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Abstract: In this paper, a novel graph model to figure Collision-Free Multiple Traveling Salesman
Problem (CFMTSP) is proposed. In this problem, a group of vehicles start from different nodes in
an undirected graph and must visit each node in the graph, following the well-known Traveling
Salesman Problem (TSP) fashion without any collision. This paper’s main objective is to obtain
free-collision routes for each vehicle while minimizing the traveling time of the slowest vehicle.
This problem can be approached by applying speed to each vehicle, and a novel augmented graph
model can perform it. This approach accommodates not only the position of nodes and inter-node
distances, but also the speed of all the vehicles is proposed. The proposed augmented graph should
be able to be used to perform optimal trajectories, i.e., routes and speeds, for all vehicles. An ant
colony optimization (ACO) algorithm is used on the proposed augmented graph. Simulations show
that the algorithm can satisfy the main objective. Considered factors, such as limitation of the mission
successfulness, i.e., the inter-vehicle arrival time on a node, the number of vehicles, and the numbers
of vehicles and edges of the graph are also discussed.

Keywords: Traveling salesman problem; collision-free trajectory; augmented graph; augmented edge;
Ant colony optimization; multiple-vehicles system

1. Introduction

Distribution systems involving autonomous vehicles, such as automated guided vehicles (AGV),
are an interesting research topic that continuously grows in the operational research area. Routing and
scheduling have been dominating issues to explore. Particularly, in applications involving multiple
vehicles, vehicle routing problem (VRP) and its variants are well-known approach to solve client
services. Such problems are usually generalized by the traveling salesman problem (TSP) [1–5].
Many approaches to solve complexity in TSP are explored, such as min-k-SCCP [6–9].

In general, many scholars are focused on the minimization of cost, especially with regard to
the required processing time [1,10–15]. However, in the modern distribution systems, other issues,
such as collision, appear [11,14]. Particularly, for instance, in warehouses, cross-sections always
exist in their layout. This condition leads to an unsafe situation caused by the high possibility of
collision. Numerous researches have been reported, such as conflict-free routing for material handling
vehicles [10–14] and distribution system [15–18]. Thus, this issue emerges in studies on avoiding
collision scheduling. Mostly, artificial intelligence (AI)-based methods were proposed to solve the
problem [1,14–18].

Based on our investigation, less of the publications address a problem of asymmetric TSP (ATSP).
In this problem, an individual (vehicle, human, etc.) is required to travel from node-to-node on a
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not-fully connected graph, where each node can be visited only once by minimizing a given cost
function. This type of problem was initially analyzed by a simple problem such as TSP, which has
been explored for decades [15,16,18–24]. At the first appearance, this problem was overcome by
simple computational techniques, such as the ascent method [19] or taboo parallel search method [20].
However, as more variations of TSP appeared, the use of these computational techniques is inadequate,
especially because of great computational efforts. A particular complex variant of TSP is Multiple
TSP (MTSP), which is proven as NP-hard [10,25–27]. In the MTSP, each node is allowed to be visited
only once. Furthermore, the order of the routes of each agent is free of constraint. Consequently, this
scenario leads to split routes, i.e., there is no intercepted route among agents. Several methods
were proposed, i.e., Ant Colony Optimization (ACO) [17,27,28], Bee Colony Optimization (BCO) [18],
neural network [21], branch-and-bound algorithm [13], and so forth.

We introduce a variant of MTSP called Collision-Free Multiple Traveling Salesman Problem
(CFMTSP). Unlike the typical MTSP, this problem considers a particular case where more than one
vehicle can visit the same node to establish some activities. Similar to single TSP, each vehicle has to
visit all nodes only once. However, unlike the typical MTSP, each node is allowed to be visited by
each vehicle only once, and for a time interval, only a vehicle can occupy the node. In CFMTSP, we
consider the mission that all the vehicles must accomplish their own TSP. Our objective is to minimize
the completion time of the slowest vehicle. A side-effect problem arises, i.e., collision avoidance at each
visited node, especially which has more than one edge. Collision issues have appeared in numerous
works [29–36]. The typical definition of collision considers only vehicle-to-vehicle distance [10–14,29].
Here, each vehicle has a “safety area” around its body that cannot be occupied by other vehicles.
However, under particular motion directions, the safety area cannot guarantee the safety, since the
vehicle moves faster than the minimum allowable speed toward another vehicle. This problem was
coined in the work of Fraichard and Asama [30] by introducing an “inevitable collision states”, i.e., a set
of configurations (position and direction) of a vehicle that makes the vehicle fail to avoid collision with
any object. A successful development of the framework of predicting the collision was introduced in
Reference [31], and is called the “reciprocal velocity obstacle”. This work defines “obstacle” in a more
precise manner, by considering not only the position of the obstacle but also the velocity of the vehicle
and the obstacle. Therefore, the collision time can be predicted [32–36].

The typical MTSP is mostly solved by utilizing a conventional graph model consisting of a set
of nodes and a set of edges. However, such a graph model cannot be used to handle the issue of
the collision, since the model only describes the information of position. In our work, we propose a
novel graph model that contains information on position and speed options. Speed, together with
node-to-node distance, is useful to determine the minimum arrival time difference between any two
vehicles on a node, which in turn, can be used as a collision indicator. We assume that the safety area on
each node corresponds to its minimum allowable arrival time difference. In order to find the optimal
solution, we utilize an Ant Colony Optimization (ACO) algorithm on the proposed graph model, such
that the solution is not only a sequence of visited nodes but also the speed that is applied for the
node-to-node trip. The typical algorithm uses a single species of ant to find the optimal single vehicle’s
route search. However, it is inadequate to use that single species to solve CFMTSP. Therefore, we
propose multiple species of ants, as each ant represents a specific vehicle. The main feature of such an
ACO algorithm is in the assumption that each ant only recognizes pheromone trails from other ants in
the same species.

Based on the previous study, the problem that is similar to the CFMTSP has never been explored yet.
The closest research was reported in References [13,37,38]. The research in Reference [13] focused on
finding the route and speed for the Vehicle Routing Problem (VRP). However, this method uses an
assumption of independent speed choice between any two edges, which is mechanically unrealistic
because of the existence of acceleration constraints (see [36]). The issue of collision in MTSP appeared
in References [37–39]. In Reference [37], a fleet of vehicles serves all nodes in an overlapped time-based
batch. Accordingly, this problem may contain the possibility of collision, as well, since any two vehicles
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can visit the same node in an overlapped time. In Reference [38], a variant of TSP, namely Close Enough
Traveling Salesmen Problem (CETSP), is presented. This work considers the node more as an area with
a predetermined radius rather than the nodes as points. Moreover, the area is allowed to be occupied
by only one vehicle at any time. However, similar to Reference [13], the node-to-node travel time in
both articles is assumed to be predetermined. This assumption is practically not realistic, because
a single (autonomous) vehicle is controlled automatically by a computer-based control system [39].
The control system has to send some speed instructions to the AGV while traveling some paths [35].
Several published algorithms did not consider speed selection, because they was assumed that some
constant speeds are applied to the paths [25–27].

The organization of this paper is described as follows. Section 2 introduces several terminologies
needed to support the analysis and discussions. Section 3 describes the problem statement.
Section 4 explains the proposed methods, including the proposed augmented graph and the application
of ACO on the graph. Section 5 reveals the simulation results and discussions. Finally, Section 6
concludes the overall work and describes future works.

2. Preliminaries

Let G(V, E) be an undirected graph, where V = {vi}
Nv
i=1 denotes a set of Nv nodes, and E =

{
ei, j

}
is

a set of edges connecting two nodes vi and v j, i.e., ei, j =
{(

vi, v j
)∣∣∣∣i, j ∈ {1, 2, . . . , Nv}

}
. In addition, let

B =
{
bi, j

}
∈ {0, 1}Nv×Nv be an adjacency matrix of G, i.e., the matrix that describes the connectivity of

any pair of nodes in V, where bi, j is assigned to one if vi and v j, i , j, are connected and zero elsewhere.
Let S = {sl|l ∈ {1, 2, . . . , Ns}} be a set of Ns speed options sl to be applied to all vehicles at any node in
G. Suppose that there exists a group of Nu vehicles that are assigned to visit each node in G.

Definition 1. Route and sub-route. A sub-route from vi to v j is defined as ei, j, and a route is defined as a
sequence of sub-routes, i.e., Ξ =

{
ei, j

∣∣∣i, j ∈ {1, 2, . . . , Nv}
}

that begins from the start node vi, start ∈ V to the
end node vi,end ∈ V. The sub-route and route that are traveled by the k-th vehicle, k ∈ {1, . . . , Nu}, are denoted as
ek

i, j ∈ E and Ξk, respectively.

Definition 2. Trajectory and sub-trajectory. A sub-trajectory ψi, j,l is defined as a pair of sub-routes and speed
option

(
ei, j, sl

)
, or in other words, the sub-route from the i-th node to the j-th node by applying the l-th speed

option. A trajectory is a sequence of sub-trajectories, denoted as Ψ =
{
ψi, j,l

}
connecting the start node vi,start ∈ V

to the end node vi,end ∈ V. The sub-trajectory and trajectory that are traveled by the k-th vehicle are denoted as
ψk

i, j,l, and Ψk, respectively.

Definition 3. Arrival time. Arrival time of the k-th vehicle to the i-th node, denoted as tk
i , is defined as the time

when the vehicle starts to enter the node.

Definition 4. Operational time. The operational time of the k-th vehicle on the i-th node, denoted as top, is
defined as the difference between the times the vehicle leaves and enters the node.

Definition 5. Completion time. A completion time, tk
c , is the time required by the k-th vehicle to visit all nodes

in G.

Definition 6. Collision. Any two vehicles are said to have not collided at the i-th node if, and only if, the arrival
time difference

∣∣∣∣tk1
i − tk2

i

∣∣∣∣ > top, k1 , k2, and during the time interval each vehicle is out in the inevitable collision
states defined in References [21,22].
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3. Problem Statement

In this study, we enhanced the problem of the typical TSP (see [6,12]) to collision-free multiple TSP
(CFMTSP). In this problem, each vehicle attempts to establish its individual TSP mission. The CFMTSP

is described as follows. First, we need to find a complete trajectory for all vehicles, i.e.,
{
ψk

i,j,l

}
, such

that the following function is minimized:

tmax = max
(
t1
c , t2

c , . . . , tNu
c

)
, (1)

subject to the following:

1. There is no collision between any vehicles (see Definition 6) at each node.

2. The start times, tk
start, of all vehicles are zero, i.e., t1

start = t2
start = . . . = tNu

start = 0.
3. sl > 0.

Note that the second constraint is designated to be a collision indicator. If the constraint is violated,
then the vehicles have collided with each other. The third constraint emphasizes that there is no delay
among the start times of the vehicles.

Assumption 1. All vehicles start from different nodes.

Assumption 2. The operational times, top, for all nodes in Gare assumed to be constant.

Assumption 3. The number of speed options, i.e., Ns, is the same for all vehicles.

Assumption 4. Collisions are considered only at the nodes. The edges are assumed to be sufficiently broad, so
that any vehicles passing through the same edge will not collide with each other.

Assumption 5. The graph G(V, E) is not a multi-graph, i.e., the number of edges between any two nodes is
exactly one.

4. Proposed Methods

4.1. Augmented Graph

4.1.1. Graph Model

Solving the problem described in (1) is difficult by using typical graph G, since there is no
information about the arrival time of each vehicle at each node. Consequently, the inter-vehicle
collision problem is unable to solve. To address such a problem, instead of using typical graph G,
we developed a novel structure of the graph, which is called an augmented graph, denoted by Ga.
The augmented node can be constructed from the typical graph G. Let Ga(Va, Ea) be an augmented
graph, where Va =

{
ψi, j,l

}
, as long as bi, j = 1, i, j ∈ {1, . . . , Nv} and l ∈ {1, 2, . . . , Ns }, is defined as a set

of augmented nodes and Ea =
{
ξ

i2, j2,l2
i1, j1,l1

}
, where ξi2, j2,l2

i1, j1,l1
=

(
ψi1, j1,l1 , ψi2, j2,l2

)
is augmented edge, i.e., start

and end connected sub-trajectories pairs ψi1, j1,l1 and ψi2, j2,l2 . Note that the notation ξi2, j2,l2
i1, j1,l1

implies that
ψi2, j2,l2 must be a successor of ψi1, j1,l1 . Therefore, it is required that i2 = j1.

Figure 1 visualizes the proposed Ga, Va, and Ea. Ga expands the typical G from the node-to-node
relation into transition-to-transition relation. In the typical graph G, the edges are weighted by
node-to-node distance Li, j while in the augmented graph Ga, the augmented edges are weighted by
acceleration, whose formulation is conducted using start and final speeds the node-to-node distance
(see Equation (5)).



Algorithms 2020, 13, 153 5 of 19Algorithms 2020, 13, x FOR PEER REVIEW 5 of 20 

v1s 1 v2

Augmented Node

v2s 1 v3

s1

Augmented Edge

v2s 2 v3
s2

v2s 3 v3

s3

 

Figure 1. Augmented nodes and edges. 

Figure 2 shows that, for a node-to-node trajectory, there are some speed alternatives to apply. 
Therefore, the augmented edge between any pair of augmented nodes can represent information of 
acceleration and traveling time, for instance, the transition from ߰ଵ,ଶ,ଵ to ߰ଶ,ଷ,ଶ. The applied initial 
and target speeds at the endpoint of߰ଵ,ଶ,ଵ are ݏଵ  and ݏଶ , respectively. Therefore, the uniform 
acceleration ܽଵ,ଶ along the augmented edge is formulated as following: ܽ௜,௝ = ൫௦ೕ൯మି(௦೔)మଶ௅೔,ೕ , (2) 

where ܮ௜,௝ is the length of the edge eଵ,ଶ, and it is plotted to the transition from ߰ଵ,ଶ,ଵ to ߰ଶ,ଷ,ଶ. 

v1s 1 v2

v2s 1 v3

v2s 2 v3

v2s 3 v3v1s 2 v2

v3s 1 v4

v3s 2 v4

v3s 3 v4  

Figure 2. The proposed augmented graph. 

Furthermore, the traveling time, ݐ, related to the acceleration in Equation (2) is formulated as 
follows: 

ݐ = ۔ۖەۖ
ۓ ௜ݏ௜,௝ܮ , if ܽ = ௜ݏ−,0 + ඥ(ݏ௜)ଶ + ௜,௝ܽ௜,௝ܮ2ܽ , otherwise. (3) 

4.1.2. Additional Adjacency Matrix 

We introduced some supporting matrices to support the proposed algorithm. First of all, we 
introduced edge matrix, denoted as ܤ = ൛ ܾୣ ௜,௝|݅, ݆ ∈ {1,2, … , ୴ܰ}ൟୣ , whose dimension is the same with 
the adjacency matrix ܤ. Let ݁௤ , where q is the identifier of an edge whose value can be determined 
by Algorithm 1, be defined as the edge identifier of each element of ܤ, i.e., ܾ௜,௝ that has the value of 
1. Therefore, we get the following: ܾୣ ௜,௝ = ൜ ݁௤ , if ܾ௜,௝ > 1,0, otherwise.  (4) 

where ݅, ݆ ∈ {1,2, … , ୴ܰ}. 

Figure 1. Augmented nodes and edges.

Figure 2 shows that, for a node-to-node trajectory, there are some speed alternatives to apply.
Therefore, the augmented edge between any pair of augmented nodes can represent information of
acceleration and traveling time, for instance, the transition from ψ1,2,1 to ψ2,3,2. The applied initial and
target speeds at the endpoint of ψ1,2,1 are s1 and s2, respectively. Therefore, the uniform acceleration
a1,2 along the augmented edge is formulated as following:

ai, j =

(
s j
)2
− (si)

2

2Li, j
, (2)

where Li, j is the length of the edge e1,2, and it is plotted to the transition from ψ1,2,1 to ψ2,3,2.

Algorithms 2020, 13, x FOR PEER REVIEW 5 of 20 

v1s 1 v2

Augmented Node

v2s 1 v3

s1

Augmented Edge

v2s 2 v3
s2

v2s 3 v3

s3

 

Figure 1. Augmented nodes and edges. 

Figure 2 shows that, for a node-to-node trajectory, there are some speed alternatives to apply. 
Therefore, the augmented edge between any pair of augmented nodes can represent information of 
acceleration and traveling time, for instance, the transition from ߰ଵ,ଶ,ଵ to ߰ଶ,ଷ,ଶ. The applied initial 
and target speeds at the endpoint of߰ଵ,ଶ,ଵ are ݏଵ  and ݏଶ , respectively. Therefore, the uniform 
acceleration ܽଵ,ଶ along the augmented edge is formulated as following: ܽ௜,௝ = ൫௦ೕ൯మି(௦೔)మଶ௅೔,ೕ , (2) 

where ܮ௜,௝ is the length of the edge eଵ,ଶ, and it is plotted to the transition from ߰ଵ,ଶ,ଵ to ߰ଶ,ଷ,ଶ. 

v1s 1 v2

v2s 1 v3

v2s 2 v3

v2s 3 v3v1s 2 v2

v3s 1 v4

v3s 2 v4

v3s 3 v4  

Figure 2. The proposed augmented graph. 

Furthermore, the traveling time, ݐ, related to the acceleration in Equation (2) is formulated as 
follows: 

ݐ = ۔ۖەۖ
ۓ ௜ݏ௜,௝ܮ , if ܽ = ௜ݏ−,0 + ඥ(ݏ௜)ଶ + ௜,௝ܽ௜,௝ܮ2ܽ , otherwise. (3) 

4.1.2. Additional Adjacency Matrix 

We introduced some supporting matrices to support the proposed algorithm. First of all, we 
introduced edge matrix, denoted as ܤ = ൛ ܾୣ ௜,௝|݅, ݆ ∈ {1,2, … , ୴ܰ}ൟୣ , whose dimension is the same with 
the adjacency matrix ܤ. Let ݁௤ , where q is the identifier of an edge whose value can be determined 
by Algorithm 1, be defined as the edge identifier of each element of ܤ, i.e., ܾ௜,௝ that has the value of 
1. Therefore, we get the following: ܾୣ ௜,௝ = ൜ ݁௤ , if ܾ௜,௝ > 1,0, otherwise.  (4) 

where ݅, ݆ ∈ {1,2, … , ୴ܰ}. 

Figure 2. The proposed augmented graph.

Furthermore, the traveling time, t, related to the acceleration in Equation (2) is formulated as
follows:

t =


Li, j
si

, if a = 0,

−si+
√
(si)

2+2aLi, j

ai, j
, otherwise.

(3)

4.1.2. Additional Adjacency Matrix

We introduced some supporting matrices to support the proposed algorithm. First of all, we
introduced edge matrix, denoted as eB =

{
ebi, j

∣∣∣i, j ∈ {1, 2, . . . , Nv}
}
, whose dimension is the same with

the adjacency matrix B. Let qe, where q is the identifier of an edge whose value can be determined
by Algorithm 1, be defined as the edge identifier of each element of B, i.e., bi, j that has the value of 1.
Therefore, we get the following:

ebi, j =

{ qe, if bi, j > 1,
0, otherwise.

(4)

where i, j ∈ {1, 2, . . . , Nv}.
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Algorithm 1 Determine the index of edge matrix

1: Input: B
2: q = 0;
3: For i = 1 to Nv

4: For j = 1 to Nv

5: If i , j and bi, j = 1, then q = q +1 and qe = q.
6: End
7: End
8: Output: all

{qe
}
.

For instance, suppose that we have the following adjacency matrix of a graph G whose number of
nodes is 5, as follows.

B =


0
0
1
0
0

1
0
0
1
1

0
1
0
1
1

1
0
1
0
1

0
0
0
0
0


(5)

Therefore, by using (4), we have the following:

eB =


0
0
4e
0
0

1e
0
0
6e
8e

0
3e
0
7e
9e

2e
0
5e
0

10e

0
0
0
0
0


(6)

.
Furthermore, we use the index of qe, i.e., q as the index of row of another adjacency matrix named

trajectory adjacency matrix, denoted as ψB. Each row and each column of this matrix represent edge qe
and speed sl, respectively. Let pψ be the element of ψB, where we have the following:

p(q, l) = (q− 1)Ns + l , (7)

l ∈ {1, 2, . . . , Ns} and q are defined in (4). Suppose that we apply three-speed options; therefore, Ns = 3.
From the adjacency matrix example in Equation (5) and its respective edge matrix in (6), we have
the elements of T as follows: For edge 1e, we have three trajectories, i.e., 1ψ, 2ψ, and 3ψ. Since from
Equations (5) to (7), 1e represents e1,2, then 1ψ, 2ψ, and 3ψ represent ψ1,2,1, ψ1,2,2, and ψ1,2,3, respectively.
Similarly, 5e represents e3,4. By using (10), we have trajectories 13ψ, 14ψ, and 15ψ. Therefore, according
to Equations (5)–(7), 13ψ, 14ψ, and 15ψ represent ψ3,4,1, ψ3,4,2, and ψ3,4,3, respectively.

The last adjacency matrix is the augmented-edge adjacency matrix, denoted by ξB, where the row
and column are indexed by the index of pψ, i.e., p. Let hξ be the element of ξB, whose value is not zero
and be associated to ξi2, j2,l2

i1, j1,l1
by applying Algorithm 2.

The functions rowψ(x), starte(x), and ende(x) return the row index belonged to the row in ψB
containing x, the indexes of start and end node in eB, respectively. In the previous example, there are
ten edges and three speed options. The number of trajectories is 30 and the dimension of ξB = Z30×30.
Until this step, we have the following adjacency matrices:eB, ψB, and ξB. Suppose that we are given
hξ; then, by using the map described in ξB, we obtain p1ψ and p2ψ, where p1 and p2 are the indexes of
the row and column of ξB associated to hξ. After that, we check the map in ψB, and we obtain the edge
qe and speed option sl for each p1ψ and p2ψ.
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Algorithm 2 Determining the index of ξ:

1: Inputs: ψB, p1, p2

2: Output: ξB, hξ

3: h = 0
4: For i = 1, . . . ,

∣∣∣ψB
∣∣∣// loop for all rows

5: For j=1, . . . ,
∣∣∣ψB

∣∣∣ // loop for all columns
6: c1 = rowψ

(
iψ

)
; c2=rowψ

(
jψ

)
7: If c1 , c2

8: If ende(c1 e) = starte(c1 e)
9: h=h+1
10: ξbi, j = h
11: hξ = h
12: Else
13: ξbi, j = 0
14: End
15: Else
16: ξbi, j = 0
17: End if
18: End for
19: End for

4.2. Ant Colony Optimization

Ant Colony Optimization (ACO) was first introduced in Reference [28]. This algorithm is powerful
for routing problems such as traveling salesman problem (TSP), vehicle routing problem (VRP), and
their variants [17,27]. The algorithm mimics the behavior of a colony of ants in foraging activities.
Suppose that, at the beginning, the colony has no information about the location of the food source.
An ant system (AS) consists of a set of artificial ants which perform foraging activities, from their nest
to a food source. Some ants begin to move randomly to any direction and deposit a chemical called
“pheromone”, whose trails will be traced by other ants. This process is iterated such that the optimal
route is that with the maximum number of pheromone trails.

In this study, we used an ACO algorithm for finding trajectories for a multiple-vehicle system.
The algorithm is different from the typical ones. It involves more than one species of ants whose
pheromone the others cannot detect trails of. In the cases of CFMTSP, a species represents a vehicle.
We develop an algorithm such that each species performs a collision-free trajectory, i.e., all species can
prevent collision with each other. In this study, we assume that any two species are not colliding with
each other if the difference of their arrival times exceeds a minimum allowable value.

Suppose that there exist Nu ant species. Each species consists of Nm ants. The r-th ant of the k-th
species, denoted by θk,r, k ∈ {1, 2, . . . , Nu}, r ∈ {1, 2, . . . , Nm}, represents the k-th vehicle. Each ant is
assumed to be able to recognize only the trails produced by ants of the same species. Therefore, if
there exists a large concentration of pheromone in a sub-route, if it comes from different species, then
it is less possible for the ant to choose that sub-route as a choice. As the typical ACO algorithms, as
one ant passes a sub-route, it leaves pheromone trails along the sub-routes. From now on, the others
will smell the trails, and based on the largest amount of pheromones, it will choose the sub-route.
Even though there are pheromones produced by other different ant species, the ant cannot recognize
them. This behavior is similar to the behavior of some colonies of ants in the real world, that is, they
cannot recognize the trail of other different ant species, as reported in Reference [40]. Researchers in
that study have discovered that a species of ants, i.e., Lasius nigers (La. nigers), is unable to recognize the
pheromone trails produced by Novomessor cockerelli (N. cockerelli) and Linepithema humilis (Li. humilis).
The reason is that their pheromone trails are constructed by different chemicals.

In this model, we applied the amount of pheromone applied to the proposed augmented graph
Ga to augmented edges hξ. Define n, hτk, and ∆hτk,r as the iteration, the total amount of pheromone
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left by the k-th ant species on augmented edges hξ, and the increase of pheromone amount left by each
r-th ant of the k-th ant species, respectively. We formulate hτk as follows.

hτk(n) = hτk(n− 1) +
Nm∑
r=1

∆hτk,r(n), (8)

if a solution is found and the i-th and j-th nodes are the part of the augmented edge passed through by
the k-th ant species, and

hτk(n) = ρhτk(n− 1), (9)

where ρ ε (0, 1] is defined as evaporation rate, if the search fails to find a solution. Furthermore, ∆hτk,r

is formulated as follows:
∆hτk,r =

Q
dk,r

, (10)

where dk,r is the total distance traveled by the r-th ant from the k-th species, and Q is a positive constant.
We apply the probability of selecting hξ, i.e., Pr(hξ) as follows:

Pr(hξ) =

(
hη

)β(hτk
)γ

∑
all hiξεNeighbors(hξ)(

hiη)
β
(hiτk)

γ
, (11)

Note that the selection of trajectories of more than one vehicle leads to a consequence of inter-vehicle
collision-checking. Therefore, a procedure for checking the collision is developed.

Before describing the main algorithm, we define a number of variables: vk,r
i,start and sk,r

start are the

initial position and speed, respectively. Lk
unv, Lk

e, Lk
ψ, Lk

ξ
, and Lk

ξ,sel are the lists of unvisited nodes,
collection of edges, collection of trajectories, and collection of augmented-edges, the sequence of
selected augmented-edges from the start to end nodes, respectively. Li

vis is a collection for each node
i ∈ {1, 2, . . . , Nv} that stores information of the k-th vehicle that has visited the node and its associated
arrival time, tk

i . Ψk
best is the best trajectory performed by the k-th species.

In Line 1 of Algorithm 3, the input is the graph G, initial positions vk,r
i,start, and speed sk,r

start of
each r-ant of the k-th ant species. Note that r also represents the index of iteration. Consequently,
Nm represents the number of iterations. In Lines 3 and 4, all the required adjacency matrices are
constructed, and Lk

unv for all ant species is set to be empty.
The searching process starts from Line 5. For each iteration, trajectories are constructed for

each species. In Line 7, some required initializations are performed, such as the initial amount of
pheromones. The values are set randomly small to prevent division-by-zero at the beginning at the
process. The next processes are focused on identifying the augmented edge of the current occupied
node, vk

curr.
The function CreateEdgeList(vk

curr) is purposed to extract all edges qe in G whose start nodes are
vk

curr. In this process, the edge matrix eB is used. The resulted qe is then pushed to Lk
e.

The next step is to extract the sub-trajectories, pψ, whose edges are qe. However, two conditions
make the extraction fail. First, it is possible that the end node of the edge qe, i.e., ende(qe)), was visited.
Therefore, the availability of the end node of the edge must be checked (Line 13). Second, even though
ende(qe)) is available, if there exists another ant occupying the node such that the second constraint is
violated, then the process is continued to the next edge. This process is revealed in Lines 14–16.

If the end node of the edge qe has not been visited yet and has no collision issue, then the function
CreateTrajectoriesList(Lk

e, qe) is executed (Line 18). The CreateTrajectoriesList(Lk
e, qe) uses trajectory

adjacency matrix ψB as reference to find the correct trajectories that are spanned by the q-th edge in
Lk

e. If the end node of the edge qe has been visited previously, the process will check the other edges.
If there is no edge available, then it can be concluded that a complete trajectory is failed to found.
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Therefore, the process is continued to new iteration (Lines 29–32). In Line 30, the amount of pheromone
trails is reduced by calling ReducePheromoneTrailsAmount(Lk

ξ
, hτk), which applies Equation (12).

Algorithm 3 Main Algorithm

1: Inputs: G, vk,r
i,start, sk,r

start, for all k ∈ {1, 2, . . . , Nu},r ∈ {1, 2, . . . , Nm},
2: Perform , eB, ψB, and ξB.
3: Ψk

best ← { }, for all k ∈ {1, 2, . . . , Nu}.

4: Lk
unv ← { }

Nv
i=1, for all k ∈ {1, 2, . . . , Nu}.

5: For r = 1 to Nm

6: vk
curr = vk,r

i,start
7: Initialize(vk

curr, sk,r
start);

8: Lk
unv ← {vi}

Nv
i=1, Lk

e ← { }, Lk
ψ ← { }, Lk

ξ
← { }, Lk

ξ,sel ← { }, Li
vis ← { }.

9: For each k-th ant species
10: While Lk

unv , { }

11: Lk
e ←CreateEdgeList(vk

curr).

12: For each edge in Lk
e, i.e., qe,

13: If ende(qe) ∈ Lk
unv,

14: If IsCollided(Li
vis, ende(qe)) is TRUE

15: continue;
16: End
17: pψ = CreateSubTrajectoriesList(Lk

e,qe).
18: Lk

ψ ←
pψ.

19: For each p-th trajectory in Lk
ψ i.e., pψ,

20: Lk
ξ
←CreateAugmentedEdgesList(Lk

ψ, pψ).

21: End
22: Lk

ξ,sel ←SelectAugmentedEdge(Lk
ξ
).

23:
{
tk
i,max

}
←CalculateMaxArrivalTime(Lk

ξ,sel).

24: Remove(Lk
unv, ende(qe)).

25: Else
26: continue.
27: End
28: End
29: If Lk

ψ == { }

30: hτk = ReducePheromoneTrailsAmount(Lk
ξ,sel,

hτk)
31: go to Line 5.
32: End
33: Lk

ψ ← { }.

34: End //end while
35: End // end for
36: hτk = CalculatePheromoneTrailsAmount(Lk

ξ,sel,
hτk), for all k ∈ {1, 2, . . . , Nu}.

37: Pr
(

Lk
ξ,sel

)
= CalculateProbability(Lk

ξ,sel,
hτk), for all k ∈ {1, 2, . . . , Nu}.

38: tk
best = min({tk

i,max})

39: Lk
unv ← { }

Nv
i=1

40: End
41: Outputs: ψk

best with tk
i,max = tk

best, for all k ∈ {1, 2, . . . , Nu}.

In Lines 19–21, the function CreateAugmentedEdgesList (Lk
ψ, pψ) is used to extract the augmented

edges that is spanned by the p-th trajectory in Lk
ψ. This function uses augmented-edge adjacency

matrix ξB as a reference to find the correct augmented edge that is spanned by the p-th trajectory in Lk
ψ.
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The result is hξ and is pushed to Lk
ξ
, and we select the augmented edge, whose probability, calculated

using Equation (11), is the largest. The selected augmented edge is then pushed into Lk
ξ,sel (Line 22).

In addition, the maximum traveling time, tk
i,max, is calculated in Line 23. Here, the final value of tk

i,max is

the traveling time of the slowest ant species. Moreover, the member of Lk
unv that is the same to ende(qe)

is removed (Line 24), since the ende(qe) is selected to be visited.
After all ants from all species complete their routes, the pheromone trails on all augmented edges

are updated in Line 31 by using Equation (11). By using the current pheromone trails, the probability
of all augmented edges in Lk

ξ
, k ∈ {1, 2, . . . , Nu} is calculated by using CalculateProbability(Lk

ξ,sel,
hτk) in

Line 37. The global minimum, tk
best, is then calculated in Line 38. Finally, the output is ψk

best with
tk
i,max = tk

best, for all k ∈ {1, 2, . . . , Nu}.

5. Results and Discussions

We tested the performance of the proposed algorithm by conducting simulations involving graphs
with various numbers of nodes, i.e., 10, 15, and 20 nodes, as shown in Figures 3–5, respectively.
For each graph, four variations of connectivity were simulated to show the success of finding solutions.
We denoted the graph, together with the connectivity of variations, by using the code “CONFIG A-B”,
where A is the number of nodes and B is the label of a variation. For instance, the first variation of the
graphs with 10, 15, and 20 nodes were denoted as CONFIG 10-1, CONFIG 15-1, and CONFIG 20-1,
respectively. Note that all edges were bi-directional.

Three significant aspects were evaluated. The first aspect was the influence of minimum allowable
arrival time on the solution’s existence and the convergence of the solutions. The second was the
correlation between the average degrees of all nodes, the number of vehicles, and the number of nodes
to the success of finding solutions. The last aspect was the accuracy of the resulted minimum traveling
time of the slowest vehicle, according to the variation of the evaporating constant and its effect on the
convergence of the search results.

For evaluating the first and third aspects, we established simulations for three vehicles, where the
1st, 2nd, and 3rd vehicles started from Nodes 4, 1, and 3, respectively. Each vehicle had four speed
options, i.e., 0.1, 0.5, 1, and 1.5 m/s. Meanwhile, for evaluating the second aspect, we applied two
until seven vehicles on each connectivity configuration. Vehicles 1 until 7 were started from Nodes
4, 1, 3, 5, 10, 7, and 8, respectively. For one simulation, we applied 3000 iterations of searching the
optimal solution.
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5.1. The Effect of Minimum Allowable Arrival Time Difference tocc

The first simulation set was established to evaluate the relation between the minimum allowable
arrival time difference, tocc, and the solution’s existence. The purpose of the simulations is to confirm
the hypotheses. In such simulations, we used α = 1 and β = 1 and evaporate rate ρ = 0.95. We applied
five values of tocc, i.e., 10, 50, 100, 150, and 300 s.

Tables 1 and 2 show the results of 10 trials for varying allowable minimum occupation time
tocc and varying evaporate constant ρ, respectively. In each table, as shown in Column (1), for each
occupation time, we established five trials. Column (1) reveals the values of tocc. Column (2) is the
success rate of finding a complete solution. Columns (3) and (4) show the average and standard
deviation of the maximum traveling times, respectively. Column (5) shows the minimum value of
maximal traveling times.
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Table 1. Simulation results for various tocc for three vehicles.

(1) (2) (3) (4) (5)

tocc(s) nsuccess Tavg(s) σT(s) Tmin(s)
10.00 10 1754.16 320.69 1482.50
50.00 9 2648.04 663.91 1896.30
100.00 8 3412.84 1191.16 1961.10
150.00 8 3314.01 841.83 1684.20
300.00 5 3735.32 1180.45 2851.00

Table 2. Simulation results for various evaporate constants at tocc > 150 s.

(1) (2) (3) (4) (5)

ρ nsuccess Tavg(s) σT(s) Tmin
0.1 9 2977.72 732.50 1949.00
0.2 7 3317.33 636.00 2189.30
0.3 6 2269.77 403.38 1744.00
0.4 8 3213.81 777.59 1966.40
0.5 9 2929.99 609.94 2064.70

The application of tocc is evaluated for its effect on the percentage of successful trials from 10
trials, i.e., nsuccess, average traveling time of the slowest vehicle, Tavg, the standard deviation of Tavg,
i.e., σT, and the minimum traveling time that is ever found from the ten trials, i.e., Tmin. For this
purpose, we use a statistical correlation technique. The correlations between tocc and nsuccess, Tavg,
σT, and Tmin are −0.99, 0.83, 0.75, and 0.88, respectively. In can be concluded that there is a strong
negative relationship between tocc, = and nsuccess and almost-strong positive relation between tocc and
the other three variables. In addition, the tendency of failure can be identified by a parameter σT/tocc.
We found from the simulation that σT/tocc is directly proportional to the probability of success in
finding a solution, i.e., nsuccess.

5.2. Successfulness of Finding a Solution

Since the graph is not fully connected, it is possible that there exists a situation such that any
single solution is failed to find as the effect of the number of nodes, the average degree of all nodes
increase, and the number of vehicles. The degree of a node is defined as the number of edges that
connect to the node. We established simulations for 10, 15, and 20 nodes under tocc = 10 s.

5.2.1. Simulations for 10 Nodes

For the ten nodes cases, we applied four different configurations of connectivity, as shown in
Table 3, i.e., CONFIGs 10-1, 10-2, 10-3, and 10-4. CONFIG 10-1 is the graph with the connectivity
visualized in Figure 3. CONFIG 10-2 is constructed from CONFIG 10-1 with the elimination of the edge
connecting Nodes 5 to 8. CONFIG 10-3 is constructed from CONFIG 10-3, with the elimination of the
edge connecting Nodes 5 to 9. CONFIG 10-4 is constructed from the CONFIG 10-1, with the addition
of the edges connecting Nodes 1 to 4, 3 to 6, and 4 to 7. Table 3 describes the degree of each node.
The averages of the degree of nodes for CONFIG 10-1, 10-2, 10-3, and 10-4 are 3.20, 3.00, 2.80, and 4.00.

We investigate the relationship between the nodes’ average degrees and the number of vehicles
to the possibility of successfulness of finding a solution. Here, we introduce a parameter φ defined
as follows:

φ =
Nu

ravg Nv
, (12)

where ravg is defined as the average degree of all nodes. From Table 3, it can be seen that the solution
can be found for φ ≤ 0.19. It can be concluded that, from the 10 trials, at the range of the φ, there exists
at least one successful trial.
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Table 3. Simulation results for 10 nodes.

Number of Degree of Nodes

Node CONFIG 10-1 CONFIG 10-2 CONFIG 10-3 CONFIG 10-4

1 3 3 3 4
2 4 4 4 4
3 3 3 3 4
4 2 2 2 4
5 5 4 3 5
6 3 3 3 4
7 3 3 3 5
8 3 2 2 3
9 4 4 3 4
10 2 2 2 3

Average 3.20 3.00 2.80 4.00

Number of
Vehicles ϕ

Success
Rate (%) ϕ

Success
Rate (%) ϕ

Success
Rate (%) ϕ

Success
Rate (%)

3 0.09 100.00 0.10 100.00 0.11 100.00 0.08 100.00
4 0.13 90.00 0.13 100.00 0.14 100.00 0.10 100.00
5 0.16 100.00 0.17 100.00 0.18 100.00 0.13 100.00
6 0.19 90.00 0.20 90.00 0.21 0.00 0.15 100.00
7 0.22 0.00 0.23 0.00 0.25 0.00 0.18 90.00

5.2.2. Simulations for 15 Nodes

In this simulation, we added five nodes, as follows. Nodes 11, 12, 13, 14, and 15 are located at
(−150 m, −123 m), (170 m, 50 m), (100 m, 123 m), (−100 m, 60 m), and (0 m, −170 m), respectively.
Moreover, four edges configurations in the new graph were established, called CONFIG 15-1, CONFIG
15-2, CONFIG 15-3, and CONFIG 15-4. The CONFIG 15-1 connectivity configuration is described in
Figure 4. CONFIG 15-2 is constructed by adding an edge connecting Nodes 1 and 5 on the CONFIG
15-1. The CONFIG 15-3 configuration is performed by adding edges connecting Nodes 1 to 4, 2 to 12,
and 7 to 10 to CONFIG 15-2. The CONFIG 15-4 configuration is performed by adding edges connecting
nodes 4 to 7 and 3 to 6 to CONFIG 15-3. The degree of each edge in each connectivity configuration is
described in Table 4.

Table 4. Simulation results for 15 nodes.

Number of Degree of Nodes

Node CONFIG 15-1 CONFIG 15-2 CONFIG 15-3 CONFIG 15-4

1 5 5 6 6
2 5 5 6 6
3 4 4 4 5
4 4 4 5 6
5 5 6 6 6
6 3 3 3 4
7 3 3 4 5
8 4 4 4 4
9 4 4 4 4
10 4 4 5 5
11 3 3 3 3
12 2 2 3 3
13 3 3 3 3
14 2 3 3 3
15 3 3 3 3

Average 3.60 3.73 4.13 4.40
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Table 4. Cont.

Number of
Vehicles ϕ

Success
Rate (%) ϕ

Success
Rate (%) ϕ

Success
Rate (%) ϕ

Success
Rate (%)

3 0.06 100.00 0.05 100.00 0.05 90.00 0.05 90.00
4 0.07 90.00 0.07 90.00 0.06 90.00 0.06 100.00
5 0.09 10.00 0.09 20.00 0.08 10.00 0.08 50.00
6 0.11 0.00 0.11 0.00 0.10 0.00 0.09 0.00
7 0.13 0.00 0.13 0.00 0.11 0.00 0.11 0.00

From Table 4, it can be seen that the solution can be found for φ ≤ 0.08, which means that, at the
range of the φ, it can be concluded that, from the 10 trials, there always exists at least one successful trial.

5.2.3. Simulations for 20 Nodes

In this simulation, we added five nodes from the CONFIG 15-1, as follows. Nodes 16, 17, 18, 19,
and 20 are located at (−100 m, −180 m), (0 m, 100 m), (200 m, −180 m), (200 m, 180 m), and (170 m,
130 m), respectively. Similar to the simulation for 15 nodes, we define four edge configurations in the
new graph, namely CONFIG 20-1, CONFIG 20-2, CONFIG 20-3, and CONFIG 20-4. The CONFIG
20-1 connectivity configuration is described in Figure 5. CONFIG 20-2 is constructed by modifying
CONFIG 20-1, i.e., adding edges connecting Nodes 1 to 16, 4 to 16, 2 to 20, 6 to 9, 8 to 19, and 12 to 17.
CONFIG 20-3 is performed by adding Edges 2 to 17, 3 to 5 to 9, 7 to 15, and 9 to 15 and eliminating
Edges 4 to 16, 4 to 10, and 14 to 17 on CONFIG 20-2. CONFIG 20-4 is performed by the addition of
Edges 3 to 17, 4 to 16, 4 to 10, and 5 to 14 to CONFIG 20-3.

Table 5 reveals the simulation results of such connectivity configurations. It can be shown that the
solution can be found for φ ≤ 0.02. It means that, from the 10 trials, it can be concluded that there
always exists at least one successful trial at the range of the φ.

Table 5. Simulation results for 20 nodes.

Number of Degree of Nodes

Node CONFIG 20-1 CONFIG 20-2 CONFIG 20-3 CONFIG 20-4

1 6 7 7 7
2 7 8 9 9
3 6 6 6 7
4 6 7 5 7
5 8 8 9 10
6 3 4 4 4
7 5 4 5 5
8 5 5 5 5
9 4 5 6 6
10 6 6 5 6
11 4 4 4 4
12 6 7 8 8
13 5 5 6 6
14 3 4 4 5
15 5 5 7 7
16 3 5 4 5
17 3 4 5 6
18 5 5 5 5
19 5 6 6 6
20 3 4 5 5

Average 4.90 5.45 5.75 6.15
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Table 5. Cont.

Number of
Vehicles ϕ

Success
Rate (%) ϕ

Success
Rate (%) ϕ

Success
Rate (%) ϕ

Success
Rate (%)

2 0.02 10.00 0.02 100.00 0.02 100.00 0.02 100.00
3 0.03 0.00 0.03 90.00 0.03 100.00 0.02 90.00
4 0.04 0.00 0.04 0.00 0.03 80.00 0.03 90.00
5 0.05 0.00 0.05 0.00 0.04 0.00 0.04 0.00
6 0.06 0.00 0.06 0.00 0.05 0.00 0.05 0.00
7 0.07 0.00 0.06 0.00 0.06 0.00 0.06 0.00

5.3. Analysis of Accuracy

From the simulations established in Section 5.3, we can analyze the accuracy of the result,
i.e., minimum traveling time of the slowest vehicle. The standard deviation σT can identify the accuracy
of the simulation. As shown in Tables 1 and 2, the averages of σT for tocc > 10 s and tocc > 150 s are
373.48 s and 631.2 s. It indicates that the results in lower tocc are more accurate than the higher ones.

In addition, we analyzed the relationship between the average Tavg and σT by using the same
technique as the one used in Section 5.2., i.e., statistical correlation. The results are described as follows.
The correlations between Tavg and σT for tocc > 10 s and tocc > 150 s are 0.92 and 0.84, respectively.
It indicates that there is a relatively strong positive relation between Tavg and σT: larger Tavg tends to
lead to a larger σT, or, in other words, a larger Tavg tends to lead to lower accuracy.

Figures 6 and 7 show the searching progression for tocc > 10 s and tocc > 150 s, respectively, each
with ρ = 0.1 and ρ = 0.5. It can be concluded that the algorithm’s ability to converge is better for
tocc > 10 s than for tocc > 150 s. It can be concluded from the final values until the 3000th iteration.
Moreover, Figures 6 and 7 confirm the accuracy conclusions conducted from the statistical correlation
analysis. Accuracy analysis can infer other behavior, that is, the ability to reach Tavg. Figure 7 shows
that, for tocc > 10 s, the algorithm’s ability to reach Tavg is better than that for tocc > 150 s. Furthermore,
it can be seen that, for tocc > 150 s, even until the 1500th iteration, the algorithm still can update the
minimum of maximum times. However, it cannot go further to Tavg. The interesting situation occurs
for ρ = 0.5 in the same tocc. In this situation, mostly, once a solution is found, the algorithm cannot
find another better solution.
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5.4. The Near-Optimal Trajectories

We show two samples of near-optimal trajectories obtained from the simulations to verify that
any point in the graph G is visited by different vehicles with the arrival time difference between any
vehicles exceeds tocc. Tables 6 and 7 show the optimal trajectories for tocc > 10 s and tocc > 150 s,
respectively. To verify that the arrival time differences exceed tocc, we provide Table 8. According to
Table 8, for tocc > 10 s, the smallest arrival time difference is 11.7 s, i.e., between Vehicles 2 and 3 at
Node 2. For tocc > 150 s, the smallest arrival time difference is 165.4 s, i.e., between Vehicles 2 and 3 at
Node 2.

Table 6. Most near-optimal trajectories for tocc > 10 s.

Vehicle
1

Routes 4 10 2 6 7 9 1 5 3 8

Arrival Time (s) 0 365.6 446.9 511.5 584.0 659.5 767.8 874.4 998.3 1194.9
Applied Speed (m/s) 0.1 1 1.5 1.5 1 1.5 1.5 1.5 1 1.5

Vehicle
2

Routes 1 5 6 7 9 4 10 2 3 8

Arrival Time (s) 0 290.7 313.6 404.3 467.3 565.9 817.2 944.3 1174.1 1292.0
Applied Speed (m/s) 1 1 0.5 1.5 1.5 0.1 1.5 0.1 1.5 1

Vehicle
3

Routes 3 8 5 1 9 7 6 2 10 4

Arrival Time (s) 0 184.3 403.0 602.9 711.2 786.7 859.2 956.0 1091.5 1292.6
Applied Speed (m/s) 0.1 1.5 0.1 1.5 1.5 1 1.5 0.5 1 1

Table 7. Most near-optimal trajectories for tocc > 150 s.

Vehicle
1

Routes 4 10 2 6 5 3 8 1 9 7

Arrival Time (s) 0 670.3 805.8 981.8 1003.3 1106.6 1290.9 1723.7 1886.1 1949.0

Applied Speed (m/s) 0.1 0.5 1 0.1 1.5 1.5 0.1 0.5 1.5 1.5

Vehicle
2

Routes 1 8 5 3 2 10 4 9 7 6

Arrival Time (s) 0 432.8 666.2 872.8 1240.5 1342.2 1476.2 1539.3 1710.9 1875.8
Applied Speed (m/s) 0.1 0.5 1 0.5 0.5 1.5 1.5 1 0.1 1

Vehicle
3

Routes 3 8 5 1 9 4 10 2 6 7

Arrival Time (s) 0 184.3 324.3 537.5 754.0 832.9 993.8 1075.1 1171.9 1262.6
Applied Speed (m/s) 0.1 1.5 1 0.5 1 1 1.5 1 1 1



Algorithms 2020, 13, 153 17 of 19

Table 8. Arrival time difference for tocc > 10 s and tocc > 150 s.

For tocc>10 s Fortocc>150 s

Nodes Vehicles
1 and 2

Vehicles
1 and 3

Vehicles
2 and 3

Vehicles
1 and 2

Vehicles
1 and 3

Vehicles
2 and 3

1 767.8 364.8 403 1723.7 1186.2 537.5
2 497.4 509.1 11.7 434.7 269.3 165.4
3 175.8 998.3 1174.1 233.8 1106.6 872.8
4 565.9 1292.6 726.7 1476.2 832.9 643.3
5 583.7 471.4 112.3 337.1 679 341.9
6 197.9 347.7 545.6 894 190.1 703.9
7 179.7 202.7 382.4 238.1 686.4 448.3
8 97.1 1010.6 1107.7 858.1 1106.6 248.5
9 192.2 51.7 243.9 346.8 1132.1 785.3
10 451.6 725.9 274.3 671.9 323.5 348.4

6. Conclusions

A method to solve the Collision-Free Multiple Traveling Salesman Problem (CFMTSP) applied
to multiple agents was proposed. In this problem, each agent must visit all nodes in a provided
graph, following the provided edges. The graph is modified into an augmented graph such that the
information of nodes’ position and speed options can be accommodated, and in turn, the arrival time
to each node can be determined. According to the optimization of collision-free for each vehicle, an
ACO involving multiple ant species is utilized on the augmented graph. The pheromone trails are
not left on the edges (such as in typical graph model), but the augmented edges. As a consequence,
the probability of selection is assigned to those augmented edges, as well. As a result, the solution is
not the sequence of routes but also the trajectory (routes and selected speeds). The algorithm has to
guarantee that the resulted trajectories are collision-free.

Simulations were established with no violation of minimum allowable arrival time difference.
In addition, the simulations have shown three behaviors of the resulted solutions. First, the increase
of minimum allowable arrival time difference leads to the decrease of the number of successful
trials, almost-strongly increases of the average, the standard deviation, and the ever-found minimum
traveling times. Second, it can be concluded that there exists a threshold of the ratio φ such that the
solution for all vehicles is unable to find. It was demonstrated that the threshold of φ is lower as the
number of nodes increases. Moreover, for the same number of nodes, the increase of the average of
nodes’ degree leads to the number of vehicles that are able to find solutions successfully. Third, it
is concluded that that the increase in the average of minimum traveling time tends to decrease the
algorithm’s accuracy. Third, the evaporate rate in the algorithm has a weak influence on the average,
the standard deviation, and the ever-found minimum traveling times.

Future works will focus on some issues, such as the continuation of speed options and the
consequences of modifying the augmented graph. Another issue is in the performance of the ACO
algorithm, such as the convergence of the optimal trajectories, the decrease of the standard deviation
of the slowest agent’s traveling time in high minimum allowable arrival time difference.
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