
algorithms

Article

Fibers of Failure: Classifying Errors in
Predictive Processes

Leo S. Carlsson 1,*, Mikael Vejdemo-Johansson 2,3,* , Gunnar Carlsson 4,5 and Pär G. Jönsson 1

1 KTH Royal Institute of Technology, Brinellvägen 8, 114 28 Stockholm, Sweden; parj@kth.se
2 Department of Mathematics, CUNY College of Staten Island, 2800 Victory Blvd,

Staten Island, NY 10314, USA
3 Computer Science, CUNY Graduate Center, 365 5th Ave, New York, NY 10016, USA
4 Department of Mathematics, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA;

carlsson@stanford.edu
5 Unbox AI, Stanford, CA 94305, USA
* Correspondence: leoc@kth.se (L.S.C.); mvj@math.csi.cuny.edu (M.V.-J.)

Received: 29 May 2020; Accepted: 20 June 2020; Published: 23 June 2020
����������
�������

Abstract: Predictive models are used in many different fields of science and engineering and are
always prone to make faulty predictions. These faulty predictions can be more or less malignant
depending on the model application. We describe fibers of failure (FIFA), a method to classify failure
modes of predictive processes. Our method uses MAPPER, an algorithm from topological data analysis
(TDA), to build a graphical model of input data stratified by prediction errors. We demonstrate two
ways to use the failure mode groupings: either to produce a correction layer that adjusts predictions by
similarity to the failure modes; or to inspect members of the failure modes to illustrate and investigate
what characterizes each failure mode. We demonstrate FIFA on two scenarios: a convolutional neural
network (CNN) predicting MNIST images with added noise, and an artificial neural network (ANN)
predicting the electrical energy consumption of an electric arc furnace (EAF). The correction layer
on the CNN model improved its prediction accuracy significantly while the inspection of failure
modes for the EAF model provided guiding insights into the domain-specific reasons behind several
high-error regions.

Keywords: topological data analysis; mapper; predictive model; interpretable machine learning

MSC: 62R40

1. Introduction

All models are wrong; some models are useful—as Box famously wrote [1]. To improve a model,
to make the model less wrong, is a central process in the development and practical use of statistical
models. When working with a predictive model, a user of the model may accumulate ground truth
observations connected to the model inputs and model predictions. Even so, the model may fail in
different ways—a model improvement computed on global error measures often performs worse than
a model improvement that handles different error types separately.

In this article we describe fibers of failure (FIFA): a method that uses the MAPPER algorithm
from topological data analysis (TDA) to classify error types based on observed errors paired with
corresponding input data. Our method uses the observed errors as a part of the MAPPER process in
order to construct a MAPPER model of the space of possible inputs to the predictive model that separates
distinct error types from each other—each error type forms a distinct connected component in the fibers
of the map from inputs to error measurements. We also suggest two types of methods—qualitative
and quantitative—to use the error types to improve the predictions.

Algorithms 2020, 13, 150; doi:10.3390/a13060150 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-6322-7542
http://www.mdpi.com/1999-4893/13/6/150?type=check_update&version=1
http://dx.doi.org/10.3390/a13060150
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 150 2 of 25

We demonstrate our method on two examples: first on a convolutional neural network (CNN)
trained on MNIST digits and then used on a noise-distorted version of the MNIST digits, and next on
data from a neural network process that predicts the electrical energy (EE) consumption of an electric
arc furnace (EAF). In the CNN case, the classification of error types allows us to construct a prediction
correction layer that produces a dramatic improvement in model performance, forming an example of
where our quantitative approach performs well. For the EAF case, the quantitative approach is far
less impressive. Instead, the qualitative approach—inspecting the error types for information to feed
into further model refinements—uncovers actionable characteristics of the material processed by the
furnace. Specific materials cause mispredictions, and the metallurgical modeling processes can be
improved by using information about the materials that are particularly prone to mispredictions.

The FIFA method builds on MAPPER, an algorithm from topological data analysis that constructs
a graphical (or simplicial complex) model of arbitrary data. The use of MAPPER has shown to be
successful in a wide range of application areas, from medical research studying cancer, diabetes,
asthma, and many more topics [2–5], and genetics and phenotype studies [6–10], to hyperspectral
imaging, material science, sports, and politics [11–14]. Of note for our approach are, in particular,
the contributions to cancer, diabetes, and fragile X syndrome [2,3,6] where MAPPER was used to extract
new subgroups from a segmentation of the input space.

More closely related to our work, ref. [15] used MAPPER to analyze the weights learned by CNN
models. In their work, they identify meaningful structures in the topology of the space of learned
weight vectors internal to the neural network architectures. This differs from our work in that FIFA

provides a model for the input space to a predictive model, not a model for the parameter space of
the model.

A couple of works [16,17] have looked at using the output from a classifier as a component in
constructing filter functions for MAPPER. One study [16] used MAPPER for explainable modeling,
with a highly customized method for creating a cover for the filter functions they use. Another
study [17] estimated a filter function from input data and used the result to construct a variation on
the MAPPER algorithm.

CNN models have shown to be susceptible to noisy and adversarial examples of images they have
been trained to predict, with a dramatic decrease in accuracy as a result [18–23]. Furthermore, the deep
learning research community has recently increased its focus on how to make deep learning models
more transparent and interpretable. This includes dedicated workshops at major machine learning
conferences [24–27], attention from grant agencies [28], and published papers presenting various
interpretability approaches, such as [29–32], visualization techniques [33–39], hybrid models [40,41],
input data segmentations [35,42,43], and model diagnostics with or without blackbox interpretation
layers [44–51] to name a few prominent directions.

Shapley additive explanations (SHAP), a recent development in the field of interpretable machine
learning [52], has previously been used to uncover the effects of each input variable on the prediction
by a model predicting the EE of an EAF [53]. However, SHAP does not reveal subsets of the prediction
domain where the underlying model predicts values far off from the true values. All models, regardless
of type, are susceptible to errors of one or more distinct types. Locating and analyzing these distinct
error types furthers the understanding of the model’s adaptation to the training data. Thus, FIFA could
help to make the statistical models predicting the EE consumption more transparent by presenting
the most significant variables demarcating a distinct error type from the rest of the data. The use of
FIFA can also help in adjusting the consistent model error biases that are prevalent in the non-linear
statistical model, thereby possibly reducing the error of the model in the following step.

Algorithms 2020, 13, 150 3 of 25

2. Materials and Methods

2.1. Topological Data Analysis (TDA)

TDA stems from topology and displays three important properties; coordinate invariance,
deformation invariance, and compression [54]. These three properties differentiate TDA from
geometry-based data analysis methods.

Coordinate invariance: TDA only considers the distances between data points as a notion of
similarity (or dissimilarity). This means that a topological model can be rotated freely in space in order
to enhance the visual analysis of the data. Compare this property with a common data analysis tool,
such as principal component analysis (PCA), which ultimately decides the visual outcome of the data
due to its projection of the data into maximum variance space of two or three dimensions. Figure 1a
illustrates the coordinate invariance property for an arbitrary dataset.

Deformation invariance: Topology explains shapes in a different way compared to geometry.
For example, a sphere and a cube are identical (homeomorphic) according to topology. Likewise,
a circle and an ellipse are identical. White noise is inherent to any dataset and can be considered as a
deformation of the underlying distribution of the dataset. Due to the deformation invariance property,
TDA is a suitable method for analyzing noisy datasets and thus presents a more accurate visualization
of the underlying dataset. An example of deformation invariance is the figure-8-shaped dataset in
Figure 1b).

Compression: This property enables TDA to represent large datasets in a simple manner.
Imagine having a dataset of millions of data points that have the shape of the letter Y. See Figure 1c).
The compression property enables TDA to approximate the dataset using 4 nodes, which contains the
data points, and 3 edges, which express the relations between the data points. This property makes
TDA highly scalable.

y

x

x

y

y

x

x

y

y

x

x

y

a) b) c)

Figure 1. Frameworks TDA inherits from topology. (a) Coordinate invariance. The dataset has been
rotated approximately 100 degrees clockwise. (b) Deformation invariance. The dataset has been stretched
along the y = x line. (c) Compression of a dataset into 4 nodes and 3 edges.

2.2. Mapper

MAPPER has had success in a wide range of application areas, from medical research studying
cancer, diabetes, asthma, and many more topics [2–5], and genetics and phenotype studies [6–10],
to hyperspectral imaging, material science, sports, and politics [11–14]. Of note for our approach are,
in particular, the contributions to cancer, diabetes, and fragile X syndrome [2,3,6] where MAPPER was
used to extract new subgroups from a segmentation of the input space.

MAPPER [55] is an algorithm that constructs a graphical (more generally a simplicial complex)
model for a point cloud dataset. The graph is constructed systematically from some well defined input
data. It was defined by [55], and has been shown to have great utility in the study of various kinds

Algorithms 2020, 13, 150 4 of 25

of datasets, as described previously. It can be viewed as a method of unsupervised analysis of data,
in the same way as principal component analysis, multidimensional scaling, and projection pursuit
can, but it is more flexible than any of these methods. Comparisons of the method with standard
methods in the context of hyperspectral imaging have been documented in [11,12]. An illustration of
MAPPER is shown in Figure 2.

Figure 2. Illustration of MAPPER for the case when k = 1; i.e., f : X → R1. Refer to the descriptions of
the MAPPER algorithm in Section 2.2 for each of the steps (a–d).

Let X be a finite metric space. The following steps construct the MAPPER complex:

1. Choose a collection of maps f1, . . . , fk : X → R, or equivalently some f : X → Rk. These are
usually chosen to be statistically meaningful quantities such as variables in the dataset, density
or centrality estimates, or outputs from a dimensionality reduction algorithm such as PCA or
MDS. These are usually referred to as lenses or filters.

2. Choose a covering U = {U1, . . . } of Rk: an overlapping partition of possible filter value combinations.
3. Pull the covering back to a covering V of X, where Vi ∈ V = f−1(Ui).
4. Refine the covering V to a covering V̂ by clustering each Vi.
5. Create the nerve complex of the covering V̂: as vertices of the complex we choose the indexing

set of V̂, and a simplex [i0, . . . , ij] is included if V̂i0 ∩ · · · ∩ V̂ij 6= ∅. If we are only interested in
the underlying MAPPER graph, it suffices to add an edge connecting any two vertices whose
corresponding sets of data points share some data point.

One fundamental inspiration to the MAPPER algorithm is the Nerve lemma.
Nerve Lemma: If X is some arbitrary topological space and U = {Ui} is a good cover with index

i then X ' N(Ui), where N(Ui) has simplex [i0, . . . , id] if and only if
⋂d

k=0 Uik 6= 0.
Here, a good cover is a cover such that

⋂d
k=0 Uik is either contractible or empty for all [i0, . . . , id]

If the function f , and the covering U are chosen well enough, the covering V̂ may well be a good
cover, in which case the topology of the MAPPER complex reflects the topology of X itself.

The filters act as measures of enforced separation: data points with sufficiently different values
for the filter function are guaranteed to be separated to distinct vertices in the MAPPER complex, while
the nerve complex construction ensures that connectivity information is not lost in the process.

In practice, one particular covering construction has gained widespread use. It creates axis-aligned
overlapping hyperrectangles by the following process:

1. For each i = 1, . . . , k, select (1) a positive integer Ni and (2) a positive real number pi, with 0 <

pi < 1.
2. For each filter fi where i = 1, . . . , k, let mini and maxi denote the minimum and maximum values

taken by fi, and construct the unique covering of the interval Ji = [mini, maxi] by Ni subintervals
Ji
s ⊆ Ji of equal length = maxi−mini

Ni
. For the interior intervals in this covering, enlarge them by

moving the right and left hand endpoints pi
2 ·

maxi−mini
N to the right and the left, respectively.

For the leftmost (respectively rightmost) interval, perform the same enlargements on the right
(respectively left) hand endpoints. Denote the intervals we have created by Ji

1, . . . , Ji
Ni

, from left
to right.

Algorithms 2020, 13, 150 5 of 25

3. Construct the covering U of X by all “cubes” of the form (f1 × · · · × fk)
−1(J1

s1
× · · · × Jk

sk
) where

1 ≤ si ≤ Ni. Note that this is a covering of X by overlapping sets.

More detailed expositions can be found in [55,56].
MAPPER has several implementations available: Python Mapper [57], Kepler Mapper [58],

and TDAmapper [59] are all open source, while Ayasdi Inc. (http://ayasdi.com) provides a commercial
implementation of the algorithm.

For our work we are using the Ayasdi implementation of MAPPER.

2.3. FIFA: The General Case

In summary, the FIFA method is based on the following steps:

1. Create a MAPPER model that uses a measure of prediction failure as a filter.
2. Classify hotspots of prediction failure in the MAPPER model as distinct failure modes.
3. Use the identified failure modes to construct a model correction layer or to provide a guidance

for model refinement.

The process can be seen as classifying failure modes by analyzing the fibres of the map that goes
from the input space to the observed prediction failure—analyzing the fibers of failure.

2.3.1. MAPPER on Prediction Failure

The filters in the MAPPER function have the effect of ensuring a separation of features in the
data that are separated by the filter functions themselves. In the setting of prediction failures,
we leverage this feature to create MAPPER models that enforce a separation on prediction errors,
allowing the subsequent analysis to identify contiguous regions of input space with consistent and
large prediction errors.

We name the process of using MAPPER with prediction error as a filter in order to classify
prediction failures as the fibers of failure method, and the resulting MAPPER model we name a
FIFA model.

2.3.2. Extracting Subgroups

Subgroups of the FIFA model with tight connectivity in the graph structure and with homogeneous
and large average prediction failure per component cluster provide a classification of failure modes.
These can be selected either manually or using a community detection algorithm. When extracting
subgroups manually, the intent is always to extract groups wherein the prediction error is as close
to constant as possible. For community detection, most existing work in this area should be
applicable. The MAPPER implementation we are using uses a grouping method based on agglomerative
hierarchical clustering (AHCL) [60,61] and Louvain modularity [62]. This grouping algorithm used by
Ayasdi is patented [63].

2.3.3. Quantitative: Model Correction Layer

Once failure modes have been identified, one way to use the identification is to add a correction
layer to the predictive process. This is done by using a classifier to recognize input data similarly to a
known failure mode, and by adjusting the predictive process output according to the behavior of the
failure mode in available training data.

Train classifiers. For our illustrative examples, we demonstrate several “one versus rest”
binary classifier ensembles where each classifier is trained to recognize one of the failure modes
(extracted subgroups) from the MAPPER graph.

Evaluate bias. A classifier trained on a failure mode may well capture larger parts of test data
than expected. As long as the space identified as a failure mode has consistent bias, it remains useful

http://ayasdi.com

Algorithms 2020, 13, 150 6 of 25

for model correction: by evaluating the bias in data captured by a failure mode classifier we can
calibrate the correction layer.

Adjust model. The actual correction on new data is a type of ensemble model, and has flexibility
on how to reconcile the bias prediction with the original model prediction—or even how to reconcile
several bias predictions with each other. In the example cases used in this paper, we showcase two
different methods for adjusting the model: on the one hand by replacing a classifier prediction with
the most common class in the observed failure mode, and on the other hand by using the mean error
as an offset.

Note on Type S and Type M errors.
The authors of [64] argue that for model evaluation, the distinction between Type I and Type II

errors is less useful than a distinction between Type S (sign) and Type M (magnitude) errors. Drawing
on these error types, we will structure our quantitative adjustments in the continuous case with careful
attention paid to Type S errors.

To elaborate, if a failure mode is found to have consistently overly-high predictions, adjusting
with the observed bias of the failure mode is likely to produce a better prediction for all points in the
failure mode. However, a failure mode that has errors in both directions will exacerbate some errors
when adjusting for bias in that failure mode.

We apply this philosophy primarily in our design of model correction layers: by restricting bias
corrections to cases that have large (handling Type M) and consistent (handling Type S) errors, we can
rely on a bias correction to improve prediction for all the observations it corrects.

2.3.4. Qualitative: Model Inspection

Identifying distinct failure modes and giving examples of these is valuable for model inspection
and debugging. Statistical methods, such as Kolmogorov–Smirnov (KS) testing, can provide measures
of how influential any one feature is in distinguishing one group from another and can give notions
of what characterizes any one failure mode from other parts of input space. With examples and
distinguishing features in hand, we can go back to the original model design and evaluate how to
adapt the model to handle the failure modes better.

2.4. Statistical Modeling

We have chosen specific statistical measures to evaluate prediction errors for the two examples,
described here in Section 2.4.1. For the subsequent qualitative analysis (as described in Section 2.3.4
above), we use the Kolmogorov–Smirnov statistic, described in Section 2.4.2, to determine the pairwise
degree of dissimilarity between distributions.

2.4.1. Performance Metrics

The metrics used to evaluate the improved performance using the FIFA corrective layer for
the EAF EE prediction model will be the coefficient of determination, R2, and the regular error
function, ErrReg.

The regular error function is preferable over the absolute error function, since an overestimation
differs from an underestimation in a practical EAF process context.

The regular error is defined as:
ErrReg = ŷi − yi (1)

where yi is the true value, ŷi is the predicted value, and i ∈ 1, 2, . . . , n.
The coefficient of determination is a measure of how well the statistical model approximates the

true data points. It is a function of the total sum of squares, St, and the residual sum of squares, Sr.

R2 = 1− Sr

St
(2)

Algorithms 2020, 13, 150 7 of 25

where Sr = ∑n
i=1(yi − ŷi)

2 and St = ∑n
i=1(yi − ȳ)2. ȳ is the mean value of yi.

For the MNIST prediction model, which is a classifier-type statistical model, we used the
prediction accuracy as a performance metric. MNIST contains 10 classes and the prediction accuracy
defined as the fraction of the correctly predicted images in the set of images.

facc =
1
N

N

∑
i=1

ci (3)

where

ci =

{
1, if spred = strue

0, if spred 6= strue
(4)

N is the number of images in the image set, i ∈ 1, 2, ..., N, spred is the predicted class, and strue is the
true class.

2.4.2. Kolmogorov–Smirnov (KS) Statistic

The KS statistic can be used to measure dissimilarity between the cumulative distribution
functions (CDF) of two samples. This is specifically known as the two-sample KS test and gives
the maximum difference between the two distributions [65]. The KS-test is a non-parametric statistical
test which is favorable, since many of the parameters governing the EAF process are of varying classes
of distributions [66].

To perform a KS test, the KS-value has to be calculated by using the null hypothesis, H0; i.e., that
the two samples have the same distribution. The confidence level, i.e., p-value, is the probability that
the two samples come from the same distribution. The KS-value can have values in the range [0, 1],
where 0 indicates that the distributions of respective sample are identical and where 1 indicates that
the distributions are totally different. Hence, a low p-value in tandem with a high KS-value is a strong
indicator that the two samples are different

The two-sample KS test calculation proceeds as follows:

Dn1,n2 = sup
x
|Un1(x)−Vn2(x)| (5)

where Un1 and Vn2 are the two distribution functions. n1 and n2 are the number of instances in each
sample from the two distributions, respectively. x is the total sample space. sup is the supremum
function. Dn1,n2 is illustrated in Figure 3.

H0 is rejected if the following condition is satisfied:

Dn1,n2 > c(α)
√

n1 + n2

n1 · n2
(6)

where α is a pre-determined significance level and c is the threshold value calculated using α and the
cumulative KS distribution [67].

The KS-test is used by FIFA to present the variables that separate a specific error group from the
rest of the data. Thus, one of the samples will be from the specific error group and the other sample
will be from the rest of the data. Using the KS-test on each variable will show the variables whose
distributions are the most different between the two samples.

The main drawback of the KS-test is that it reduces the difference between the two distributions to
the point of maximum difference of the CDF. Hence, the maximum difference may not be representative
over the complete distribution space. To combat this shortcoming in the analysis, the plotted
distributions of the two samples will be provided as a complementary tool.

Algorithms 2020, 13, 150 8 of 25

Dn1,n2 = 0.2

Figure 3. The two-sample Kolmogorov–Smirnov (KS)-test illustrated for the random variables X and Y,
where X ∼ Norm(200, 25) and Y ∼ Norm(200, 35) [66]. Left: The cumulative distribution functions
(CDF) of X and Y. Dn1,n2 , calculated using Equation (5), is shown as the difference between the upper
and lower dashed lines; 100 samples were drawn from each distribution. Right: The probability density
functions of X and Y.

2.5. MNIST Data with Added Noise

As a first example, we have chosen to work with the MNIST [68] database of handwritten digits
and used the methods from the MNIST-C [69] test set. In order to provoke prediction failures to
analyze, we have used the MNIST database as-is for training purposes, but have created noisy samples
for evaluations, using the impulse noise method used in MNIST-C: The noise corruption was created by
introducing random binary flips on 25% of the pixels of each of the images in the test portion of the
database. The predictive model was trained exclusively on clean MNIST images, but then evaluated
on its ability to generalize to the impulse noise corrupted images we created. Figure 5 illustrates how
the different datasets are related in the experiments.

2.6. Electric Arc Furnace

The EAF process accounted for 28% of the total world production of steel, on average,
between 2008 and 2017, and is therefore the second most common melting furnace in steelmaking [70].
It is a resource and energy intensive process, where electrical energy (EE) can account for up to 66% of
the total energy input. See Table 1.

Table 1. The following percentages of energy sinks and energy sources are computed from a synthesis
of reported values [71–75].

Energy Factor Percentage

In Electric 40–66%
Oxidation 20–50%

Burner/fuel 2–11%

Out Liquid steel 45–60%
Slag and dust 4–10%

Off-gas 11–35%
Cooling 8–29%

Radiation and electrical losses 2–6%

The amount of EE consumed by the EAF sheds light on the potential to optimize the consumption
of EE. The gain is twofold. First, the cost for producing steel will be reduced in tandem with a reduced
EE consumption. Second, the environmental impact will be reduced since less energy is needed for

Algorithms 2020, 13, 150 9 of 25

each batch of produced steel. Numerous studies utilizing statistical models (machine learning) to
optimize the EE of the EAF have previously been conducted. A review on the subject concluded that
non-linear statistical models have significantly better performance over linear statistical models when
predicting the EE of the EAF [76]. The main reason for this is that the EAF process itself is subjected
to numerous non-linear impositions governed by its physicochemical nature, and delays imposed
by downstream and upstream processes. Delays are also imposed by unpredictable events, such as
equipment failures. This has been discussed in depth in previous research [66,76]. Hence, the choice of
a statistical modeling framework has to be adapted to the non-linearity of the process.

However, non-linear statistical models are almost impossible to analyze due to their complex
mapping of the input data to the output data. This hampers the process engineers’ understanding,
and therefore trust, in the model. It is always of paramount importance that the process operators
trust the tools that are used to guide the process towards minimum operating costs and environmental
impacts. Previous tools that have been applied to these types of statistical models are permutation
feature importance and SHAP [53,66]. However, these tools only provide the relative importance of
each feature for each prediction, while FIFA provides subgroups where the error by the modes is
unusually large. Hence, FIFA could prove to be a valuable tool in the arsenal of interpretable machine
learning methods for the steel process engineers.

2.7. Selected Models for Analysis

In order to produce examples of FIFA in action, we have produced two distinct predictive
models—one for each dataset described in preceding sections. Specifications about the software used
in the experiments can be viewed in Table A3.

2.7.1. CNN Model Predicting Handwritten Digits

We created a CNN model with a topology shown in Figure 4. The topology and parameters were
chosen arbitrarily with the only condition: that the resulting model performed well on the original
MNIST test dataset. The activation functions was “softmax” for the classification layer and “ReLU” for
all other layers. The optimizer was Adadelta with learning rate lr = 1.0, ρ = 0.95, and ε = 10−7 [77].
We trained the model on 60,000 clean MNIST training images (MNIST-train) through 12 epochs and
tested it on 10,000 clean MNIST images (MNIST-test). The accuracy on the test-set of 10,000 clean
MNIST images was 99.05%. We created 10,000 corrupt MNIST images (C-MNIST-test) using 25%
random binary flips on the clean test images. The code is available in the Supplementary material [78].
The accuracy on the corrupt MNIST images was 40.45%. The datasets used to train, test, and evaluate
the CNN model are illustrated in Figure 5.

C(k)

Conv2D Conv2D Max
pooling

Dropout
25% Flatten

Dropout
50%

Dense Dense

26x26x32 24x24x64 12x12x64 12x12x64

9216

128 128

10

28x28x1

Soft-
max

Figure 4. The topology for the CNN model. The numbers display the dimensions of the layers in the
model. The abbreviations, such as Conv2D, describe the specific transformations performed between
layers in the model. The activation function for the classification layer was “softmax”, and for the other
layers it was “ReLU”. The optimizer used was “Adadelta” [77].

Algorithms 2020, 13, 150 10 of 25

MNIST training data set:
60,000 images (MNIST-train)

MNIST test
data set:

10,000 images
(MNIST-test)

Corrupt
MNIST test

data set:
10,000 images
(C-MNIST-test)

Corrupt
MNIST test

data set:
10,000 images
(C-MNIST-eval)

Datasets

CNN model

Mapper graph

LR correction
classi�ers

Training

5-fold graphs*

Test

Not used

Not used

Evaluation

Not used

5-fold training
and testing* Evaluation

Randomized MNIST
original and corrupt:

20,000 images

Evaluation

4,000 test
images

(5-fold-test)* 16,000 training
images (5-fold-training)*

Figure 5. An illustration how all datasets relate to all steps in FIFA for the MNIST model case.
The asterisk (*) marker emphasizes that the 5 MAPPER graphs and the corresponding LR correction
classifiers were created using 5 folds of a randomized combination of the MNIST-test and C-MNIST-test
datasets. These datasets are shown in the bottom of the figure. The names in parentheses are the names
of the datasets as they are referred to in the text and subsequent figures and tables.

2.7.2. ANN Model Predicting the EE Consumption of an EAF

The chosen model framework was the artificial neural network (ANN), which is commonly used
for modeling non-linear problems and has previously been used to model the EE consumption of
the EAF [66,76]. A grid-search was conducted to find the optimal numbers of hidden layers and
hidden nodes, and the most optimal delay variable from a set of 5 variables representing the delays
imposed on the process. See Tables A1 and A2 in the Appendix A for details regarding the grid-search.
The variables used in the selected model are shown in Table 2. The variables were chosen based on
their respective contributions to the increase or reduction in EE from a physicochemical perspective.
In order to investigate the stability of each set of parameters, a total of 10 model iterations were
conducted for each grid-search parameter setup. The strategy employed to select the best model was
to pick the model with the highest mean R2 and the difference between maximum R2 and minimum
R2 of less than 0.05. See Appendix A and the software used to create the models.

Table 2. Variables used in the final electrical energy consumption model.

Variable(s) Description Unit

Total Weight Total input weight of charged baskets kg
Raw material types Total input weight of each of 7 raw material categories kg
Additive Propane Total input of propane through burners Nm3

Additive O2 Burner Total input of oxygen through burner Nm3

Additive O2 Total input of oxygen through lance Nm3

Process Time Defined as start of the heat to the end of the heat min
Tap-To-Tap Time The time between the end of the last heat to the end of the current heat min
All Delays Includes all delays imposed on the heat s

Algorithms 2020, 13, 150 11 of 25

The selected model parameters using the grid-search had 1 hidden layer with 20 hidden nodes.
The delay variable was “all delays”. The rest of the variables are shown in Table 2.

2.8. FIFA on the MNIST Model

2.8.1. Quantitative

To create the MAPPER graph we used the following approach:

• Filters: Principal component 1, probability of Predicted digit, probability of ground truth digit,
and ground truth digit. Our measure of predictive error is the probability of ground truth digit.
By including the ground truth digit itself, we separate the model on ground truth, guaranteeing
that any one one failure mode has a consistent ground truth that can be used for corrections.

• Metric: Variance normalized euclidean.
• Variables: 9472 network activations: all activations after the dropout layer that finishes the

convolutional part in the network and before the softmax layer that provides the final predictions.
These are the layers with 9216, 128, and 128 nodes displayed in Figure 4.

• Instances: We used 16,000 data points (5-fold-training), and a selection of 4 of the 5 folds from a
randomized mix of the MNIST-test and C-MNIST-test datasets. See Figure 5 for an illustration.

We purposely omitted the activations from the Dense-10 layer as input variables because of the
direct reference to the probabilities for both the ground truth digit and the predicted digit.

The following variables were used in filter functions or in the subsequent analysis, but were
not used to create the FIFA model:

• Ten activations from the Dense-10 layer, which consist of the probabilities for each digit, 0–9.
• Seven-hundred and eighty-four pixel values representing the flattened MNIST image of size

28 × 28 × 1.
• Six variables: prediction by the CNN model, ground truth digit, corrupt or original data (binary),

correct or incorrect prediction (binary), probability of the predicted digit (highest value of the
Dense-10 layer), and probability of the ground truth digit.

Hence, the total number of variables in our analysis was 10,272.
From partitioned groups in the MAPPER graph, we retain as failure modes those groups that

have at least 15 data points and have less than 99.05% correct predictions, which is the accuracy of
the CNN model on the original MNIST test data (MNIST-train). We then trained logistic regression
classifiers in a one versus rest scheme on each group using the same 16,000 data points (5-fold-training)
used to create the MAPPER graph. (The one versus rest scheme is an ensemble method for converting
a binary classifier to a classifier able to work on more than two groups. For each group, a separate
classifier is trained to distinguish that group from the rest of the data. To use the classifier ensemble,
the individual classifier results are combined to form a classification of the data.) We used logistic
regression (LR) models with the following parameters. Penalty function: `2. Regularization parameter
C = [0.001, 0.01, 0.1, 1, 10, 100, 1000]. The regularization term that corrects the most number of MNIST
images on the 5-fold-test dataset will be used.

Using the best performing model ensemble, we evaluated each model on a second dataset, called
C-MNIST-eval, which consisted of 10,000 new corrupt images using 25% binary flips on the original
MNIST test dataset (C-MNIST-test). The same impulse noise method was used both to produce test
images to evaluate the performance of the CNN as input to the MAPPER process, and for the final
evaluation of the performance of the combined CNN + correction layer model. Hence, we used the
same noise pattern as the corrupt images used for testing the CNN model. See Section 2.7.1 for details
regarding the noising methodology.

As we trained the classifiers on groups containing many wrong predictions, it was expected
that the classifiers would classify member points with wrong predictions on the test datasets. Hence,

Algorithms 2020, 13, 150 12 of 25

we offset the predicted digits in the 5-fold-test and the C-MNIST-eval datasets with the ground truth
digit of the group each classifier was trained on. We attempted to exploit the consistent bias of the
classifiers to improve the accuracy of the now combined CNN and classifier ensemble.

The FIFA procedure was repeated using five different splits of the training and test datasets in
order to mitigate the effects of selection bias when creating the MAPPER graph. This procedure is
equivalent to the 5-fold cross-validation methodology in the field of machine learning used to mitigate
the effects of selection bias. Hence, each of the 5 MAPPER graphs were created using 5 different
selections of 16,000 (5-fold-training) of the available 20,000 data points consisting of 10,000 test MNIST
images (MNIST-test) and 10,000 corrupt MNIST test images (C-MNIST-test) using 25% binary flips.
See Section 2.7.1 for details regarding the noising methodology. The rest of the 4000 data points
(5-fold-test) were used to evaluate the ensemble correction classifier. See Figure 5 for a detailed
illustration on how the datasets were created and how they are related.

2.8.2. Qualitative

We chose to study the digit 5. From the MAPPER graph (in Figure 6) the part corresponding
to a ground truth digit 5 decomposes into two connected components. We split out four groups of
approximately locally constant prediction error: groups 30, 40, 47, and 50 in the numbering scheme
generated by the community finding algorithm used.

For these four groups of observations, we then generated on the one hand the distributions of
classifications from the CNN classifier—seen in Figure 8—and on the other hand a collection of saliency
maps [79] to allow us to inspect the different responses of individual neural network activations to
digits in the various groups. We chose activations to inspect by looking for the highest KS-score when
comparing each group to the correctly classified group 50.

2.9. FIFA on the EE Consumption Model

2.9.1. Quantitative

The following parameters were used to create the MAPPER graph:

• Filters: principal component 1, the model error, and the true EE consumption.
• Metric: inter-quartile range (IQR) normalized euclidean.
• Variables: forty-eight variables; see Table A4.
• Instances: the same data points, from 9533 heats, used to train the ANN model for predicting the

EE consumption.

We trained an ensemble of logistic regression classifiers in a one versus rest scheme to identify
membership in each of the groups with at least 15 data points in the training data. To make the
corrected model more attractive to the model users, we restricted the resulting classifiers to ensure that
each classifier would produce explainable adjustments. A classifier within the ensemble is qualified to
adjust the test data if the following two conditions are satisfied:

1. The average error value imposed by the predicted data points on the training data, ∆ETr
El , must be

of the same sign (type S error) as the average group error value, ∆EGr
El . This is to ensure that the

errors of the predicted data points by each classifer are consistent with errors of the groups they
have been trained to predict.

2. The error after adjustment of the group data cannot be worse than the group error,
|∆EGr

El − ∆ETr
El | < |∆EGr

El |.
This is to verify that the classifier can identify data points that have, on average, somewhat similar
error values as the group it is trained to identify.

The mean error, standard error, max/min errors, and R2 are recorded prior to the adjustment and
after the adjustment of the test data. The number of test data points is 2384. The ensemble with the

Algorithms 2020, 13, 150 13 of 25

highest decrease in standard error and highest increase in R2 for the test data is chosen. The following
values for the logistic regularization parameters, C, were used to determine the best performing
classifier ensemble: [0.001, 0.01, 0.1, 1.0, 10, 100, 1000].

Unlike the CNN model case, the FIFA procedure was not repeated using five different splits of
the training and test datasets. A model that is used in practice will predict on data that have been
generated from a future point in time with respect to the data used to train the model. Hence, the test
data must be selected in chronological order from the training data. Hence, a K-fold cross-validation
does not make sense in this case.

2.9.2. Qualitative

The qualitative inspection for each of the two MAPPER graphs was conducted by selecting 4 of the
largest groups. Two with the highest ∆EEl-values and two with the lowest ∆EEl-values. Each of the
groups was then compared to the rest of the data points. The 5 variables with the highest KS-values
and the 5 variables with the lowest KS-values were analyzed further using EAF process expertise to
determine reasons behind the model prediction error. The variables were selected if the p-value (α) was
lower than 0.01 in order to reduce the probability of selecting a variable whose KS-value was due to
randomness. In addition, the variables were prone to contain extreme outliers. Hence, the distribution
plots for each variable are shown for all values that are not part of the 1000-quantile.

3. Results and Discussion

3.1. MNIST Model

3.1.1. Quantitative

The logistic regression model with the best adjustment on the corrupt data had a C-value of
1000. The average number of data points in all failure mode groups in the five folds was 4937 of the
total 16,000 (5-fold-training). The average number of clean data points in all groups in the five folds
was 10.4, accounting for a fraction of 0.21% of the 4937 data points. This also means that the failure
mode groups encompass roughly 62% of all corrupt data points, on average, in each training set of the
5-folds. The numbers of failure modes (extracted subgroups) in each fold were 41, 41, 41, 41, and 37,
respectively.

Table 3 shows the accuracy on the two test datasets using CNN with and without FIFA.
The correction layer improved the CNN model by 6.05%pt on the 5-fold-test dataset and 18.43%pt on
the C-MNIST-eval dataset. This is considered a significant improvement over the original CNN model.

Table 3. Performance of the CNN as compared to CNN with FIFA-driven improvements both on the
average of the five folds of test data (5-fold-test) and on entirely corrupted test data (C-MNIST-eval).
The improvements by the classifier ensemble are for the best performing parameters. The FIFA-driven
improvement produces an 18.43%pt increase in accuracy on the C-MNIST-eval dataset, which consists
of only corrupt MNIST images. In addition, the percentage of clean images of the adjusted predictions
by the correction layer was only 0.21%.

Dataset 5-Fold-Test C-MNIST-Eval
(Number of Images) (4000) (10,000)

CNN 69.40% 41.14%
CNN+LR 75.45% 59.57%

3.1.2. Qualitative

For the qualitative analysis, we chose to focus on four groups with digit five as the ground truth
digit: group 50, which is not one of the failure mode groups, and groups 30, 40, and 47, all part of the
total 39 failure mode groups. The location of each group in the MAPPER graph is shown in Figure 6.

Algorithms 2020, 13, 150 14 of 25

The distributions of predicted probabilities for each digit in the three failure mode groups are shown
in Figure 7: group 30 is the group with the highest probability to the digit five, while 40 and 47 are
more focused on eight, two, and three. All three groups favor digit eight, as their mean probabilities
are between 0.5 and 0.9.

G50
G30

G47G40

Figure 6. One of the five MAPPER graphs created by the activations from the CNN model on four of
the five folds, i.e., 16,000 images (5-fold-training), as explained in Section 2.8.1. The graph is colored
with the probability of predicting the ground truth digit. The colorbar is for interpreting the values
of the coloring. The circled nodes and edges are the groups 30, group 40, 47, and 50. The other four
MAPPER graphs are shown in the Supplementary Material [78].

●●●●●●●● ●●●●●●●●●

●●
●●
●
●

●●
●
●●●
●
●
●
●

●

●●●●●●●●●●

●

●●●●●●●● ●●●●●● ●●●●●

●

●●

●●●●●●●●●●●● ●●●●●●●●●

●
●●●
●
●●●●●●●

●●●●●●●●●●●
●●

●●●●●●●●●●● ●●●●●●●● ●●●●●
●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●
●

●

●●
●

●●●

●

●●●

●

●

●

●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●
●
●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

30
40

47

0 1 2 3 4 5 6 7 8 9

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Ground Truth

S
of

tm
ax

Figure 7. The failure modes for a ground truth of five. We see the distributions of predictions for the
three failure modes: only group 30 attaches any significant likelihood to the digit 5 at all, while all
three favor eight. For group 40, the digits two and three are also commonly suggested; this happens
somewhat more rarely in groups 30 and 47.

We compared these three failure modes with the non-failure group 50 and extracted the five
activations with the highest KS-values from the Dense-128 layer; see Figure 4. To illustrate the
differences between the three failure modes regarding the activations, we have provided a selection of
saliency maps [79] for all images considered as true members of each of the three failure mode groups.
These were all produced using the keras-vis Python package.

Algorithms 2020, 13, 150 15 of 25

Figure 8 shows a selection of noisy images and their saliency maps for some of the activations’
highest KS-values within the Dense-128 layer. The two leftmost image pairs were selected based on
visual clear saliency maps with respect to digits. The two rightmost were selected based on most
unclear/noisy saliency maps. The full collection of saliency maps for these groups can be found in our
Supplementary Material [78].

Activation 24—one row each for groups 30, 40 and 47

Activation 81—one row each for groups 30, 40 and 47

Group 30, activation 89

Group 30, activation 124

Group 40, activation 89

Group 40, activation 99

Group 40, activation 119

Group 47, activation 89

Group 47, activation 122

Figure 8. Examples of noisy images and saliency maps for activations in the penultimate dense layer for
the three main failure modes identified for noisy 5s. The two leftmost images were chosen as the most
clear saliency maps with respect to digits. The two rightmost were selected based on unclear/noisy
saliency maps. All saliency maps are from images classified as members of the respective failure mode
group. All saliency maps can be found in our Supplementary Material [78].

Algorithms 2020, 13, 150 16 of 25

The activations 24 and 81, present in all three groups, display activity that is consistent with
an activation detecting features of the digit five. The activations 89 and 99 correspond closer to
an activation for the digit three and 119; 122 and 124 correspond to activations for the digit eight.
In particular, in the last three groups, noise that closes loops in a written five tend to have high saliency.

In Table 4 we show the percentage of blank saliency maps, indicating how often an activation by
the neuron is missing completely for the group’s classified membership images. A blank saliency map
for a particular image means that the neuron does not “send” its contribution further down the neural
network, because the activation is equal to zero. For example, consider a neuron particularly prone to
recognize digit five that also has a large percentage of blank saliency maps for a certain set of images.
The resulting predictions will have a lower probability for digit five than another set of images with
lower percentage of blank saliency maps.

Table 4. The percentage of blank saliency maps for each of the five neurons with the highest absolute
KS-values (compared to group 50) in the Dense-128 layer. The percentages only include saliency maps
from the images classified as members of the respective failure mode group. Blank saliency maps do not
contribute to the subsequent layers in the network because the activation is zero. The neuron numbers
with bold font are the neurons qualitatively identified as encoding digit five. We observe that the
neurons encoding digit five have predominantly larger percentages of blank saliency maps. This means
that digit five receives lower probability for the number of images equating to the percentage of blank
saliency maps.

Group 30

Neuron 24 33 81 89 124
%Blank 36.1% 26.2% 60.7% 0% 8.2%

Group 40

Neuron 24 81 89 99 119
%Blank 82.2% 91.8% 0% 4.1% 17.9%

Group 47

Neuron 24 49 81 89 122
%Blank 70.6% 54.3% 84.3% 0.5% 3.6%

3.2. EE Consumption Model

3.2.1. Quantitative

In total, 7806 data points were captured by 88 groups containing 15 or more data points.
This corresponds to 82% of the total data points since the total number of data points to create
the MAPPER graph was 9533. The adjustment results from the classifier ensembles are shown in
Table 5. A reduction in Std.∆EEl and an increase in the R2-value can be seen after the adjustment by the
ensemble classifier. While this is indeed an improvement, it is hard to justify the improvement from
a practical EAF process perspective. The standard ∆EEl improvement is only 121 kWh/heat, which
from a process perspective is within the white noise of physico-chemical phenomena underpinning
the EAF process. For example, the 121 kWh improvement is an approximate equivalent of 300 kg less
scrap added to the heat. This small amount could easily be attributable to current scrap weighting
sensitivity levels and is therefore comparable to the variations in the data due to white noise.

Algorithms 2020, 13, 150 17 of 25

Table 5. Results before and after the adjustments on the test data using logistic regression with C = 1.
The chosen logistic regression classifier ensemble was the one that, to the highest extent, reduced the
standard deviation of error and increased R2. (See Appendix A) C for the results from the logistic
regression classifier ensembles with the other C-values.

Type R2 Avg.∆EEl Std.∆EEl Min.∆EEl Max.∆EEl
Unit - kWh kWh kWh kWh

Original 0.50 −70 1988 −13,954 6520
Adjusted 0.56 −81 1867 −12,284 7123

3.2.2. Qualitative

The MAPPER graph is shown in Figure 9. It is possible to observe an ability for MAPPER to
separate subgroups with high positive error from subgroups with high negative error.

1248

1250

1252

1247

Figure 9. The MAPPER graph. The groups 1247, 1248, 1250, and 1252 have highlighted nodes and
are marked in the figure. The color-bar represents values, with respective coloring in the graph,
for ∆EEl . The values are in kWh/heat. The line between the adjacent groups 1248 and 1252 is present
for interpretability purposes. Number of data points and ∆EEl for each group; group 1247: 165,
2160 kWh/heat. Group 1248: 202, −2740 kWh/heat. Group 1250: 213, 2350 kWh/heat. Group 1252:
355, −2970 kWh/heat.

Near zero p-values are present for all top-five KS-value variables in all four groups highlighted in
Figure 10. However, the differences in KS-values, which take values from 0 to 1, vary between 0.331 to
0.792. A higher KS-value indicates that the two samples are not from the same distribution compared
to a KS-value that is lower, as discussed in Section 2.4.2.

Algorithms 2020, 13, 150 18 of 25

G
ro

up
: 1

24
7

G
ro

up
: 1

24
8

G
ro

up
: 1

25
0

G
ro

up
: 1

25
2

Figure 10. Distribution plots for the 5 variables with the highest (left) and lowest (right) KS-values,
respectively. Truncated distributions (values within the 1000-quantiles) for the group (black) and the
rest (gray) are shown. The dashed lines indicate the means of respective distribution. The values in
parenthesis show the KS-values. Number of data points and ∆EEl for each group; group 1247: 165,
2160 kWh/heat. Group 1248: 202, −2740 kWh/heat. Group 1250: 213, 2350kWh/heat. Group 1252:
355, −2970 kWh/heat.

The use of FIFA made it possible to pinpoint raw material types C and D as two of the most
predominant variables in separating each of the four groups from the rest of the data. From process
experience it is known that raw material types have a large effect on the energy dynamics within
the furnace and thus also on the EE consumption. Since raw material types are variable in the

Algorithms 2020, 13, 150 19 of 25

prediction model, it is clear that the model misjudges the impact of these raw material types on the
true EE consumption.

The effective energy is a proprietary variable estimating the amount of energy that is effectively
utilized during the EAF process. It is closely related to the energy dynamics of the process, but was not
used as a input variable for the prediction model. However, it is possible to observe that group 1247
and group 1250 have lower effective energy than the rest of the data, while group 1252 has a higher
effective energy than the rest of the data. The prediction model overestimates the EE for the heats in
group 1247 and group 1250, while it underestimates the EE for the heats in group 1252.

4. Conclusions

This study demonstrated the use of fibers of failure, FIFA, to analyze distinct error modes from
two predictive processes; namely, the CNN model predicting handwritten digits from the MNIST
dataset and the ANN model predicting the EE consumption of an EAF. This was accomplished by
using both a quantitative and a qualitative approach on two diverse cases.

For the CNN model predicting corrupt MNIST images (C-MNIST-eval), a 18.43 percentage
accuracy increase was achieved using the quantitative path. Using the qualitative approach, the CNN
model was prone to misclassifying “5” as “8” for several selected failure modes. This is not surprising,
since “5” and “8” have similar “traces” when written by hand. The results from the saliency maps
provided further support to this conclusion by highlighting areas of higher and lower activations in
the penultimate dense layer of the CNN model.

For the ANN model predicting the EE consumption of an EAF, the qualitative approach provided
some interesting insights. It was found that two distinct raw material types out of the seven available
raw material types were among the five variables with the highest KS-values for the four selected
subgroups. This provides a guidance when improving future models with regard to the two raw
material types. However, the quantitative approach did not significantly improve the EE predictions.
The performance improvement was in magnitude comparable to added noise by measurement errors
in the EAF process.

Author Contributions: Conceptualization, M.V.-J. and G.C.; methodology, L.S.C., M.V.-J. and G.C.; software,
L.S.C. and M.V-J; validation, L.S.C.; formal analysis, L.S.C.; investigation, L.S.C.; resources, G.C. and M.V-J; data
curation, L.S.C. and M.V.-J.; writing—original draft preparation, L.S.C. and M.V.-J.; writing—review and editing,
all authors; visualization, L.S.C. and M.V.-J.; supervision, P.G.J. and M.V.-J.; project administration, M.V.-J. and
P.G.J.; funding acquisition, P.G.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by “Hugo Carlssons Stiftelse för vetenskaplig forskning” in the form of a
scholarship granted to L.S.C. Partial support for this project was provided to M.V.-J. by a PSC-CUNY Award,
jointly funded by The Professional Staff Congress and The City University of New York.

Acknowledgments: We want to thank the plant engineers at the Outokumpu Stainless Avesta mill for their
support and data provisioning during this project. We also want to thank our two anonymous reviewers for
extensive and helpful feedback.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Algorithms 2020, 13, 150 20 of 25

Abbreviations

The following abbreviations are used in this manuscript:

SHAP Shapley Additive Explanations
AHCL Agglomerative Hierarchical Clustering
PCA Principal Component Analysis
ANN Artificial Neural Network
CNN Convolutional Neural Network
EAF Electric Arc Furnace
EE Electrical Energy
FIFA Fibres of Failure
KS Kolmogorov–Smirnov
LR Logistic Regression
TDA Topological Data Analysis
CDF Cumulative Distribution Function

Appendix A

Table A1. The parameters that were varied and the resulting total number of models used in the
grid-search.

Parameter Values Description Number of Parameters

Delay variables See Table A4. 5 unique segmentations of the delays
imposed during each heat 5

Hidden layers h ∈ 1, 2 Number of layers between the input and
output layers 2

Hidden nodes o ∈ 1, 2, ...24 Number of nodes in each hidden layer 24

Total number of models: 240

Table A2. Parameters that were not varied in the grid-search. Specifications can be seen in the
Scikit-learn package MLPRegressor that was used to create the models. See Table A3 for the software
used to create the models.

Parameter Value Description

Output variable Electrical Energy The goal of the model is to optimize for the true
EE consumption

No. training data points 9533 Selected from approximately 2 subsequent years
of production

No. test data points 2384 Selected in chronological order with respect to the
training data

Activation function Logistic Function applied between layers in the network

Tolerance 10−8 Minimum change before training stops

Max iterations 5000 Maximum number of iterations before training stops

No. iterations with no change 20 Number of iterations with no change (below
tolerance) before training stops

Validation fraction 0.2 Fraction of training data used as validation set

Optimizer Adam First moment vector = 0.9. Second moment
vector = 0.999 [80].

Learning rate 0.001 Constant learning rate.

Algorithms 2020, 13, 150 21 of 25

Table A3. Software used in the experiments.

Software Purpose

Anaconda Python software bundle [81].

Scikit-learn Python package providing basic machine learning models

Keras Python package providing deep learning modeling; CNN.

Keras-vis Python package providing visualisation tools for Keras.

Pandas Python package for handling tabular data

Matplotlib Python package for plotting and drawing of MAPPER graphs

Ayasdi SDK Python package used to retrieve results from MAPPER provided by Ayasdi, Inc. [82].

Table A4. All variables used in the EAF case. The “Count” column shows the number of variables
representing the parameter. The ANN/FIFA column indicates whether the variables were used as
input variables in their respective models: “x” indicates the variable(s) is part of the model while “-”
indicates the variable is absent. Completely absent variables in both ANN and FIFA were still part of
the qualitative analysis using the KS-statistic to identify groups in the MAPPER graph.

Parameter(s) Description Unit Count ANN/FIFA

Electrical energy The electrical energy consumption logged in the
transformer system kWh 1 -/-

Error The error from the ANN model predicting the electrical
energy consumption kWh 1 -/-

Pre-heater energy The calculated energy provided to the scrap by the scrap
pre-heater kWh 1 -/x

Other energy variables Related to the proprietary energy model used to
determine when the molten steel is ready for tapping. kWh 12 -/-

Total Weight Total input weight of charged material kg 1 x/x

Metal Weight Total input weight of metallic material kg 1 -/x

Slag Weight Total input weight of oxide material kg 1 -/x

Oxide composition Weight percent of 11 oxides and 1 flouride wt% 12 -/x

Metal composition Weight percent of 26 alloying elements wt% 26 -/x

Additive Propane Total input of propane m3 1 x/x

Additive O2 Total input of oxygen gas through lance m3 1 x/x

Additive O2 Burner Total input of oxygen gas through burner m3 1 x/x

Additive N2 Total input of nitrogen gas through lance m3 1 -/x

Rawtypes Total input weight of each raw material category kg 7 x/x

Process Time Defined as start of the heat to the end of the heat min 1 x/x

Tap-To-Tap Time Defined in the proprietary logging system min 1 x/x

Power-on Time Defined as the total time the electrical energy source is
powered on s 1 -/-

Power-off Time Defined as the total time the electrical energy source is
powered off s 1 -/-

First to last power-on Time between first to last power on of the electrical
energy source min 1 -/x

Charging Time Total time spent charging scrap into the furnace min 1 -/x

Melting Remelting Time Total time in melting and remelting stags of the process min 1 -/x

Melting Time Total time in the melting stage of the process min 1 -/x

Refining Time Total time in the refining stage of the process min 1 -/x

Tapping Time Total time spent in the tapping stage min 1 -/x

Algorithms 2020, 13, 150 22 of 25

Table A4. Cont.

Parameter(s) Description Unit Count ANN/FIFA

Preparation Time Total preparation time before the start of the process. min 1 -/x

All Delays Includes all delays imposed on the heat s 1 x/x

Only wait delays Includes only delays classified as “wait” type s 1 x/x

Rare delays? All delays excluding those that are expected to
frequently occur s 1 x/x

Very rare delays† All delays excluding those that are very rare s 1 x/x

Common delays All delays except those defined in ? and † s 1 x/x

Steeltype categories The categorization of steel types produced in the EAF - 8 -/-

Production indices To keep order of the heats relative to the production
supply chain - 6 -/-

References

1. Box, G.E. Robustness in the strategy of scientific model building. In Robustness in Statistics; Elsevier:
Amsterdam, The Netherlands, 1979; pp. 201–236.

2. Nicolau, M.; Levine, A.J.; Carlsson, G. Topology based data analysis identifies a subgroup of breast cancers
with a unique mutational profile and excellent survival. Proc. Natl. Acad. Sci. USA 2011, 108, 7265–7270.

3. Li, L.; Cheng, W.Y.; Glicksberg, B.S.; Gottesman, O.; Tamler, R.; Chen, R.; Bottinger, E.P.; Dudley, J.T. Identification
of type 2 diabetes subgroups through topological analysis of patient similarity. Sci. Transl. Med. 2015, 7, 311ra174.

4. Hinks, T.; Brown, T.; Lau, L.; Rupani, H.; Barber, C.; Elliott, S.; Ward, J.; Ono, J.; Ohta, S.; Izuhara, K.;
et al. Multidimensional endotyping in patients with severe asthma reveals inflammatory heterogeneity
in matrix metalloproteinases and chitinase 3–like protein 1. J. Allergy Clin. Immunol. 2016, 138, 61–75,
doi:10.1016/j.jaci.2015.11.020.

5. Schneider, D.S.; Torres, B.Y.; Oliveira, J.H.M.; Tate, A.T.; Rath, P.; Cumnock, K. Tracking resilience to
infections by mapping disease space. PLoS Biol. 2016, 14, e1002436.

6. Romano, D.; Nicolau, M.; Quintin, E.M.; Mazaika, P.K.; Lightbody, A.A.; Hazlett, H.C.; Piven, J.; Carlsson, G.;
Reiss, A.L. Topological methods reveal high and low functioning neuro-phenotypes within fragile X
syndrome. Hum. Brain Mapp. 2014, 35, 4904–4915.

7. Carlsson, G. The shape of biomedical data. Curr. Opin. Syst. Biol. 2017, 1.
8. Cámara, P.G. Topological methods for genomics: Present and future direction. Curr. Opin. Syst. Biol. 2017,

1, 95–101.
9. Savir, A.; Toth, G.; Duponchel, L. Topological data analysis (TDA) applied to reveal pedogenetic principles

of European topsoil system. Sci. Total Environ. 2017, 586, 1091–1100.
10. Bowman, G.; Huang, X.; Yao, Y.; Sun, J.; Carlsson, G.; Guibas, L.; Pande, V. Structural Insight into RNA

Hairpin Folding Intermediates. JACS Commun. 2008, 130, 9676–9678.
11. Duponchel, L. Exploring hyperspectral imaging data sets with topological data analysis. Anal. Chim. Acta

2018, 1000, 123–131.
12. Duponchel, L. When remote sensing meets topological data analysis. J. Spectr. Imaging 2018, 7, a1.
13. Lee, Y.; arthel, S.D.B.; Dlotko, P.; Moosavi, S.M.; Hess, K.; Smit, B. Quantifying similarity of pore-geometry

in nanoporous materials. Nat. Commun. 2017, 8, 1–8.
14. Lum, P.Y.; Singh, G.; Lehman, A.; Ishkanov, T.; Vejdemo-Johansson, M.; Alagappan, M.; Carlsson, J.;

Carlsson, G. Extracting insights from the shape of complex data using topology. Sci. Rep. 2013, 3,
doi:10.1038/srep01236.

15. Brüel Gabrielsson, R.; Carlsson, G. Exposition and interpretation of the topology of neural networks.
In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 1069–1076.

16. Saul, N.; Arendt, D.L. Machine Learning Explanations with Topological Data Analysis. Available online:
https://sauln.github.io/blog/tda_explanations/ (accessed on 25 May 2020).

17. Carrière, M.; Michel, B. Approximation of Reeb spaces with Mappers and Applications to Stochastic Filters.
arXiv 2019, arXiv:1912.10742.

https://sauln.github.io/blog/tda_explanations/

Algorithms 2020, 13, 150 23 of 25

18. Zhou, Y.; Song, S.; Cheung, N.M. On Classification of Distorted Images with Deep Convolutional Neural
Networks. arXiv 2017, arXiv:1701.01924.

19. Dodge, S.; Karam, L. Understanding How Image Quality Affects Deep Neural Networks. In Proceedings of
the 2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX), Lisbon, Portugal,
6–8 June 2016.

20. Cisse, M.; Adi, Y.; Neverova, N.; Keshet, J. Houdini: Fooling Deep Structured Visual and Speech Recognition
Models with Adversarial Examples. In Proceedings of the Advances in Neural Information Processing
Systems 30, Long Beach, CA, USA, 4–9 December 2017.

21. Yuan, X.; He, P.; Zhu, Q.; Bhat, R.R.; Li, X. Adversarial Examples: Attacks and Defenses for Deep Learning.
IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2805–2824.

22. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. DeepFool: A simple and accurate method to fool deep neural
networks. arXiv 2015, arXiv:1511.04599

23. Chen, S.; Xue, M.; Fan, L.; Hao, S.; Xu, L.; Zhu, H.; Li, B. Automated poisoning attacks and defenses in
malware detection systems: An adversarial machine learning approach. Comput. Secur. 2018, 73, 326––344.

24. Wilson, A.G.; Kim, B.; Herlands, W. (Eds.) Interpretable Machine Learning for Complex Systems, NIPS
2016 Workshop. arXiv 2016, arXiv:1611.09139.

25. Tosi, A.; Vellido, A.; Alvarez, M. (Eds.) Transparent and Interpretable Machine Learning in Safety Critical
Environments. 2017. Available online: https://sites.google.com/view/timl-nips2017 (accessed on 25 May 2020).

26. Wilson, A.G.; Yosinski, J.; Simard, P.; Caruana, R.; Herlands, W. (Eds.) Interpretable ML Symposium. arXiv
2017, arXiv:1711.09889.

27. Varshney, K.; Weller, A.; Kim, B.; Malioutov, D. (Eds.) Human Interpretability in Machine Learning, ICML
2017 Workshop. arXiv 2017, arXiv:1708.02666.

28. Gunning, D. Explainable Artificial Intelligence (XAI). DARPA Broad Agency Announcement
DARPA-BAA-16-53. 2016. Available online: https://www.aaai.org/ojs/index.php/aimagazine/article/
view/2850 (accessed on 25 May 2020).

29. Hara, S.; Maehara, T. Finding Alternate Features in Lasso. arXiv 2016, arXiv:1611.05940.
30. Wisdom, S.; Powers, T.; Pitton, J.; Atlas, L. Interpretable Recurrent Neural Networks Using Sequential Sparse

Recovery. arXiv 2016, arXiv:1611.07252.
31. Hayete, B.; Valko, M.; Greenfield, A.; Yan, R. MDL-motivated compression of GLM ensembles increases

interpretability and retains predictive power. arXiv 2016, arXiv:1611.06800.
32. Tansey, W.; Thomason, J.; Scott, J.G. Interpretable Low-Dimensional Regression via Data-Adaptive

Smoothing. arXiv 2017, arXiv:1708.01947.
33. Smilkov, D.; Thorat, N.; Nicholson, C.; Reif, E.; Viégas, F.B.; Wattenberg, M. Embedding Projector: Interactive

Visualization and Interpretation of Embeddings. arXiv 2016, arXiv:1611.05469.
34. Selvaraju, R.R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Why did you say

that? arXiv 2016, arXiv:1611.07450.
35. Thiagarajan, J.J.; Kailkhura, B.; Sattigeri, P.; Ramamurthy, K.N. TreeView: Peeking into Deep Neural

Networks Via Feature-Space Partitioning. arXiv 2016, arXiv:1611.07429.
36. Gallego-Ortiz, C.; Martel, A.L. Interpreting extracted rules from ensemble of trees: Application to

computer-aided diagnosis of breast MRI. arXiv 2016, arXiv:1606.08288.
37. Krause, J.; Perer, A.; Bertini, E. Using Visual Analytics to Interpret Predictive Machine Learning Models.

arXiv 2016, arXiv:1606.05685.
38. Zrihem, N.B.; Zahavy, T.; Mannor, S. Visualizing Dynamics: From t-SNE to SEMI-MDPs. arXiv 2016,

arXiv:1606.07112
39. Handler, A.; Blodgett, S.L.; O’Connor, B. Visualizing textual models with in-text and word-as-pixel

highlighting. arXiv 2016, arXiv:1606.06352.
40. Krakovna, V.; Doshi-Velez, F. Increasing the Interpretability of Recurrent Neural Networks Using Hidden

Markov Models. arXiv 2016, arXiv:1611.05934.
41. Reing, K.; Kale, D.C.; Steeg, G.V.; Galstyan, A. Toward Interpretable Topic Discovery via Anchored

Correlation Explanation. arXiv 2016, arXiv:1606.07043.
42. Samek, W.; Montavon, G.; Binder, A.; Lapuschkin, S.; Müller, K.R. Interpreting the Predictions of Complex

ML Models by Layer-wise Relevance Propagation. arXiv 2016, arXiv:1611.08191.
43. Hechtlinger, Y. Interpretation of Prediction Models Using the Input Gradient. arXiv 2016, arXiv:1611.07634.

https://sites.google.com/view/timl-nips2017
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2850
https://www.aaai.org/ojs/index.php/aimagazine/article/view/2850

Algorithms 2020, 13, 150 24 of 25

44. Lundberg, S.; Lee, S.I. An unexpected unity among methods for interpreting model predictions. arXiv 2016,
arXiv:1611.07478.

45. Vidovic, M.M.C.; Görnitz, N.; Müller, K.R.; Kloft, M. Feature Importance Measure for Non-linear Learning
Algorithms. arXiv 2016, arXiv:1611.07567.

46. Whitmore, L.S.; George, A.; Hudson, C.M. Mapping chemical performance on molecular structures using
locally interpretable explanations. arXiv 2016, arXiv:1611.07443.

47. Ribeiro, M.T.; Singh, S.; Guestrin, C. Nothing Else Matters: Model-Agnostic Explanations By Identifying
Prediction Invariance. arXiv 2016, arXiv:1611.05817.

48. Singh, S.; Ribeiro, M.T.; Guestrin, C. Programs as Black-Box Explanations. arXiv 2016, arXiv:1611.07579.
49. Phillips, R.L.; Chang, K.H.; Friedler, S.A. Interpretable Active Learning. arXiv 2017, arXiv:1708.00049.
50. Ribeiro, M.T.; Singh, S.; Guestrin, C. Model-Agnostic Interpretability of Machine Learning. arXiv 2016,

arXiv:1606.05386.
51. Ribeiro, M.T.; Singh, S.; Guestrin, C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier.

arXiv 2016, arXiv:1602.04938.
52. Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Advances in

Neural Information Processing Systems 30; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017; pp. 4765–4774.

53. Carlsson, L.S.; Samuelsson, P.B.; Jönsson, P.G. Interpretable Machine Learning—Tools to Interpret the
Predictions of a Machine Learning Model Predicting the Electrical Energy Consumption of an Electric
Arc Furnace. Steel Research International. 2000053. Available online: http://xxx.lanl.gov/abs/https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/srin.202000053 (accessed on 25 May 2020).

54. Offroy, M.; Duponchel, L. Topological data analysis: A promosing big data exploration tool in biology,
analytical chemistry and physical chemistry. Anal. Chim. Acta 2016, 910, 1–11.

55. Singh, G.; Mémoli, F.; Carlsson, G. Topological Methods for the Analysis of High Dimensional Data
Sets and 3D Object Recognition. Available online: https://research.math.osu.edu/tgda/mapperPBG.pdf
(accessed on 25 May 2020).

56. Carlsson, G. Topology and data. Am. Math. Soc. 2009, 46, 255–308.
57. Müllner, D.; Babu, A. Python Mapper: An Open-Source Toolchain for Data Exploration, Analysis and

Visualization. Available online: http://danifold.net/mapper (accessed on 10 September 2018).
58. Saul, N.; van Veen, H.J. MLWave/Kepler-Mapper: 186f (Version 1.0.1); Zenodo: Geneva, Switzerland, 2017;

doi:10.5281/zenodo.1054444.
59. Pearson, P.; Muellner, D.; Singh, G. TDAmapper: Analyze High-Dimensional Data Using Discrete Morse Theory;

CRAN: Vienna, Austria, 2015.
60. Edwards, A.W.; Cavalli-Sforza, L.L. A method for cluster analysis. Biometrics 1965, 21, 362–375.
61. Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. Wiley Interdiscip. Rev. Data

Min. Knowl. Discov. 2012, 2, 86–97.
62. Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks.

J. Stat. Mech. Theory Exp. 2008, 2008, P10008.
63. Sexton, H.; Kloke, J. Systems and Methods for Capture of Relationships Within Information. U.S. Patent

10,042,959, 7 August 2018.
64. Gelman, A.; Tuerlinckx, F. Type S error rates for classical and Bayesian single and multiple comparison

procedures. Comput. Stat. 2000, 15, 373–390.
65. Dodge, Y., The Concise Encyclopedia of Statistics; Springer: New York, NY, USA., 2009; pp. 283–287,

ISBN 978-0-387-32833-1.
66. Carlsson, L.S.; Samuelsson, P.B.; Jönsson, P.G. Using Statistical Modeling to Predict the Electrical Energy

Consumption of an Electric Arc Furnace Producing Stainless Steel. Metals 2020, 10, 36, doi:10.3390/met10010036.
67. Pratt, J.; Gibbons, J. Concepts of Nonparametric Theory; Springer: New York, NY, USA, 1981; pp. 318–344,

ISBN 978-1-4612-5931-2.
68. LeCun, Y.; Cortes, C.; Burges, C. The MNIST Dataset of Handwritten Digits(Images). NYU: New York, NY,

USA, 1999.
69. Mu, N.; Gilmer, J. MNIST-C: A robustness benchmark for computer vision. arXiv 2019, arXiv:1906.02337.
70. World Steel Association. Steel Statistical Yearbook 2018. Available online: https://www.worldsteel.org/

steel-by-topic/statistics/steel-statistical-yearbook.html (accessed on 29 April 2020).

http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/srin.202000053
http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/srin.202000053
https://research.math.osu.edu/tgda/mapperPBG.pdf
http://danifold.net/mapper
https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html
https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html

Algorithms 2020, 13, 150 25 of 25

71. Kirschen, M.; Badr, K.P.H. Influence of Direct Reduced Iron on the Energy Balance of the Electric Arc Furnace
in Steel Industry. Energy 2011, 36, 6146–6155.

72. Sandberg, E. Energy and Scrap Optimisation of Electric Arc Furnaces by Statistical Analysis of Process Data.
Ph.D. Thesis, Luleå University of Technology, Luleå, Sweden, 2005.

73. Pfeifer, H.; Kirschen, M. Thermodynamic analysis of EAF electrical energy demand. In Proceedings of the
European Electric Steelmaking Conference, Venice, Italy, 26–29 May 2002; Volume 7.

74. Steinparzer, T.; Haider, M.Z.F.E.G.M.H.A. Electric Arc Furnace Off-Gas Heat Recovery and Experience with
a Testing Plant. Steel Res. Int. 2014, 85, 519–526.

75. Keplinger, T.; Haider, M.S.T.T.P.P.A.H.M. Modeling, Simulation, and Validation with Measurements of a
Heat Recovery Hot Gas Cooling Line for Electric Arc Furnaces. Steel Res. Int. 2018, 89, 1800009.

76. Carlsson, L.S.; Samuelsson, P.B.; Jönsson, P.G. Predicting the Electrical Energy Consumption of Electric Arc
Furnaces Using Statistical Modeling. Metals 2019, 9, 59, doi:10.3390/met9090959.

77. Zeiler, M.D. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701.
78. Vejdemo-Johansson, M.; Carlsson, G.; Carlsson, L. Supplementary Material for Fibres of Failure; Figshare:

Boston, MA, USA, 2018; doi:10.6084/m9.figshare.6476426.v2.
79. Simonyan, K.; Vedaldi, A.; Zisserman, A. Deep inside convolutional networks: Visualising image

classification models and saliency maps. arXiv 2013, arXiv:1312.6034.
80. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
81. Anaconda Distribution for Python. Available online: https://www.anaconda.com/products/individual

(accessed on 25 May 2020).
82. Ayasdi Python SDK Documentation Suite. Available online: https://platform.ayasdi.com/sdkdocs/

(accessed on 10 September 2018).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.anaconda.com/products/individual
https://platform.ayasdi.com/sdkdocs/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Topological Data Analysis (TDA)
	Mapper
	FiFa: The General Case
	Mapper on Prediction Failure
	Extracting Subgroups
	Quantitative: Model Correction Layer
	Qualitative: Model Inspection

	Statistical Modeling
	Performance Metrics
	Kolmogorov–Smirnov (KS) Statistic

	MNIST Data with Added Noise
	Electric Arc Furnace
	Selected Models for Analysis
	CNN Model Predicting Handwritten Digits
	ANN Model Predicting the EE Consumption of an EAF

	FiFa on the MNIST Model
	Quantitative
	Qualitative

	FiFa on the EE Consumption Model
	Quantitative
	Qualitative

	Results and Discussion
	MNIST Model
	Quantitative
	Qualitative

	EE Consumption Model
	Quantitative
	Qualitative

	Conclusions
	
	References

