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Abstract: One of the possible approaches to solving difficult optimization problems is applying
population-based metaheuristics. Among such metaheuristics, there is a special class where searching
for the best solution is based on the collective behavior of decentralized, self-organized agents. This
study proposes an approach in which a swarm of agents tries to improve solutions from the population
of solutions. The process is carried out in parallel threads. The proposed algorithm—based on
the mushroom-picking metaphor—was implemented using Scala in an Apache Spark environment.
An extended computational experiment shows how introducing a combination of simple optimization
agents and increasing the number of threads may improve the results obtained by the model in the
case of TSP and JSSP problems.

Keywords: optimization agents; parallel computations; traveling salesman problem; job-shop
scheduling; Scala; Apache Spark

1. Introduction

Pioneering work in the area of the population-based metaheuristics included genetic algorithms
(GA) [1], evolutionary computations—EC [2], particle swarm optimization (PSO) [3] and its two
offspring—ant colony optimization [4] and bee colony algorithms (BCA) [5]. Since the end of the last
century, tremendous research effort has brought a variety of approaches and population-based
metaheuristics. In 2013 Boussai et al. [6] proposed the classification of the population-based
metaheuristics and grouped them into two broad classes. The first is evolutionary computation
with subclasses, including genetic algorithms, evolution strategy, evolutionary programming, genetic
programming, estimation of distribution algorithms, differential evolution, coevolutionary algorithms,
cultural algorithms and scatter search and path relinking. The second class is swarm intelligence
with subclasses, including ant colony optimization, particle swarm optimization, bacterial foraging
optimization, bee colony optimization, artificial immune systems and biogeography-based optimization.
Over the last 20 years, more than a few thousand new population-based approaches and many new
subclasses have been proposed. A recent survey of the population-based techniques can be found
in [7].

Judging from the number of publications appearing during the last two decades, swarm intelligence
is one of the fastest-growing areas of research in the population based methods. According to [8],
in the period 2001–2017 more than 3900 swarm intelligence journal publications were indexed by
Web of Science. The concept introduced in 1993 by Beni and Wang [9] is broadly understood as the
collective behavior of a decentralized, self-organized population of individuals. The structure and
behavior of such a group is usually inspired by a metaphor taken from natural or artificial systems.
Swarm intelligence has proven an effective tool for solving variety of difficult optimization and control

Algorithms 2020, 13, 142; doi:10.3390/a13060142 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-6104-1381
https://orcid.org/0000-0003-4818-4841
http://dx.doi.org/10.3390/a13060142
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/6/142?type=check_update&version=3


Algorithms 2020, 13, 142 2 of 18

problems. The importance of the tool in different areas of application has been highlighted in several
recent surveys and reviews as, for example [10–14].

Researchers tackling difficult optimization problems often focus their efforts on searching for
methods able to deal with two famous combinatorial optimization problems—traveling salesman (TSP)
and job-shop scheduling (JSSP). Both have attracted numerous teams and labs, resulting in publications
and implementations of a huge number of algorithms and approaches. Both problems are important
from the point of view of the real life applications, and both belong to the NP hard class. In addition,
they are in a certain sense classic, even if they still pose a challenge to researchers in the field of the OR
and AI.

Performance of algorithms for solving instances of the TSP and JSSP is, usually, evaluated from
the point of view of two criteria—accuracy and computation time. In the quest for approaches
providing optimal or near optimal solutions to TSP and JSSP in a reasonable computation time,
swarm intelligence and other population-based methods play a leading role. Some well performing
recent approaches to solving the TSP include a hybrid method based on particle swarm optimization,
ant colony optimization and 3-opt algorithms for traveling salesman problem [15,16], discrete bat
algorithm for symmetric and asymmetric TSP [17] and a hybrid ga-PSO algorithm for solving the
TSP [18]. A novel design of differential evolution for solving discrete TSP named NDDA was described
in [19]. The idea is to enhance DE algorithm with several components including the enhanced mapping
method transforming the randomly generated initial population with continuous variables into a
discrete one. Next, an improved k-means clustering is adapted as a repairing method for enhancing
the discrete solutions in the initial phase. Then, a copy of the modified discrete population is again
transformed into a continuous format using the backward mapping method, thus enabling the DE to
perform mutation and crossover operations in the continuous landscape. Additionally, an ensemble of
DE continuous mutation operators are proposed for increasing the exploration capability of DE.

An effective spider monkey optimization algorithm for TSP named DSMO was proposed in [20].
In DSMO, every spider monkey represents a TSP solution where swap sequence (SS) and swap operator
(SO) based operations are employed, which enables interaction among monkeys in obtaining the
optimal or close to the optimal TSP solution. Another swarm intelligence approach called a discrete
symbiotic organisms search (DSOS) algorithm for finding a near optimal solution for the TSP was
proposed in [21]. A very good performance in solving TSP instances achieves the approach proposed
in [22]. The authors propose a genetic algorithm with an effective ordered distance vector (ODV)
crossover operator, based on the ODV matrix used at the population seeding stage.

With the advance of computational technologies, a number of approaches for solving TSP using
parallel computations, have been proposed. One of the first was parallel GA on MapReduce framework
using Hadoop cluster [23]. Another solution using the Hadoop MapReduce for parallel genetic
algorithm for TSP can be found in [24]. Distributed ant colony optimization algorithm for solving the
TSP was proposed in [25]. Parallel version of the population learning metaheuristic applied, among
other, to TSP can be found in [26].

Research efforts on TSP have also produced numerous heuristic and local search algorithms that
offer good performance and may serve as the inspiration in constructing hybrid swarm intelligence
solutions. One of them is the constructive, insertion and improvement (CII) algorithm proposed in [27].
CII has three phases. The constructive heuristics of Phase 1 produces a partial tour that includes solely
the points of the girding polygon. The insertion heuristic of Phase 2 transforms the partial tour of
Phase 1 into a full feasible tour using the cheapest insertion strategy. The tour improvement heuristic
of Phase 3 improves iteratively the tour of Phase 2 based on the local optimality conditions using two
additional heuristic algorithms.

Population based algorithms including swarm intelligence and evolutionary systems have proven
successful in tackling JSSP—another hard optimization problem considered in this study. A state
of the art review on application of the AI techniques for solving the JSSP as of 2015 can be found
in [28]. Recently, several interesting swarm intelligence solutions for JSSP were published. In [29] the
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local search mechanism of the PSA and large-span search principle of the cuckoo search algorithm
are combined into an improved cuckoo search algorithm (ICSA). A hybrid algorithm for solving JSSP
integrating PSO and neural network was proposed in [30]. An improved whale optimization algorithm
(IWOA) based on quantum computing for solving JSSP instances was proposed by [31]. An improved
GA for JSSP [32] offers good performance. Their niche adaptive genetic algorithm (NAGA) involves
several rules to increase population diversity and adjust crossover rate and mutation rate according
to the performance of the genetic operators. Niche is seen as the environment permitting species
with similar features to compete for survival in the elimination process. According to the authors,
niche technique prevents premature convergence and improves population diversity. A discrete wolf
pack algorithm (DWPA) for job shop scheduling problem was proposed in [33]. WPA is inspired by
the hunting behaviors of wolves. DWPA involves 3 phases: initialization, scouting and summoning.
During initialization heuristic rules are used to generate a good quality initial population. The scouting
phase is devoted to the exploration while summoning takes care of the intensification. In [34] a novel
biomimicry hybrid bacterial foraging optimization algorithm (HBFOA) was developed. HBFOA is
inspired by the behavior of E. coli bacteria in its search for food. The algorithm is hybridized with
simulated annealing. Additionally, the algorithm was enhanced by a local search method. Evaluation
of the performance of several PSO based algorithms for solving the JSSP can be found in [35].

As in the case of other computationally difficult optimization problems, an emerging technology
supported development of parallel and distributed algorithms for solving JSSP instances. Scheduling
algorithm, called MapReduce coral reef (MRCR) for JSSP instances was proposed in [36]. The basic idea
of the proposed algorithm is to apply the MapReduce platform and the Spark Apache environment to
the coral reef optimization algorithm to speed up its response time. More recently, a large scale flexible
JSSP optimization by a distributed evolutionary algorithm was proposed in [37]. The algorithm belongs
to the distributed cooperative evolutionary algorithms class and is implemented on Apache Spark.

In this study, we propose to tackle TSP and JSSP instances with a dedicated parallel metaheuristic
algorithm implemented in Scala and executed using the Apache Spark environment. The approach
was motivated by the following facts:

• Performance of the so far developed algorithms and methods for solving TSP and JSSP still leaves a
room for improvements in terms of both minimization of computation error and computation time;

• Clever use of the available technologies for parallel and distributed combinatorial optimization is
an open and not yet fully explored area of research;

• The idea of employing a set of simple asynchronous agents exploring the solution space and
trying to improve currently encountered solutions has already proven successful in numerous
applications of the authors (see for example [26,38,39]).

The proposed algorithm for solving instances of the TSP and JSSP can be classified as belonging
to a wide swarm intelligence algorithms class. It is based on the mushroom-picking metaphor where a
number of mushroom pickers with different preferences as to the collected mushroom kinds explore
the woods in parallel pursuing individual or random, or mixed strategies and trying to improve the
current crop. Pickers exchange information indirectly by observing traces left by others and modifying
their strategies accordingly. In the proposed mushroom-picking algorithm (MPA) simple agents (alias
mushroom pickers) of different skills and abilities are used.

The rest of the article is organized as follows. Section 2 gives a detailed description of the proposed
algorithm and its implementation. It also contains formulation of both considered combinatorial
optimization problems. Section 3 reports on validation experiments carried out. Statistical analysis
tools were used to select the best combination of agents solving each problem. The performance of the
MPA is next compared with performance of some state-of-the art algorithms for solving TSP and JSSP
instances. The final section contains discussion of results and suggestions for future research.
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2. Materials and Methods

2.1. MPA Algorithm

The proposed mushroom-picking algorithm is a metaheuristic constructed from the following
components:

• Population of solutions;
• Set of different solution-improving agents;
• Common memory from where the current solutions can be removed and stored by solution

improving agents.

The initial population of feasible solutions is generated randomly and stored in the common
memory. MPA works in cycles. A cycle involves randomly partitioning the solutions from the common
memory into several subpopulations of equal size. Each subpopulation is served by a group of the
solution-improving agents. Groups are replicated to take care of each subpopulation. Each agent
within a group reads the required number of solutions from the subpopulation and tries to improve
them. If successful, a worse solution in the population is replaced by the improved one. The required
number of solutions depends on the construction of the particular agent. A single argument agent
requires a single solution. Double argument agents require two solutions, etc. All groups of agents
work in parallel threads. A sequence of improvement attempts within a group is random. After the
time span set for the cycle has elapsed the cycle is closed and all current solutions from subpopulations
are returned to the common memory. Solutions in the common memory are then shuffled and the
next cycle begins. The final stopping criterion is defined as no improvement of the best result (fitness)
after the given number of cycles were run. Defining the stopping criterion aims at finding a balance
between the quality of the final solution and the overall computation time.

The parallelization of the solutions improvement process is carried out using the Apache Spark,
a general-purpose framework for parallel computing [40].

The general scheme of the MPA is shown in pseudo-code as Algorithm 1.

Algorithm 1. MPA

n = the number of parallel threads
solutions = a set of generated solutions
while !stoppingCriterion do {

populations = solutions randomly split into n subsets of equal size
populationsRDD = populations parallelized in Apache Spark (n threads)
populationsRDD = populationsRDD.map( p=>p.applyOptimizations)
solutions = populationsRDD.collect
bestSolution = solution from solutions with the best fitness

}
return bestSolution

ApplyOptimizations attempts to improve current results in each subpopulation of solutions by
running the solution-improving agents. The process is carried out for the time span of a given length,
called searchTime set by the user. During this period, applyOptimizations draws at random an optimizing
agent from the available set of agents and applies it to a random solution from the subpopulation.
The number of solutions drawn from the respective subpopulation and temporarily allocated to an
agent must be equal to the number of arguments that the agent requires to be able to act. If the agent
finds a solution that is different and better than originally obtained as its arguments, applyOptimizations
replaces some worse solution with the improved one.

A single solution in the MPA is represented by the ordered list of numbers. The length of the list
depends on the problem at hand, but for instances of a particular problem, the length of such a list
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is constant. For example, for a TSP problem with 6 nodes the solution could be represented by the
following: List (2, 1, 4, 3, 5).

The following solution-improving agents were defined and implemented:

• randomMove—moves a random element from the list to another, random position,
• bestMove—takes a random element from the list and moves it to a position maximizing fitness gain;
• randomReverse—takes a random slice of the list and reverses the order of its elements;
• bestReverse—takes a random element from the list and reverses the order of elements on all of

possible consecutive sublists of different length starting from that element. Solution maximizing
fitness gain is finally selected;

• crossover—requires two solutions. It takes a slice from one solution and adds to it the missing
elements exactly in an order as in the second solution.

Algorithm 2 shows how the crossover operation is implemented as Scala function cross. We also
show how the list representing the example solution changes as the result of crossing it with
another solution.

Algorithm 2. Function cross and Example of Its Usage

def cross( l1: List[ Int], l2: List[ Int], from: Int, len: Int) = {
val slice = l1.slice( from, from+len)
val rest = l2 diff slice
rest.slice( 0, from) ::: slice ::: rest.slice( from, rest.size)

}
solution 1: 0,5,9,7,3,1,4,6,8,2
solution 2: 0,1,4,2,8,6,9,5,3,7
slice of solution 1: 1,4,6
result: 0,2,8,9,5,1,4,6,3,7

The MPA outlined above may be used for solving various combinatorial optimization problems
in which a solution can be represented as the list of numbers. Among such problems there are the
traveling salesman problem (TSP) and job shop scheduling problem (JSSP).

2.2. Traveling Salesman Problem

The traveling salesman problem (TSP) is a well-known NP-hard optimization problem. We consider
the Euclidean planar traveling salesman problem, a particular case of TSP. For given n cities in the
plane and Euclidean distances between these cities, we consider a tour as a closed path visiting each
city exactly once. The objective is to find the shortest tour. A solution is represented as the list of
indexes of the cities on the path–in the order of visiting them.

2.3. Job Shop Scheduling Problem

Job shop scheduling (JSSP) is another well-known NP-hard optimization problem. There is a set
of jobs (J1, . . . , Jn) and a set of machines (m1, . . . , mm). Each job j consists of a list of operations that
have to be processed in a given order. Each operation within a job must be processed on a specific
machine, only after all preceding operations of this job were completed.

The makespan is the total length of a schedule, i.e., the total time needed to process all operations
of all jobs. The objective is to find a schedule that minimizes the makespan.

A solution is represented as sequence of jobs of the length n × m. There are m occurrences of each
job in such sequence. When examining a sequence from the left to the right, the i–th occurrence of the
job j refers to the i–th operation of this job.
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2.4. Implementation of the MPA for TSP and JSSP

Although actions of agents are identical for both problems, the implementation is different.
The main difference is the manner fitness is calculated. In the TSP, when moving a node to a different
position on the list of nodes representing a solution or when reversing the order of nodes on a subpath
of the list, the length of the resulting path may be easily adjusted and calculated. Similar, simple,
calculations for JSSP do not work. After each change of positions on the list representing a solution,
a new value of fitness has to be calculated from the whole list.

Algorithm 3 presents how the function reversing a subpath was implemented within the TSP
solution. The algorithm contains part of the definition of the class for TSP solution with the method
reverse. The agent randomReverse calls it for randomly chosen from and len. Algorithm 4 presents
similar function for JSSP.

Algorithm 3. Function reverse (in Scala) in class Solution for TSP

class Solution( val task: Task) {
var path: List[ Int] = null
var fitness: Double = Double.MaxValue
def prevI( i: Int) = (i+path.size-1)% path.size //previous index
def reverse( from: Int, len: Int) = {
//from+len<size

val change = task.distance( path( prevI( from)), path( from+len-1)) +

task.distance( path( from), path( from+len))–
task.distance( path( prevI( from)), path( from))–
task.distance( path( prevI( from+len)), path( from+len))

if( change < 0) { //the path is changed only if it improves the fitness
var slice = path.slice( from, from + len)
slice = slice.reverse
path = path.slice( 0, from) ::: slice ::: path.slice( from+len, path.size)
fitness = fitness + change

}
this

}
}

Algorithm 4. Reverse (in Scala) for JSSP

def reverse( from: Int, len: Int) = {
val slice = jobs.slice( from, from + len).reverse
jobs = jobs.slice( 0, from) ::: slice ::: jobs.slice( from+len, jobs.size)
countFitness
this

}

The source files of the implementation of MPA for TSP is available at [41].

3. Results

3.1. Computational Experiments Plan

To validate the proposed approach, we carried out several computational experiments.
Experiments were based on publicly available benchmark datasets for TSP [42] and JSSP [43], containing
instances with known optimal solutions (minimum length of path in the case of TSP or minimum
makespan for JSSP). Experiments, besides evaluating the performance of the MPA, aimed at finding
the best composition of the self-organized agents, each representing a simple, solution-improving,
procedure. Performance of agents was evaluated in terms of the two measures—mean error calculated
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as the deviation from the optimum or best known solution and computation time. Another analysis
covered mean computation time performance versus the number of threads used. This experiment
aimed at identifying how increasing the number of threads executed in parallel affects the overall
computation time. Finally, we have compared the performance of our approach with the performance
of several state-of-the-art algorithms known from the literature.

In the experiments the following settings were used: number of repetitions for calculation of
mean values—30 or more, the number of solutions processed in a single thread—2 for TSP and 4 for
JSSP. The total number of solutions equals number of threads × number of solutions in a single thread.
The number of threads is reported for each experiment.

The initial solutions were generated at random for JSSP, as the number of operations is equal for
each job, expression (1) may be used (written in Scala).

Random.shuffle( List.range( 0, machinesNo).flatMap( m => List.range( 0, jobsNo))) (1)

In the case of TSP, the next node on the path was chosen as the nearest of the possible nodes
with the probability 0.8, second nearest with the probability 0.1, random node of 5 nearest with
probability 0.1.

The agent crossover is always called twice less often than any other agent.
All experiments were run on Spark cluster with 8 nodes with 32 VCPU at the Academic Computer

Center in Gdansk.

3.2. MPA Performance Analysis

Performance analysis of the proposed mushroom-picking algorithm applied to solving the TSP
problem, was based on 23 benchmark instances. For each dataset experiments of four different kinds
were run with different sets of agents involved in the process of improving solutions. In each case the
crossover was used as two-argument agent and one-argument agents were chosen as follows:

• RR—randomMove and randomReverse;
• BR—bestMove and randomReverse;
• BB—bestMove and bestReverse;
• RB—randomMove and bestReverse.

In the experiment 50 threads were used, searchTime (time period used in applyOptimizations) was
set to 1 second, stopping criterion was defined as no improvement in the best fitness for 2 rounds.

Mean errors and the respective mean computation times obtained in the experiment are shown in
Table 1. In most cases results produced using pair BR are better than other results. Table 2 presents
standard deviations of errors and times obtained in the same experiment.

To determine whether there are any significant differences among mean errors produced by
different combinations of agents we used the Friedman ANOVA by ranks test. The null hypothesis
states that there are no such differences. With Friedman statistics equal to 21.85 and p-value = 0.00007
the null hypothesis should be rejected at the significance level of 0.05. In terms of the computation
error BR outperforms the remaining sets of agents. For a similar analysis involving computation times
under the null hypothesis that there are no significant differences among mean computation times the
Friedman statistics is equal to 46.49 and p-value < 0.00000. Hence, also in the case of mean computation
times the null hypothesis should be rejected. In terms of the computation time needed the RR is a
looser. However, there are no statistically significant differences between computation times required
by the remaining sets of agents.
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Table 1. Mean errors (%) and computations times (s) obtained for the analyzed traveling salesman
(TSP) datasets solved with different sets of agents.

Dataset
Error (%) Time (s)

RR BR BB RB RR BR BB RB

bier127 0.31% 0.23% 0.53% 0.42% 17.5 8.1 8.1 7.4
ch130 0.27% 0.24% 0.47% 0.60% 14.6 6.2 6.9 7.0
ch150 0.48% 0.33% 0.53% 0.62% 13.8 7.1 7.3 7.3
d198 0.79% 0.32% 0.69% 0.85% 48.6 29.7 14.3 15.7
eil101 0.06% 0.11% 0.32% 0.37% 6.5 5.2 5.8 6.4
eil51 0.05% 0.02% 0.05% 0.12% 3.2 3.2 3.3 3.4
eil76 0.04% 0.07% 0.23% 0.19% 4.7 3.6 3.9 3.9

kroA100 0.00% 0.00% 0.02% 0.00% 8.0 3.4 4.2 4.3
kroA150 0.20% 0.21% 0.79% 0.75% 17.8 9.1 9.5 10.0
kroB100 0.44% 0.45% 0.41% 0.40% 9.5 4.4 4.5 5.3
kroC100 0.00% 0.00% 0.00% 0.01% 7.5 3.9 4.7 5.2
kroD100 0.01% 0.01% 0.06% 0.06% 7.6 4.4 5.2 5.9
kroE100 0.11% 0.09% 0.09% 0.11% 8.9 4.6 5.3 5.3
lin105 0.18% 0.17% 0.17% 0.17% 7.9 3.7 3.9 4.1
pr107 0.02% 0.01% 0.01% 0.01% 11.8 4.9 5.3 5.4
pr124 0.13% 0.04% 0.06% 0.06% 22.9 10.5 5.8 5.9
pr144 0.22% 0.02% 0.02% 0.03% 16.6 8.1 6.4 6.8
rat99 0.01% 0.01% 0.07% 0.06% 6.0 4.2 4.9 5.8
rd100 0.00% 0.00% 0.00% 0.02% 7.7 3.9 4.6 5.5
st70 2.74% 2.76% 2.76% 2.82% 4.6 4.0 3.8 3.6

Tnm100 0.00% 0.00% 0.00% 0.02% 6.7 3.9 5.0 5.2
tsp225 2.05% 1.35% 2.01% 2.28% 24.0 16.6 18.7 21.8
u159 0.07% 0.00% 0.20% 0.33% 14.0 6.2 7.7 7.5

Average 0.36% 0.28% 0.41% 0.44% 12.6 6.9 6.5 6.9

Table 2. Standard deviations of errors and times obtained for the analyzed TSP datasets solved with
different sets of agents.

Dataset
SD of Errors (%) SD of Times (s)

RR BR BB RB RR BR BB RB

bier127 0.29% 0.14% 0.31% 0.28% 3.9 2.2 2.6 2.3
ch130 0.38% 0.29% 0.44% 0.37% 4.5 1.6 3.0 2.1
ch150 0.32% 0.18% 0.32% 0.26% 4.1 1.6 1.6 1.9
d198 0.42% 0.19% 0.22% 0.20% 22.4 11.6 3.6 5.9
eil101 0.10% 0.17% 0.35% 0.35% 1.7 1.7 2.0 1.7
eil51 0.09% 0.07% 0.10% 0.12% 0.6 0.7 0.9 0.9
eil76 0.09% 0.14% 0.16% 0.19% 1.2 1.1 1.2 1.4

kroA100 0.02% 0.02% 0.03% 0.02% 1.6 1.0 1.2 1.1
kroA150 0.26% 0.23% 0.40% 0.34% 4.0 2.7 3.4 3.6
kroB100 0.14% 0.16% 0.15% 0.14% 2.1 1.3 1.1 1.9
kroC100 0.00% 0.00% 0.02% 0.03% 1.3 1.3 1.2 1.5
kroD100 0.04% 0.06% 0.09% 0.10% 1.7 1.1 1.7 1.9
kroE100 0.11% 0.08% 0.09% 0.09% 2.3 1.4 2.0 1.9
lin105 0.01% 0.00% 0.00% 0.00% 1.1 0.9 0.8 0.9
pr107 0.07% 0.04% 0.04% 0.03% 5.1 1.3 1.6 1.4
pr124 0.28% 0.02% 0.07% 0.07% 6.8 4.4 2.0 1.8
pr144 0.30% 0.04% 0.03% 0.04% 4.0 1.8 1.8 1.8
rat99 0.04% 0.03% 0.06% 0.07% 1.3 1.1 1.4 1.7
rd100 0.00% 0.00% 0.01% 0.07% 1.5 0.8 1.3 1.7
st70 0.00% 0.11% 0.11% 0.19% 1.0 1.3 1.5 1.1

Tnm100 0.01% 0.00% 0.00% 0.02% 1.5 1.1 1.5 2.1
tsp225 0.95% 0.52% 0.59% 0.56% 7.5 4.9 5.9 19.2
u159 0.18% 0.00% 0.30% 0.37% 1.9 1.2 2.1 2.2

Average 0.18% 0.11% 0.17% 0.17% 3.6 2.1 2.0 2.7
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To identify significant differences among standard deviations produced by different combinations
of agents we again used the Friedman ANOVA by ranks test. The null hypothesis state that there are
no such differences. With Friedman statistics equal to 17.16 and p-value = 0.00065 the null hypothesis
should be rejected at the significance level of 0.05. Similar conclusion can be drawn with respect to
standard deviations of computation times.

Performance analysis of the proposed approach applied to solving the JSSP problem was based
on 30 benchmark instances. Mean errors and the respective mean computation times obtained in the
experiment for pairs RR and BR are shown in Table 3, standard deviations of errors and times are
shown in Table 4. There were 200 threads used in the computations, searchTime (time span used in
applyOptimizations) was equal to 0.2 s, the stopping criterion was defined as no improvement in the
best fitness for 2 rounds. In all considered cases using pair RR have given the same or better result
than BR. The BR combination of agents outperforms the remaining ones also in terms of the standard
deviation minimization.

Table 3. Mean errors (%) and computations times (s) obtained for the analyzed job-shop scheduling
(JSSP) datasets solved with different sets of agents.

Dataset
Error (%) Time (s)

RR BR RR BR

la01 0.00% 0.00% 0.4 0.6
la02 0.00% 0.31% 1.3 2.4
la03 0.84% 1.89% 1.7 1.8
la04 0.24% 0.75% 1.2 2.2
la05 0.00% 0.00% 0.4 0.4
la06 0.00% 0.00% 0.6 0.8
la07 0.00% 0.08% 1.2 3.0
la08 0.00% 0.06% 0.6 1.5
la09 0.00% 0.00% 0.5 1.0
la10 0.00% 0.00% 0.4 0.6
la11 0.00% 0.26% 0.6 2.1
la12 0.00% 0.00% 0.6 2.3
la13 0.00% 0.28% 0.5 2.3
la14 0.00% 0.00% 0.5 1.0
la15 0.21% 7.83% 2.7 3.0
la16 2.32% 7.30% 2.0 2.3
la17 0.92% 4.27% 2.3 3.3
la18 1.67% 7.51% 2.2 2.9
la19 3.27% 10.01% 2.4 3.4
la20 0.71% 7.36% 2.6 2.9
la21 8.31% 23.68% 4.8 4.1
la22 7.94% 25.47% 5.1 4.2
la23 2.80% 19.57% 5.2 4.0
la24 7.90% 27.65% 5.3 3.7
la25 9.77% 23.57% 4.2 4.1
la26 10.88% 35.27% 5.9 3.9
la27 15.84% 38.29% 5.2 3.4
la28 13.16% 34.25% 5.5 4.2
la29 17.41% 41.32% 5.3 3.4
la30 8.26% 28.87% 6.1 3.5

Average 3.75% 11.53% 2.58 2.61



Algorithms 2020, 13, 142 10 of 18

Table 4. Standard deviations of error and times obtained for the analyzed JSSP datasets solved with
different sets of agents.

Dataset
SD of Errors SD of Times
RR BR RR BR

la01 0.00% 0.00% 0.9 1.1
la02 0.00% 0.65% 0.9 1.5
la03 0.57% 1.09% 1.1 1.2
la04 0.42% 0.61% 1.2 1.3
la05 0.00% 0.00% 0.7 0.9
la06 0.00% 0.00% 0.9 1.3
la07 0.00% 0.22% 0.9 1.5
la08 0.00% 0.16% 1.1 1.2
la09 0.00% 0.00% 0.9 1.0
la10 0.00% 0.00% 0.9 1.1
la11 0.00% 0.56% 1.1 1.1
la12 0.00% 0.00% 1.1 1.2
la13 0.00% 0.78% 0.9 1.5
la14 0.00% 0.00% 0.9 1.0
la15 0.80% 2.81% 1.2 1.5
la16 1.30% 2.08% 1.4 1.8
la17 0.41% 1.62% 1.2 1.6
la18 0.98% 2.00% 1.5 1.3
la19 0.88% 2.78% 1.6 2.0
la20 0.32% 3.49% 1.4 1.8
la21 2.06% 4.87% 1.8 2.2
la22 2.22% 4.39% 2.1 2.7
la23 1.73% 4.20% 1.7 2.6
la24 1.75% 3.83% 1.9 2.0
la25 1.84% 4.09% 1.7 3.1
la26 2.88% 4.31% 3.2 2.2
la27 3.43% 3.80% 2.4 1.1
la28 1.67% 4.87% 2.4 2.2
la29 2.70% 3.80% 2.4 1.8
la30 1.62% 4.22% 2.2 2.0

Average 0.92% 2.04% 1.45 1.63

In case of the JSSP problem, to determine whether there are any significant differences among
mean errors produced by two considered agent groups we used the Wilcoxon Signed Rank Test. The
null hypothesis is that the medians of two investigated samples with mean errors are equal. With
Z statistics value of 4.20 and p-value equal to 0.00027 the null hypothesis should be rejected at the
significance level of 0.05. The agent set RR outperforms statistically BR in terms of the computation
errors. Similar analysis was performed to determine whether there are any significant differences
among mean computation times needed by two considered kinds of agents. With Z statistics value
at 0.42 and p-value equal to 0.673, the null hypothesis that the medians of two investigated samples
with mean computation times are statistically equal, holds at the significance level of 0.05. Similar
analysis with respect to standard deviations shows that RR outperforms statistically BR, while standard
deviations of computation times do not statistically differ between both sets.

Further experiments were carried out to identify some properties of the convergence ability of the
MPA. Figure 1 shows the dependency between the number of threads and mean accuracy for example
benchmark datasets. Pr144 was solved with 4 solutions processed in each thread, the other datasets
used 2 solutions in each thread. Computation results were averaged over 20 runs, searchTime was
equal 0.5 seconds, stopping criterion was defined as no improvement in the best fitness for 2 rounds.
Figure 2 shows dependency between the number of threads and mean computation times in the same
experiment. It may be noticed that using more threads results in obtaining better solutions since more
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solutions from the search space are considered. However, increasing the number of threads also results
in increasing the time required for communication. In addition, at some point, depending on the
number of nodes in the cluster, some of the threads are executed sequentially.
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3.3. MPA Performance versus other Approaches

Further experiments aimed at comparing the performance of the MPA with performance of other,
state-of-the-art algorithms. Table 5 presents results obtained for instances of the TSP for different
values of the searchTime. Calculations were carried out using the set of agents consisting of bestMove,
randomReverse and crossover. Computations were carried out using 175 threads. The stopping
criterion was defined as no improvement in the best fitness for 5 rounds. In Table 6 the results are
compared with some other results known from the literature,
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Table 5. Settings and results with standard deviations for the analyzed TSP datasets.

Dataset Opt SearchTime (s) Err Time (s) SD err SD Time (s)

kroA100 21,282 0.2 0.00% 2.50 0.00% 1.28
pr107 44,303 0.2 0.00% 6.40 0.00% 2.70
pr76 108,159 0.2 0.00% 2.33 0.00% 1.11

ch130 6110 0.5 0.00% 8.30 0.01% 2.31
eil101 629 0.5 0.00% 5.20 0.00% 1.40
pr124 59,011 0.5 0.03% 21.43 0.00% 10.43
pr144 58,537 0.5 0.00% 9.55 0.00% 1.50
a280 2579 1 0.16% 49.50 0.15% 11.36

bier127 118,282 1 0.03% 20.03 0.06% 4.72
ch150 6528 1 0.08% 12.70 0.13% 3.54

kroA150 26,524 1 0.01% 17.70 0.05% 5.49
kroA200 29,368 1 0.03% 27.27 0.05% 5.86
kroB100 22,086 1 0.27% 10.63 0.06% 3.26
kroB150 26,130 1 0.00% 15.73 0.00% 3.80
kroB200 29,438 1 0.00% 27.26 0.01% 5.20
pcb442 50,778 1 1.11% 622.28 0.41% 272.84
pr299 48,191 1 0.09% 102.47 0.09% 31.93
tsp225 3016 1 0.62% 37.95 0.40% 8.20
pr1002 259,045 5 2.34% 6549.76 0.32% 2636.14

Table 6. Comparison of the performance of the mushroom-picking algorithm (MPA) with other
algorithms (TSP datasets).

MPA DSOS [21] NDDE [19] CII [27]
Dataset Err (%) Time (s) Err Time (s) Err Time (s) Err Time (ms)

kroA100 0.00% 2.50 0.60% 127.5 0.21% 2.8 0.80% 3.5
pr107 0.00% 6.40 0.32% 187.3 – – 2.20% 18.1
pr76 0.00% 2.33 0.36% – – – 4.40% 3.0

ch130 0.00% 8.30 – – – – 1.30% 27.9
eil101 0.00% 5.20 3.43% 171.8 0.65% 3.5 5.90% 19.5
pr124 0.03% 21.43 0.68% 235.6 – – 1.70% 5.3
pr144 0.00% 9.55 0.48% 516.6 0.02% 3.5 2.30% 6.8
a280 0.16% 49.50 – – – – 4.10% 52.9

bier127 0.03% 20.03 – – – – 2.80% 5.6
ch150 0.08% 12.70 0.38% – – – 3.30% 11.5

kroA150 0.01% 17.70 – – – – 2.70% 10.2
kroA200 0.03% 27.27 – – – – 4.80% 17.5
kroB100 0.27% 10.63 0.90% 138.1 – – 2.60% 3.3
kroB150 0.00% 15.73 – – – – 1.00% 26.4
kroB200 0.00% 27.26 – – – – 4.10% 11.8
pcb442 1.11% 622.28 – – 0.72% 16.6 4.90% 126.0
pr299 0.09% 102.47 – – – – 4.20% 43.6
tsp225 0.62% 37.95 – – – – 6.80% 22.9
pr1002 2.34% 6549.76 7.46% 1843.3 – – 6.60% 744.0

A comparison with [27] is especially interesting as in the CII very similar one-argument functions
were applied to a single initial solution. CII is much faster (time is expressed in milliseconds in this
case) than MPA. In return, our method outperforms CII in terms of the computation errors.

Table 7 presents results obtained for instances of the JSSP. In this case the set of agents consisting
of randomMove, randomReverse and crossover were used. searchTime of one round and stopping
criterion was defined as 2 deciseconds and 2 rounds with no improvement in the best solution for
la01 to la14, and 5 s and 5 rounds with no improvement for la15 to la49. In Table 8 the MPA results
are compared with some other recently published results. Errors for [33] and [32] were computed on
the base of results given in the respective papers. In [32] only mean errors were reported with no
information on the computation time.
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Table 7. Mean errors, computations times (s) and their standard deviations for the analyzed
JSSP datasets.

Datasets Opt Err Time (s) SD Err SD Time (s)

la01 666 0.00% 0.5 0.00% 1.0
la02 655 0.00% 1.3 0.00% 1.0
la03 597 0.84% 1.8 0.57% 1.4
la04 590 0.24% 1.2 0.42% 1.2
la05 593 0.00% 0.6 0.00% 0.9
la06 926 0.00% 0.6 0.00% 1.1
la07 980 0.00% 1.2 0.00% 1.1
la08 863 0.00% 0.6 0.00% 1.3
la09 951 0.00% 0.7 0.00% 1.1
la10 958 0.00% 0.6 0.00% 1.0
la11 1222 0.00% 0.8 0.00% 1.2
la12 1039 0.00% 0.7 0.00% 1.2
la13 1150 0.00% 0.6 0.00% 1.1
la14 1292 0.00% 0.7 0.00% 1.0
la15 1207 0.00% 30.53 0.00% 1.7
la16 945 0.31% 41.37 0.49% 9.3
la17 784 0.06% 39.54 0.14% 8.8
la18 848 0.20% 41.10 0.32% 8.9
la19 842 1.01% 42.09 0.59% 9.0
la20 901 0.50% 32.90 0.17% 4.7
la21 1046 3.03% 79.47 0.82% 15.0
la22 927 2.08% 74.67 0.66% 14.3
la23 1032 0.00% 45.00 0.00% 6.6
la24 935 3.50% 64.67 1.20% 12.3
la25 977 3.52% 77.63 1.14% 24.7
la26 1218 1.61% 105.97 1.01% 23.5
la27 1235 4.49% 120.50 0.93% 33.8
la28 1216 3.15% 113.70 1.00% 28.2
la29 1152 7.77% 120.67 1.16% 37.3
la30 1355 0.61% 112.00 0.75% 29.6
la31 1784 0.00% 64.37 0.00% 6.4
la32 1850 0.00% 85.33 0.00% 12.0
la33 1719 0.00% 73.57 0.00% 8.4
la34 1721 0.36% 172.47 0.50% 33.9
la35 1888 0.03% 95.20 0.15% 17.9
la36 1268 4.53% 79.67 1.10% 23.1
la37 1397 4.94% 94.00 1.06% 25.5
la38 1196 7.02% 106.03 1.31% 30.5
la39 1233 4.25% 99.47 1.49% 24.0
la40 1222 3.69% 109.00 1.06% 26.2
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Table 8. Comparison of MPA performance with other methods for the analyzed JSSP datasets.

Datasets
MPA DWPA

[33]
Naga
[32]

Err Time (s) Err Time (s) Err

la01 0.00% 0.5 0.00% 1.30 0.32%
la02 0.00% 1.3 0.00% 2.10 2.20%
la03 0.84% 1.8 2.85% 1.70 4.88%
la04 0.24% 1.2 1.36% 1.10 –
la05 0.00% 0.6 0.00% 1.30 –
la06 0.00% 0.6 0.00% 2.40 0.00%
la07 0.00% 1.2 0.00% 2.00 0.09%
la08 0.00% 0.6 0.00% 2.40 –
la09 0.00% 0.7 0.00% 2.40 –
la10 0.00% 0.6 0.00% 1.50 –
la11 0.00% 0.8 0.00% 3.80 0.00%
la12 0.00% 0.7 0.00% 1.70 0.00%
la13 0.00% 0.6 0.00% 3.90 –
la14 0.00% 0.7 0.00% 3.90 –
la15 0.00% 30.53 5.47% 3.40 –
la16 0.31% 41.37 5.08% 2.60 –
la17 0.06% 39.54 1.15% 2.30 –
la18 0.20% 41.10 1.53% 2.30 –
la19 1.01% 42.09 5.46% 3.40 –
la20 0.50% 32.90 3.55% 2.20 –
la21 3.03% 79.47 5.64% 7.30 2.06%
la22 2.08% 74.67 6.69% 6.20 –
la23 0.00% 45.00 1.84% 5.50 –
la24 3.50% 64.67 5.67% 5.60 –
la25 3.52% 77.63 6.35% 5.30 –
la26 1.61% 105.97 6.98% 6.00 1.53%
la27 4.49% 120.50 8.99% 9.40 –
la28 3.15% 113.70 6.17% 11.30 –
la29 7.77% 120.67 10.68% 12.4 –
la30 0.61% 112.00 2.51% 8.7 –
la31 0.00% 64.37 0.00% 17.1 12.24%
la32 0.00% 85.33 0.00% 18.5 –
la33 0.00% 73.57 0.00% 15.4 –
la34 0.36% 172.47 3.89% 14.5 –
la35 0.03% 95.20 3.13% 17.7 –
la36 4.53% 79.67 9.46% 9.9 –
la37 4.94% 94.00 6.37% 18.2 –
la38 7.02% 106.03 11.97% 11.5 –
la39 4.25% 99.47 8.19% 17.4 –
la40 3.69% 109.00 10.23% 10.0 –

4. Discussion

The proposed mushroom-picking algorithm was validated using benchmark datasets from the
TSP and JSSP publicly available repositories. The first of the reported experiments aimed at identifying
the best combination of the available agents.

For the TSP, the best combination denoted BR consists of the bestMove and randomReverse
agents plus the crossover. The BR, with mean error averaged over all considered dataset at the level of
0.28% was significantly better than RR, BB, RB with the respective mean errors of 0.36%, 0.41% and
0.45%. The above finding was confirmed by the Friedman ANOVA by ranks test at the significance
level of 0.05. In the case of the TSP also differences between mean computation times have proven
to be statistically significant. The BR not only provides the smallest mean error, but also assures the
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shortest mean computation time, which was again established by the Friedman ANOVA by ranks test
at the significance level of 0.05.

For the JSSP, the best combination denoted RR consists of the randomMove and randomReverse
agents plus the crossover. The RR, with the mean computation error averaged over all considered
dataset at the level of 3.75% was significantly better than BR with the respective mean error of 11.53%.
The above finding was confirmed by the Wilcoxon Signed Rank Test at the significance level of 0.05.
However, comparison of the mean computation times by the same method have confirmed that there
are no significant differences between mean computation times of RR and BB.

Another feature of the MPA is its stability. In the case of the TSP, the mean value of the standard
deviation of the computation error, averaged over all considered datasets, is 0.18% with maximum
deviation at 0.95% and minimum at 0.0%. In the case of the JSSP the respective values are 0.92% with
maximum at 3.43% and minimum at 0.0%.

Convergence analysis in the case of both TSP and JSSP shows that increasing the number of
threads rapidly decreases computation errors. The rule is valid up to certain number of threads.
Further increasing of this number decreases computation errors in a much lower pace until a zero or
stable error level was reached. Computation time analysis shows that up to a point where the stable
computation error was reached, increasing the number of threads increases the computation time at
a slow rate. The above dependency is clearly visible in the case of the JSSP as opposed to the case
of the TSP where the growth of the computation time with the increase of the number of threads is
nearly linear.

The performance of the MPA was compared with performances of the recently published
algorithms for solving the TSP and JSSP. Data from Table 6 show that for the TSP, MPA outperforms
other competing approaches including DSOS, NDDE and CII. Unfortunately, due to the high number
of missing values for the DSOS and NDDE performance, we were not able to carry out a full statistical
analysis of the compared results. The mean computation error in the case of the TSP, calculated over
all sample datasets for the MPA is 0.25% while the same value for the CII algorithm is 3.5%. In return,
the CII algorithm is much quicker with the mean computation time of 17.05 ms versus 22.17 s in the
case of the MPA (both values calculated without pcb442 and pr1002 datasets). Data from Table 8 show
that for JSSP our approach outperforms DWPA and NAGA. Unfortunately, due to the high number of
missing values in the case of the NAGA we were not able to carry out the Friedman ANOVA by ranks
test. The mean computation error in the case of the JSSP, calculated over all sample datasets for the
MPA is 1.44% and 3.53% for the DWPA. DWPA offers, however, a shorter computation time with the
average of 6.9 s versus 53.32 s for the MPA.

5. Conclusions

The study proposes an approach for solving the TSP and JSSP instances in which a swarm of agents
tries to improve solutions from the population of solutions. The approach named mushroom-picking
algorithm is a population-based metaheuristic implemented in the parallel computation environment.
The proposed algorithm offered good or very good performance-producing solutions that were optimal
or close to optimal, within in a reasonable time.

The performance of the MPA is encouraging from the point of view of the future research. One
possible direction is extending the spectrum of a simple result improving agents. Some restrictions
on the process of selecting results for improvement may result in decreasing computation time by
eliminating unproductive attempts. It is also expected to implement the approach using different
environments for parallel computing.
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