10−1 2.8× 10−2 0.999 −3.7× 10−1 2.8× 10−2 1.000

3.3. Sensitivity Analysis

Before proceeding with the assimilation, it is important to evaluate the actual influence of the
uncertain parameters on the model output. We compute the Sobol’ indices using the gPCE-surrogate
solution of the model output. The results are presented in Figure 3. First-order indices clearly show the
higher impact on the total variance with a negligible influence of the factors interactions. In particular,
parameters λ∗ and R appear to have the major impact on the solution at several times, except for the
first two years where ρκ and ρµ have a non-negligible effect. However, the significance of the quantity
of interest, that is, vertical displacements, is quite limited at the beginning of the production period,
because both the pressure variation and the geomechanical answer of the system are still very small
and possibly influenced by the measurement errors. Thus, we limited our sensitivity analysis to the
time interval between 3 and 10 years. In this temporal window, based on the total Sobol’ indices
ST,i (Figure 3c,d) and setting εS = 0.1, we can remove from the parameter space the ratios ρκ and
ρµ. However, it is important to point out that further analysis may be needed in order to investigate
the model sensitivity based on different metrics, for example, on the expected value, skewness and
kurtosis [59,60]. This may be helpful to better understand the role of each parameter, thus ensuring its
exclusion from the parameter space is negligible.

The new parameter space is defined by p = (λ∗, R) with n = 2. This allows to reduce significantly
the computational effort and, for the further analysis, retain the gPCE order to N = 3 with a total
number of high-dimensional quadrature nodes nq = 16. The Sobol’ indices for this new parameter
space have the same behaviour as the one shown in Figure 3.

3.4. Bayesian Update

In this section, we compare the results of state/parameter update by the assimilation of surface
displacements using the classical ES approach and its variation in the form of gPCE-ES. As already
mentioned before, the synthetic “true” observations dt are collected from a geomechanical model
run with the “true” parameter set and perturbed by a zero-mean Gaussian noise ε (Figure 2b).
Different “true” parameter sets are investigated to test the robustness of the proposed approach.
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The gPCE-ES technology is then applied within the iterative ES-MDA framework using either constant
and decreasing factors αMDA to inflate the covariance matrix of measurement error.
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Figure 3. Sobol’ indices versus simulated time. Profiles with markers are used for the single parameters,
while continuous profiles are used for the combinations of parameters. (a) Case with n = 4 parameters
and gPCE degree N = 2. (b) Case with n = 4 parameters and gPCE degree N = 3 with a sparse grid.
(c) The same as (a) considering the total effect. (d) The same as (b) considering the total effect.

3.4.1. ES and gPCE-ES

We assimilate a time series of vertical displacements collected at a point on the top surface
located approximately at the center of the reservoir (Figure 2a). The synthetic observations are
given by the geomechanical model run with what we assume to be the “true” parameter set
(λ∗ = 0.011, R = 1.25). The purpose is to constrain the forecast response of both state variables,
for example, surface displacements and material parameters.

Figure 4 shows the prior and updated ensembles of the uncertain parameters, λ∗ (left sub-panels)
and R (right sub-panels), obtained by progressively increasing the number of MC realizations.
The assimilation is carried out by both the standard ES with the full forward model (red dots) and the
proposed gPCE-ES approach (blue dots). As expected, the mean of the updated ensembles tends to
approach the “true” value for both parameters, though with possible oscillations far from convergence,
for example at nMC = 50. We provide the results for nMC = (16, 25, 41, 50, 75, 100) in order to analyze
the cases when the number of realizations is either smaller than, equal to, or larger than, the number of
observations m = 41. Since the total cost of an ES application can be regarded as roughly equal to
the number of forward model runs, we can measure the computational cost, η, just by counting the
number of MC simulations. Therefore, the computational cost ηg associated to gPCE-ES is constant
and equal to 16, that is, the number nq of forward model runs required to compute the surrogate
gPCE model. By distinction, with the standard ES the computational cost, η f , increases with nMC.
The uncertainty reduction is significantly improved if nMC ≥ m. In case nMC < m we retain 99% of
the non-zero singular values computed to invert the matrix in Equation (26). Generally speaking,
the parameter R better approaches the "true" value as compared to λ∗.



Algorithms 2020, 13, 156 14 of 23

16 25 41 50 75 100
nMC

3

5

7

9

11

13

15

*

10-3

prior
ES-update

*
up

*
up

*
up

true

(a)

16 25 41 50 75 100
nMC

1.1

1.2

1.3

1.4

1.5

 R

prior
ES-update

 R
up

 R
up

 R
up

true

(b)

16 25 41 50 75 100
nMC

3

5

7

9

11

13

15

*

10-3

prior
gPC-update

*
up

*
up

*
up

true

(c)

16 25 41 50 75 100
nMC

1.1

1.2

1.3

1.4

1.5

 R
prior
gPC-update

 R
up

 R
up

 R
up

true

(d)
Figure 4. Parameter ensembles for increasing number of Monte Carlo realizations nMC. Panels (a) and
(b) use the standard Ensemble Smoother (ES) with the full forward model for λ∗ and R, respectively.
Panels (c,d) provide the same outcome as (a,b) by using the gPCE-ES approach. µ and σ are the mean
and standard deviation of the updated (up) ensembles.

Figures 5 and 6 show the update of the state variable uz, that is, the vertical displacement in time
at the monitoring point, by increasing nMC with ES and gPCE-ES, respectively. The observations are
generally well-captured by both approaches, with no significant differences between the methods.
Hence, the proposed surrogate model appears to capture very well the overall behaviour of the forward
model. To measure the quality of the approximation provided by gPCE-ES, we define the metrics AE
(average error) and AES (average ensemble spread) defined as:

AE =
1

nMC

nMC

∑
k=1
|ψk − ψtrue| (31)

AES =
1

nMC

nMC

∑
k=1
|ψk − µψ|, (32)

where ψ generally stands for state variables or parameters, and µψ its mean. The metrics are computed
both for prior and updated ensembles of states and parameters, providing a quantitative measure of
the assimilation quality. For the state uz, time-averaged values are used to compute the metrics. AE and
AES reductions (Table 2) larger than 90% are obtained for both ES and gPCE-ES, thus confirming that
the surrogate model is able to reproduce almost exactly the full forward model behaviour.
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Figure 5. State ensembles for increasing number of Monte Carlo realizations nMC. In this case,
the forecast ensemble (the grey one) has been obtained through the geomechanical model. The update
ensemble (in red) is directly the output of the ES technique, that is, it does not derive from the
geomechanical model run with the update ensembles of the parameters.

Based on these outcomes, we consider now only the gPCE-ES framework. Figure 7a shows the
gPCE-ES convergence with nMC. We recall that the computational cost is roughly constant, ηg = 16.
The performance index AEu decreases with nMC for both parameters and stabilizes after ∼100 nMC.
If a different “true” parameter set is used, for example, (λ∗ = 0.005, R = 1.5), we obtain the behaviour
shown in Figure 7b. In this case, the mean converges to the "true" value at a much faster rate for λ∗,
while R remains poorly constrained. The “true” parameter sets are chosen such that they provide very
different "true" reference simulations, as shown in Figure 2b.
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Figure 6. The same as Figure 5 with the forecast ensembles, in grey, obtained through the gPC expansion.

3.4.2. gPCE-MDA

The ES-MDA approach is based on a multiple assimilation process to provide a better model
constraint especially on strongly non-linear models. Despite the potential improvement with respect
to the standard ES method, the MDA approach is rarely used in practice mainly because of the
large computational cost associated to the generation of several ensembles. The introduction of an
inexpensive surrogate model in place of the full forward model can make also the MDA technique
more affordable in real-world problems.

We consider two test cases differing in the selection of the inflation factors αMDA: (i) constant
αMDA = nMDA, and (ii) decreasing αMDA = (18.66, 14, 8, 4, 2). The number of successive assimilations
is fixed a-priori and equal to nMDA = 5. Each assimilation step is performed by using ensembles
with nMC = 3000 realizations. This ensemble size allows to achieve the convergence also with the ES
technique, as shown in Figure 7. Figure 8 shows the mean and the standard deviation of the updated
parameter ensembles in the five successive assimilation steps considering the “true” parameter set
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pt = (0.005, 1.5). In this case, the differences with respect to a single ES assimilation (blue bar in
Figure 8) are evident, that is, with multiple assimilation steps the solution appears to better approach
the truth and with a reduced variability spread. This behaviour is clearly noticeable for the parameter
R (Figure 8b). Similar to ES, the MDA effectiveness seems to vary when the set of observations changes.
For example, with the choice of pt = (λ∗ = 0.011, R = 1.25) the improvement of multiple assimilation
steps with respect to a single ES update is not significant.

Table 2. Values of AE and AES (prior and update) for the state and parameter ensembles computed by
ES and gPCE-ES.

ES gPCE-ES

nMC = 25 nMC = 50 nMC = 100 nMC = 25 nMC = 50 nMC = 100

AEp(uz) [m] 0.1667 0.1642 0.1656 0.1667 0.1642 0.1656
AEu(uz) [m] 0.0190 0.0104 0.0099 0.0189 0.0117 0.0101

AESp(uz) [m] 0.0834 0.0836 0.0803 0.0833 0.0836 0.0803
AESu(uz) [m] 0.0149 0.0010 0.0016 0.0149 0.0010 0.0017

AEp(λ∗) 0.0028 0.0029 0.0029 0.0028 0.0029 0.0029
AEu(λ∗) 0.0021 0.0014 0.0005 0.0021 0.0024 0.0004

AESp(λ∗) 0.0027 0.0025 0.0024 0.0027 0.0025 0.0024
AESu(λ∗) 0.0020 0.0002 0.0002 0.0020 0.0001 0.0003

AEp(R) 0.1109 0.1065 0.1069 0.1109 0.1065 0.1069
AEu(R) 0.0567 0.0186 0.0192 0.0568 0.0641 0.0184

AESp(R) 0.0787 0.0724 0.0729 0.0787 0.0724 0.0729
AESu(R) 0.0538 0.0186 0.0188 0.0538 0.0196 0.0182
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Figure 7. Convergence of gPCE-ES with increasing ensemble size for (a) pt = (0.011, 1.25) and
(b) pt = (0.005, 1.5).

The choice of the sequence of inflation factors αMDA does not modify significantly the final
assimilation outcome (Figure 8).
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Figure 8. Mean and standard deviation of the updated ensembles obtained with gPCE-MDA in case of
constant and decreasing αMDA for parameter (a) λ∗ and (b) R considering the “true” parameter set
pt = (0.005, 1.5). The blue bar refers to the results obtained with the gPCE-ES algorithm.

4. Discussion and Conclusions

In this work, we develop a gPCE-based framework to quantify and reduce the prediction
uncertainty in geomechanical problems. The idea is to exploit the low computational cost of a
gPCE-based surrogate model to—(i) perform a global sensitivity analysis and capture the material
parameters mostly affecting the expected prediction, and (ii) update the variation ranges of both
the state variables of interest and the governing parameters via data assimilation. We use an
ensemble-based approach, such as the ES and its variation in the MDA form. Due to the high
computational cost of the forward model runs required by the ensemble approaches, the proposed
gPCE-ES and gPCE-MDA algorithms, if able to effectively approximate the full model behaviour, can
allow for the use of large ensembles and successive assimilations at an affordable cost. The proposed
approach is tested in a large-scale geomechanical model dealing with the prediction of land subsidence
due to a hydrocarbon production program from a deep reservoir. To describe the constitutive
behaviour of the deep rocks, we use a strongly non-linear visco-elasto-plastic model based on the VN
law [3,43]. We show that high-accuracy surrogate models can be achieved via gPCE. Through the
computation of the Sobol’ indices, in the specific application considered herein we demonstrate that
the material parameters mainly impacting on the outcome of interest, that is, land subsidence in time,
are those controlling the rock deformability in loading conditions and the size of the yield surface,
λ∗ and R. The initial variability ranges of such parameters are progressively reduced through data
assimilation considering: (i) standard ES, (ii) gPCE-ES, and (iii) gPCE-MDA. The gPCE-ES provides
highly accurate results comparable to those obtained with the native ES approach but at a significantly
lower computational cost. It is worth recalling that the high efficiency of gPCE is mostly due to the
low dimension of the parameter space. In fact, the gPCE approach suffers from the so-called “curse of
dimensionality” due to the exponential increase of the cost with the number of independent stochastic
variables.

The gPCE-ES is used to test the ES convergence rate at an increasing size of the ensemble. By fast
polynomial evaluation we can analyse ensembles up to 20,000 realizations, which are not affordable
without a surrogate model. In general, the parameter mean approaches the “true” solution with
increasing MC realizations. Figure 9 shows that ensemble sizes greater than ∼2000 realizations do not
provide any significant improvement on the update of the state variable, that is, the mean-ensemble
value of the surface displacements coincides with the observation vector. This also implies a limitation
to the best match of the parameter.
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Figure 9. Mean and standard deviation for the updated displacements on the observation point varying
the size of the ensembles.

We analyse the gPCE-ES convergence rate by using two parameter sets to define the “true”
reference observations, with values located in the middle and on the boundary of the expected
variability ranges. Different results are obtained, with a poor constraint for R when the “true”
value is closer to the upper bound of the variability range. Then, we test again these sets with
the gPCE-MDA approach by repeatedly assimilating the same observations a number of times with
an inflated measurement error covariance matrix. We use both constant and decreasing values for
the inflating factors, without any significant difference between the two approaches. The quality of
the results for constraining R is significantly improved. The gPCE-MDA is obtained at the cost of
computing the gPCE coefficients only, and by replacing the forward model runs required at any MDA
step with fast polynomial evaluations. We demonstrate that MDA may outperform the standard
ES and this option can become particularly attractive if combined with the gPCE approximation,
which reduces considerably the required computational effort.

Our results show different parameter-constrain capabilities of the proposed approach depending
on the choice of the reference “true” point in the parameter space. Figure 10 illustrates this behaviour
in the space defined by parameters λ∗ and R. We randomly sampled 500 “true” reference parameter
sets and perform the data assimilation by means of the gPCE-ES with nMC = 3000 realizations and
constant noise standard error. Figure 10a,b show the error e = |µu − pt| between the mean updated
value and the true value for parameters λ∗ and R, respectively. Figure 10c shows the maximum
vertical displacements assimilated at final simulation time. Clearly the uz,max increases by increasing
λ∗ and diminishing R. Generally, λ∗ (Figure 10a) presents higher errors with 1.35 < R < 1.45 and
the parameter seems to better approach the true reference value with increasing values of uz,max.
The constrain on parameter R is more complex to analyse. A poor match is obtained at the four corners
of the parameter space and minimum errors are obtained for uz,max ' −0.6 m and uz,max ' −0.3 m.
Based on these results, further analyses would be needed to investigate the role of the parameter
interactions on the model outcome linked to the influence of the varying time-behaviour parameter
importance, with model non-linearity and measurements noise providing for additional crucial factors
affecting the inverse problem solution.
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(a) (b)

(c)
Figure 10. Error e = |µu − pt| between the mean updated value and the true value for parameters (a)
λ∗ and (b) R at 500 randomly-sampled ’true’ reference simulations. Sub-panel (c) shows the maximum
subsidence assimilated at each assimilation.
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