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Abstract: The researches about a mobile entity (called agent) on dynamic networks have attracted
a lot of attention in recent years. Exploration which requires an agent to visit all the nodes in the
network is one of the most fundamental problems. While the exploration of dynamic networks with
complete information or with no information about network changes has been studied, an agent
with partial information about the network changes has not been considered yet despite its practical
importance. In this paper, we consider the exploration of dynamic networks by a single agent with
partial information about network changes. To the best of our knowledge, this is the very first work
to investigate the exploration problem with such partial information. As a first step in this research
direction, we focus on 1-interval connected rings as dynamic networks in this paper. We assume that
the single agent has partial information called the (H, S) view by which it always knows whether or
not each of the links within H hops is available in each of the next S time steps. In this setting, we show
that H + S ≥ n and S ≥ dn/2e (n is the size of the network) are necessary and sufficient conditions
to explore 1-interval connected rings. Moreover, we investigate the upper and lower bounds of
the exploration time. It is proven that the exploration time is O(n2) for dn/2e ≤ S < 2H′ − 1,
O(n2/H + nH) for S ≥ max(dn/2e, 2H′ − 1), O(n2/H + n log H) for S ≥ n− 1, and Ω(n2/H) for
any S where H′ = min(H, bn/2c).

Keywords: distributed algorithms; dynamic networks; 1-interval connected rings; mobile agent; exploration

1. Introduction

More applications of dynamic networks have arisen in recent years, for example, wireless mobile
ad hoc, transportation, inter vehicle, or social networks and so on, more important the researches
about the dynamic networks have got. A network is dynamic if its topology may change with time
(due to various reasons, e.g., faults or movements of nodes). In a dynamic network, existing methods
designed for static networks (the topologies of which do not change with time) might no longer work.
For this reason, the researchers have started to consider several problems on dynamic networks [1].

The exploration which requires a mobile entity called an agent (e.g., a software agent, a robot, or a
vehicle) to visit all the nodes of the network is one of the most fundamental problems. The exploration
is useful for solving fundamental tasks on the networks such as broadcast or network maintenance.
It has been well-studied for static networks [2] and recently been studied for dynamic networks.
In the previous works about the exploration of dynamic networks, two extreme cases are considered:
an agent has the a priori complete knowledge about changes of all the links for all the future time
steps [3–7]; or an agent can only see whether the links adjacent to its current node are present or
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not at the moment [8–12]. The former one models the situation where the network changes are
completely predictable as the public transportation networks in which the network changes are
introduced by totally scheduled movements of the nodes. The latter one models the situation where
the network changes are caused by unscheduled events, for example, faults or unscheduled movements
of the nodes.

Although the above two models are plausible and also theoretically important, the intermediate
model, i.e., an agent with partial information or, in other words, capability to know link changes within
some distance in the near future should be considered due to the following reasons: even in the totally
scheduled situation (if exists), computing all the future changes often costs computation time and it
is desirable to compute only the necessary information to solve a problem to save computing time
or memories; the ability of an agent to monitor whether there are faults or environmental changes
roughly depends on the quality (or costs) of its sensor and it can save some costs to compute only
the necessary information for a problem. Moreover, such a model is so interesting from a theoretical
viewpoint: how the amount of information available for an agent influences the solvability or the time
complexity of problems.

In this paper, we consider the exploration of dynamic networks by a single agent with partial
information about network changes. To the best of our knowledge, this is the very first work to
investigate the exploration using such partial information. As a first step in this research direction,
we focus on 1-interval connected rings as dynamic networks in this paper. To formalize the concept
of partial information and analyze its influences, in this paper, we first propose the (H, S) view such
that the agent with the view can see the link scheduling (when and which links disappear or appear) of
the links within H hops from its location for S time steps from the current time. Then, we consider
how the value of H or S influences the solvability or the time complexity of the exploration by a single
agent of 1-interval connected rings in which at most one link is missing at each time step. While the
1-interval connected rings are probably too restrictive from a practical point of view, they are adequate
targets to investigate in the novel direction as investigated in many works (e.g., in the field of mobile
agents on dynamic networks, [7,10,13–15] consider 1-interval connected rings).

1.1. Related Works

To see various settings and exploration algorithms on static networks, there is a good survey [2],
for example, a network with distinct node labeling or without node labeling (an anonymous network),
exploration with termination or perpetual exploration, and from the point of the number of agents,
exploration by a single agent or by multiple agents.

The literature of dynamic networks are surveyed in [1,16].
The recent works about mobile agents (or robots) on dynamic networks are summarized in [17]

including exploration; gathering on 1-interval connected rings [13] which requires all the agents to
gather at one node or at adjacent two nodes; dispersion [18] which stipulates that every node must be
occupied by exactly one agent where the number of agents is the same as that of nodes on permuting
rings in which the nodes may be permuted at each time step, i.e., the neighbors of a node may change
at each time step while the topologies are rings or paths at each time step.

The following works consider the exploration of dynamic networks by multiple agents (or robots)
without the knowledge of a link scheduling (or only with the ability to detect whether the adjacent
links are present or not at the moment). In [10], the exploration for 1-interval connected rings is
considered. The perpetual exploration (i.e., the exploration without termination) on connected-over-time
rings is considered in [8,9]. In [11], the perpetual exploration on two kinds of temporal networks with
arbitrary footprints is considered: connected-over-time graphs and 1-interval connected graphs with bounded
missing links. The difference between with or without the ability to detect whether the adjacent links
are present or not at the moment (called the link presence detection) is considered in [12] for an n×m
dynamic torus which consists of n horizontal rings and m vertical rings each of which is a 1-interval
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connected ring. It is shown that the minimum number of agents with the link presence detection to
explore the networks is a half of the minimum number of agents without the one to explore.

The following works consider the exploration of dynamic networks by an agent with the full
knowledge of a link scheduling, i.e., the information about when and which links disappear or appear.
In [7], the exploration is considered on T-interval connected rings where at most one link is missing
at each time step and for any T successive time steps, there exists a common spanning connected
component. It is shown that the optimal exploration time is 2n− 3 when T = 1 where n is the network
size. In [6], the exploration on 1-interval connected cactuses is considered. They show that the graphs

can be explored in 2O(
√

log n) time which is much less than the known upper bound for the general
graph, O(n2). In [3], the authors reveal the existence of the 1-interval connected graphs which have
the exploration time Ω(n2), proving the exploration time of arbitrary 1-interval connected graphs is
Θ(n2). In [5], it is shown that when the maximum degree at each time step is upper-bounded by d,
the exploration time is reduced to O((dn2 log d)/ log n). In [4], the authors prove that the exploration
time is reduced to O(n1.75) if an agent can move two hops in each time step.

Other problems are also considered on dynamic networks; patrolling on 1-interval connected
rings [14] which requires the maximum length of the interval between two visits to a node to be
minimized; compacting on 1-interval connected rings [15] which stipulates that all the agents in a
network must be located in a continuous part of the ring and at each node there exists at most
one agent.

1.2. Our Contributions

In this paper, we consider the exploration of 1-interval connected rings by a single agent with
the (H, S) view (formalizing the proofs and the pseudo codes and extending the results given in [19]).
Remind that the agent with the (H, S) view can see the link scheduling of the links within H hops
(1 ≤ H ≤ dn/2e) from its location for S time steps from the current time. To the best of our knowledge,
this is the first work to generalize the agent capacity to see a link scheduling.

The results are summarized in Table 1. For the proposed model, we show that H + S ≥ n
and S ≥ dn/2e (n is the size of networks) are the necessary and sufficient conditions to explore
1-interval connected rings by a single agent. We also show that in the case where the above conditions
holds, the exploration can be achieved within O(n2) time if 2H′ − 1 > S or otherwise O(n2/H +

nH) time where H′ = min(H, bn/2c). This is a new addition to the contributions of the previous
work [19]. Moreover, we show that when S ≥ n− 1, the exploration time can be reduced to O(n2/H +

n log H). This leads to O(n log n) time when H = Θ(n/ log n). Finally, we show a lower bound of
the exploration time, Ω(n2/H), for any S. This implies that we have tight bound Θ(n2/H) when
H + S ≥ n, max(dn/2e, 2H′ − 1) ≤ S, and H is O(n0.5) and when S ≥ n− 1 and H = O(n/ log n).

Table 1. Upper and lower bounds of the exploration time in 1-interval connected rings where
H′ = min(H, bn/2c).

H and S Upper Bound Lower Bound

H + S < n or
The exploration is impossible.

S < dn/2e

H + S ≥ n and
O(n2)

Ω(n2/H)

dn/2e ≤ S < 2H′ − 1

H + S ≥ n and
O(n2/H + nH)

max(dn/2e, 2H′ − 1) ≤ S < n− 1

n− 1 ≤ S O(n2/H + n log H)
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2. Models and Terminologies

We consider a time variant ring R = (V, E, ρ) where G = (V, E) is a ring network,
i.e., V = {v0, v1, . . . , vn−1} is a set of n nodes and E = {e0, e1, . . . , en−1} is a set of n links such that
ei = (vi, vi+1 mod n). The nodes of the network are anonymous. For simplicity, we omit mod n in the
following. A function ρ : E×N→ {0, 1} is called a link presence function such that ρ(e, t) is 1 (resp., 0)
if link e is present (resp., missing) at time step (or step) t ∈ N. A network at each step t is denoted as
Rt = (V, Et) where Et = {ei ∈ E | ρ(ei, t) = 1}. We assume that R is 1-interval connected, i.e., at each
step t, a network Rt is connected. In other words, at each step t, there is at most one missing link ei ∈ E
such that ei /∈ Et.

We say the ascending (resp., descending) order of node indices is the right (resp., left) direction.
Each port of ei has a globally consistent label at vi and vi+1 which gives an entity on the ring a
global direction (the right direction at vi and the left direction at vi+1) of the ring. Given a connected
component V′ ( V, the right (resp., left) extremity of V′ is the node vi ∈ V′ such that vi+1 /∈ V′ (resp.,
vi−1 /∈ V′). If |V′| = 1, the unique node in V′ is both the right extremity and the left extremity of V′.

In the network, a single agent A is operational. Agent A knows the network size n, has
computation capacity and its own memory, and can traverse at most one link in each step. In addition
to them, A can get the view which contains information of presence of nearby links in near future as
defined later. In a step t, A at a node, say vi, first decides which direction it moves and updates its
memory depending on the current content of its memory and the view from vi. If the corresponding
link is present at t, A succeeds to move and reaches a neighbor of vi by the end of t. Otherwise, A fails
to move and stays at vi.

Informally speaking, the (H, S) view that agent A can get shows which link is missing within
H hops from the current node and within S steps in the future including the current step. Formally
speaking, for dn/2e ≥ H ≥ 1 and S ≥ 1, A gets the (H, S) view βH,S(i, s) = {(ej, t, ρ(ej, t)) | i− H ≤
j ≤ i + H− 1, s ≤ t ≤ s + S− 1}when A exists on vi at step s. For example, when H = 2, S = 2, and A
exists on v0 at step 5, A can see β2,2(0, 5) = {(e1, 5, 0), (e0, 5, 1), (en−1, 5, 1), (en−2, 5, 1), (e1, 6, 1),
(e0, 6, 0), (en−1, 6, 1), (en−2, 6, 1)}. When no confusion arises, we simply write the view instead of
writing the “(H, S) view”.

It is assumed that a link scheduling (or ρ(ei, t) for every ei and every step t > 0) is decided by the
adversary. The adversary knows the algorithm of A, has infinite computation capacity, and tries to
prevent A from exploring the ring.

In this paper, we consider the exploration problem by a single agent A: A is required to visit all
the nodes in the ring. A node is said to be explored by (resp., at) the t-th step when it is visited by A at
the end of the (t− 1)-th step or earlier (resp., at the end of the (t− 1)-th step for the first time). In the
similar manner, we say that A reaches a node at the t-th step when A visits the node at the end of the
(t− 1)-th step and that A explores a node v at the t-th step if v is unexplored at the start of the (t− 1)-th
step and A reaches v at the t-th step. The set of explored (resp., unexplored) nodes at the start of the
t-th step is denoted by Vt (resp., Vt). Without loss of generality, we assume A starts the exploration
from v0.

In the following, we use “to move to right (resp., left)” instead of “to move in the right (resp., left)
direction” for simplicity.

3. Impossibility Result

We show an impossibility result in this section. Specifically, we show that the exploration is
impossible when H + S < n or S < dn/2e holds.

Lemma 1. If H + S < n or S < dn/2e, a deterministic single agent with the (H, S) view cannot explore
1-interval connected rings.



Algorithms 2020, 13, 141 5 of 15

Proof. We first consider the condition S < dn/2e. We assume H = dn/2e. It suffices to show that
the exploration is impossible when S = dn/2e − 1. We assume for contradiction, that there is an
algorithm by which A can explore any ring under any link scheduling when S = dn/2e − 1. Since A
can explore the ring, A starting from v0 eventually reaches vn−1 (no matter whether the exploration is
completed or not).

The adversary decides a link scheduling so that en−1 (resp., en−2) is missing when A exists on
v0 (resp., vn−2). The adversary first keeps showing a link scheduling where en−1 is kept deleted for
S steps from the current step until A moves to vn−dn/2e. If A does not move to vn−dn/2e and stays vi
for 0 ≤ i < n− dn/2e, en−1 is kept deleted and A cannot reach vn−1 (A must pass through en−1 or
en−dn/2e−1 to reach vn−1 from v0), which is a contradiction. Thus, A eventually reaches vn−dn/2e at
some step, say t.

Then, the adversary deletes en−2 from the (t + S− 1)-th step (the (t + dn/2e − 2)-th step) until
A moves to vn−dn/2e−1. By the scheduling, since A reaches vn−2 at earliest at the (t + n− 2− (n−
dn/2e))-th step (the (t + dn/2e − 2)-th step) from vn−dn/2e, en−2 starts to disappear when (or before)
A reaches vn−2 and keeps disappearing unless A moves to vn−dn/2e−1. Thus, if A does not move to
vn−dn/2e−1, A cannot reaches vn−1. This is a contradiction.

This means that A moves to vn−dn/2e−1 after the t-th step. However, by the similar way,
the adversary can prevent A from reaching vn−1. This is a contradiction. Hence, when S < dn/2e,
a single agent cannot explore 1-interval connected rings.

Secondly, we consider the condition H + S < n and S ≥ dn/2e. It is sufficient to show that
A cannot explore the ring when S = n− H − 1 for 1 ≤ H ≤ bn/2c − 1 since H < bn/2c from the
conditions. Again, we assume for contradiction, that there is an algorithm by which A can explore any
ring under any link scheduling. Since A can explore the ring, A starting from v0 eventually reaches
vn−1 (no matter whether the exploration is completed or not).

The adversary first keeps showing a link scheduling where en−1 is kept deleted for S steps from
the current step until A moves to vH . If A does not move to vH and stays at vi for 0 ≤ i ≤ H − 1, en−1

is kept deleted and A cannot reach vn−1, which is a contradiction. Thus, A eventually reaches vH at
some step, say t. After step t, depending on whether A reaches vH−1 before vn−H−1 or not, the missing
link is decided (Figure 1). Note that since H ≤ bn/2c − 1, (n− H − 1)− (H − 1) ≥ 2 and there exists
a node vi such that H ≤ i ≤ n− H − 2. Moreover, A can see neither en−1 nor en−2 in its view when
existing at vi for H ≤ i ≤ n− H − 2.

Figure 1. Illustrating the proof of Theorem 1 for the case of H + S < n and S ≥ dn/2e.

If A reaches vH−1 before vn−H−1, the adversary keeps deleting en−1. By the link scheduling,
unless A decides to reach vn−H−1 from vH , en−1 is kept deleted and A cannot reach vn−1, which is a
contradiction. This means that A eventually reaches vn−H−1. Let t′ be the last step before A reaches
vn−H−1 such that A exists at vH−1 at the start of t′.

When A leaves vH−1 at the t′-th step, the adversary makes a scheduling so that en−2 starts and
keeps disappearing from the (t′ + n− H − 1)-th step until A comes back to vn−H−2. This does not
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conflict with the link scheduling in the past view of A since at the t′-th step, en−1 is scheduled to be
deleted for the next S = n− H − 1 steps and for the next n− H − 1− x steps at the (t′ + x)-th step.

Since it takes at least n − H − 2 steps to reach vn−2 from vH , A reaches vn−2 at earliest at the
(t′ + n− H − 1)-th step. However, at the (t′ + n− H − 1)-th step, en−2 is missing and the adversary
keeps deleting en−2 until A reaches vn−H−2. Then, A cannot reach vn−1 unless moving to vn−H−2.
However, by the similar way, the adversary can prevent A from reaching vn−1. This is a contradiction.
Hence, when H + S < n or S < dn/2e, a single agent cannot explore 1-interval connected rings.

4. Possibility Result and Upper Bounds of Exploration Time

In this section, we prove the exploration is possible when H + S ≥ n and S ≥ dn/2e by giving an
exploration algorithm by a single agent. In the following, we use H′ = min(H, bn/2c). The algorithm
also gives upper bounds of the exploration time, O(n2/H + nH) if 2H′ − 1 ≤ S or otherwise O(n2).
Note that S ≥ H since S ≥ dn/2e and H ≤ dn/2e.

We first introduce two operations EXPH(t, vi) and EXPONE(t, vi) that are used as building blocks
to construct the exploration algorithm.

In the algorithms, Extremity(t, v) is a function which returns right if v is the right extremity of Vt,
left if v is the left extremity, or otherwise nil. Variable dir is used to store the direction and dir denotes
the other direction (e.g., if dir is right, dir is left).

EXPH. EXPH(t, vi) described in Algorithm 1 is an algorithm by which A explores H′ nodes when A
starts EXPH(t, vi) from vi at the t-th step under the assumption that vi is the right or left extremity of
Vt and 2H′ + |Vt| − 1 ≤ min(S + 1, n). Note that in the following, when A executes EXPH(t, vi), A is
always on the right or left extremity of Vt.

When starting the algorithm, A first sees if vi is the right extremity or the left one and stores right if
vi is the right extremity or otherwise left in dir. If A can move H′ hops to dir by the (t+ 2H′+ |Vt| − 2)-th
step according to the view, A does so (Figure 2b). Otherwise, A moves |Vt| − 1 + H′ hops to dir
(Figure 2c). Notice that A can decide this condition because H′ ≤ H and 2H′ + |Vt| − 2 ≤ S.

Algorithm 1 EXPH(t, vi)

1: dir← Extremity(t, vi)
2: if A can move H′ hops to dir by the (t+2H′+|Vt|−2)-th step then
3: Move H′ hops to dir
4: else
5: Move |Vt| − 1 + H′ hops to dir
6: Wait until the (t + 2H′ + |Vt| − 2)-th step

Lemma 2. Suppose that at the t-th step, A exists at the right or left extremity, say vi, of Vt and starts
EXPH(t, vi). If 2H′+ |Vt| − 1 ≤ min(S+ 1, n), A explores H′ nodes by the t′-th step (the end of EXPH(t, vi))
and exists on the right or left extremity of Vt′ at the t′-th step where t′ = t + 2H′ + |Vt| − 2.

Proof. Without loss of generality, we assume vi is the right extremity of Vt. Let m = |Vt|, Er = {ei, ei+1,
. . . , ei+H′−2, ei+H′−1}, and El = {ei−H′−m+1, ei−H′−m+2, . . . , ei−2, ei−1}. Note that since |Er|+ |El | =
2H′ + m− 1 and 2H′ + m− 1 ≤ n, Er ∩ El = ∅.

Now, consider the move of A. Since 2H′+m− 1 ≤ S+ 1, i.e., 2H′+m− 2 ≤ S, A can see whether
it can move H′ hops to right by the (t + 2H′ + m− 2)-th step or not.

If A can, A moves H′ hops to right and thus the lemma holds.
Otherwise, A can move at most H′− 1 hops to right by the (t+ 2H′+m− 2)-th step, which means

during the 2H′ + m− 2 steps, there exists at least 2H′ + m− 2− (H′ − 1) = H′ + m− 1 steps at each of
which one of the links in Er is missing. Since at most one link is missing at each step and Er ∩ El = ∅,
every link in El exists at each of the H′ + m− 1 steps. Thus, A succeeds to move H′ + m− 1 hops to
left and the lemma holds.



Algorithms 2020, 13, 141 7 of 15

Figure 2. The moves of A by EXPH(t, vi) where t′ = t + 2H′ + |Vt| − 2 in the case where vi is the right
extremity of Vt. (a) At the start of EXPH(t, vi), A exists on vi. (b) If A can reach vi′+H by moving to
right by the t′-th step, A moves to right and reaches vi+H′ by the t′-th step. (c) Otherwise, A moves to
left and reaches vi−|Vt |+1−H′ by the t′-th step.

EXPONE. EXPONE(t, vi) described in Algorithm 2 is an algorithm by which A explores at least one
node or completes the exploration when A starts EXPONE(t, vi) from vi at the t-th step under the
assumption that vi is the right or left extremity of Vt. Note that in the following, when A executes
EXPONE(t, vi), A is always on the right or left extremity of Vt.

When starting the algorithm, A first sees if vi is the right extremity or the left one and stores the
direction in dir. Variables i′ and i′′ are used to remember the dir neighbor of vi and the dir incident
edge of vi respectively, e.g., i′ = i + 1 (resp., i′ = i − 1) if dir is right (resp., left). Then, A stores
max(n− H, dn/2e) to S′ which is not larger than S and is used instead of S in the algorithm.

After that, if ei′′ appears by the (t + S′ − 1)-th step, A waits at vi until ei′′ appears and moves to
vi′ when ei′′ appears. Otherwise, for each 0 ≤ d ≤ H − 1, A moves one hop to dir at the (t + d)-th
step if ei′′ is missing at the (t + S′ − 1 + d)-th step in its view (Figure 3a). If A sees ei′′ appear at the
(t + S′ − 1 + d)-th step in its view at the (t + d)-th step, then A starts to move dir from the (t + d)-th
step, returns to vi, waits at vi until ei′′ appears, and reaches vi′ through ei′′ (Figure 3b). When d reaches
H, i.e., A moves H hops to dir and ei′′ is no longer included in the view of A, A starts to keep moving
to dir until reaching vi′ and the exploration finishes when reaching vi′ (Figure 3c).
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Figure 3. The moves of A by EXPONE(t, vi) in the case where vi is the right extremity. (a) Unless A
sees ei appear, A moves to left. (b) If A sees ei appear before reaching vi−H , A starts to move to right
and reaches vi+1. (c) If A reaches vi−H without seeing ei appear, A keeps moving to left until reaching
vi+1 and finishes the exploration.

Algorithm 2 EXPONE(t, vi)

1: dir← Extremity(t, vi)
2: if dir is right then
3: i′ ← i + 1, i′′ ← i
4: else
5: i′ ← i− 1, i′′ ← i− 1
6: d← 0
7: S′ ← max(n− H, dn/2e)
8: while (d < H) do
9: if ei′′ is always missing until the (t + d + S′ − 1)-th step then

10: Move one hop to dir
11: d← d + 1
12: else
13: Move d hops to dir (reach vi)
14: Wait for ei′′ to appear and pass through ei′′ as soon as it appears
15: Exit from the while loop
16: if (d ≥ H) then
17: Move n− H − 1 hops to dir (reach vi′ )
18: Wait until the (t + n)-th step

Lemma 3. Suppose that at the t-th step, A exists at the right (resp., left) extremity, say vi, of Vt and starts
EXPONE(t, vi). Then, A completes the exploration or reaches vi+1 (resp., vi−1) by the (t + n)-th step (the end
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of EXPONE(t, vi)). In addition to that, A exists on the right or left extremity of Vt+n at the (t + n)-th step
when the exploration has not been completed.

Proof. Without loss of generality, we assume vi is the right extremity of Vt. As in Algorithm 2,
let S′ = max(n− H, dn/2e). We first show the lemma for the case ei appears by the (t + d + S′ − 1)-th
step in A’s view at the (t + d)-th step for 0 ≤ d ≤ H − 1.

For d = 0, A can clearly reach vi+1 by the (t + S′ − 1)-th step.
For 1 ≤ d ≤ H − 1, when A sees ei appear for the first time at the (t + d + S′ − 1)-th step in its

view at the (t + d)-th step, ei must appear at the (t + d + S′ − 1)-th step and be missing at the t′-th
step for t + d ≤ t′ ≤ t + d + S′ − 2 by the construction. This means that all the other links than ei are
present at the t′-th step (t + d ≤ t′ ≤ t + d + S′ − 2), and thus A can move for S′ − 1 steps from vi−d to
right without interference by missing links until reaching vi.

Since d ≤ H − 1 and H ≤ S′, A always reaches vi by the (t + d + S′ − 1)-th step at which ei
appears. Then, A reaches vi+1 as soon as ei appears. Since A moves at most H − 1 hops to left, ei
appears S′ steps after A starts to move to right, and H − 1 + S′ ≤ n from S′ = max(n− H, dn/2e),
A reaches vi+1 through ei by the (t + n)-th step.

We then show for the other case, i.e., A reaches vi−H at the (t + H)-th step. When this happens, ei
must be deleted for at least S′− 1 steps from the (t+ H)-th step and all the other links than ei are present
in the S′− 1 steps. Thus, A can move for S′− 1 ≥ n−H− 1 steps from vi−H to left without interference
by missing links until reaching vi+1 since S′ = max(n− H, dn/2e). Since H + n− H − 1 = n− 1, A
reaches vi+1 after n− H − 1 steps, i.e., at the (t + n− 1)-th step, and the exploration is completed at
the same time.

Exploration algorithm. Algorithm 3 describes the exploration algorithm. Let S′′ = min(S, n − 1).
The algorithm repeats EXPH(t, vi) for b(S′′ + 1− H′)/H′c times (lines 2-6) and EXPONE(t, vi) for
n− H′b(S′′ + 1− H′)/H′c − 1 times (lines 7-13). We call the part repeating EXPH(t, vi) (lines 2-6) the
first part and the part repeating EXPONE(t, vi) the second part (lines 7-13). In the first part, H′b(S′′ + 1−
H′)/H′c+ 1 nodes are explored and, in the second part, the remaining n− H′b(S′′ + 1− H′)/H′c − 1
nodes are explored.

Algorithm 3 Exploration algorithm for H + S ≥ n

1: S′′ ← min(S, n− 1)
2: p← 1 //starting the first part
3: while (p ≤ b(S′′ + 1− H′)/H′c) do
4: Let t be the current step and vi be the current node
5: EXPH(t, vi)
6: p← p + 1
7: p← 1 //starting the second part
8: while (p ≤ n−H′ ·b(S′′+1−H′)/H′c−1) do
9: Let t be the current step and vi be the current node

10: EXPONE(t, vi)
11: if Exploration is completed then
12: Exit from the while loop
13: p← p + 1

Theorem 1. For H +S ≥ n and S ≥ dn/2e, the exploration time of 1-interval connected rings by a single agent
with the (H, S) view is upper-bounded by O(n2/H + nH) if 2H′ − 1 ≤ S or otherwise it is upper-bounded
by O(n2).
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Proof. It suffices to show that A with the (H, S) view completes exploration within O(n2/H + nH)

steps if 2H′ − 1 ≤ S or otherwise O(n2) steps by executing Algorithm 3 when H + S ≥ n and
S ≥ dn/2e.

We first consider the case where 2H′ − 1 ≤ S. In this case, since b(S′′ + 1− H′)/H′c ≥ 1, the first
part is executed at least once. Consider the first part. Let tp be the step when A starts the p-th
EXPH(t, vi).

We show by induction that for 1 ≤ p ≤ b(S′′+ 1−H′)/H′c, |Vtp | = (p− 1)H′+ 1 and A explores
H′ nodes by EXPH(tp, vi).

For the base case, i.e., p = 1, |Vt1 | is clearly 1 = (p− 1)H′ + 1. This leads to that 2H′ + |Vt| − 1 =

2H′ ≤ min(n, S + 1). Then, by Lemma 2, A explores H′ nodes by EXPH(t1, vi).
Now, for k ≤ b(S′′ + 1− H′)/H′c − 1, assume that |Vtk | = (k − 1)H′ + 1 and A explores H′

nodes by EXPH(tk, vi). Then, clearly |Vtk+1 | = (k− 1)H′ + 1 + H′ = kH′ + 1. Since k ≤ b(S′′ + 1−
H′)/H′c − 1, 2H′ + |Vtk+1 | − 1 < n and 2H′ + |Vtk+1 | − 1 < S + 1. Thus, A explores H′ nodes by
EXPH(tk+1, vi).

By Lemma 2, S′′ = O(n), and H′ = Θ(H), the exploration time of the first part is

b(S′′+1−H′)/H′c

∑
p=1

(2H′ + |Vtp | − 2) =
b(S′′+1−H′)/H′c

∑
p=1

((p + 1)H′ − 1) = O(n2/H).

We then consider the second part. By Lemma 2, A exists at the right or left extremity of Vt and
|Vt| = n− H′b(S′′ + 1− H′)/H′c − 1 = O(H) at the start of the second part. Thus, since A explores
one node within n steps by Lemma 3, the exploration time of the second part is O(nH).

As a result, the exploration time of Algorithm 3 is O(n2/H + nH) when 2H′ − 1 ≤ S.
When 2H′ − 1 > S, the first part is never executed and then the number of remaining nodes at the

start of the second part is n− 1. Thus, in this case, the exploration time of Algorithm 3 is O(n2).

From Lemma 1 and Theorem 1, the following theorem holds.

Theorem 2. If and only if H + S ≥ n and S ≥ dn/2e, a single agent with the (H, S) view can explore of
1-interval connected rings within finite time steps.

5. Upper Bound of Exploration Time for S ≥ N − 1

In this section, we consider the upper bound of the exploration time when S ≥ n− 1. We show
that the upper bound of the exploration time is reduced to O(n2/H + n log H) in this case by giving
an exploration algorithm.

We first introduce a new operation EXPHALF(t, vi) that is used as a building block to construct
the exploration algorithm.

EXPHALF. EXPHALF(t, vi) described in Algorithm 4 is an algorithm by which A explores d|Vt|/2e
nodes when A starts EXPHALF(t, vi) from vi at the t-th step under the assumption that vi is the right
or left extremity of Vt, |Vt| ≤ 2H, and S ≥ n − 1. Note that in the following, when A executes
EXPHALF(t, vi), A is always on the right or left extremity of Vt.

When starting the algorithm, A first sees if vi is the right extremity or the left one and stores
right if vi is the right extremity or otherwise left in dir. If A can move d|Vt|/2e hops to dir by the
(t + n− 1)-th step according to the view, A does so (Figure 4b). Otherwise, A moves n− |Vt|/2 hops
to dir (Figure 4c).
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Figure 4. The moves of A by EXPHALF(t, vi) where t′ = t + n− 1 in the case where vi is the right
extremity of Vt. (a) At the start of EXPHALF(t, vi), A exists on vi. (b) If A can reach vi+|Vt |/2 by
moving to right by the t′-th step, A moves to right and reaches vi+|Vt |/2 by the t′-th step. (c) Otherwise,
A moves to left and reaches vi+|Vt |/2 by the t′-th step.

Algorithm 4 EXPHALF(t, vi)

1: dir← Extremity(t, vi)

2: if A can move d|Vt|/2e hops to dir by the (t+n−1)-th step then
3: Move d|Vt|/2e hops to dir
4: else
5: Move n− d|Vt|/2e hops to dir
6: Wait until the (t + n− 1)-th step

Lemma 4. Suppose that at the t-th step, A exists at the right or left extremity, say vi, of Vt and starts
EXPHALF(t, vi). If |Vt| ≤ 2H and S ≥ n− 1, A can explore at least dVt/2e nodes by the t′-th step (the end
of EXPHALF(t, vi)) and exists on the right or left extremity of Vt′ at the t′-th step where t′ = t + n− 1.

Proof. Without loss of generality, we assume vi is the right extremity of Vt. Let m = |Vt|, Er = {ei,
ei+1, . . . , ei+dm/2e−1, ei+dm/2e}, and El = {ei+dm/2e+1, ei+dm/2e+2, . . . , ei−1}.

Now, consider the move of A. Since S ≥ n− 1 and m ≤ 2H, A can see whether it can move
dm/2e hops to right by the (t + n− 1)-th step or not.

If A can move dm/2e hops, A moves dm/2e hops to right and thus the lemma holds.
Otherwise, A can move at most dm/2e − 1 hops to right by the (t + n− 1)-th step, which means

during the n− 1 steps, there exist at least n− 1− (dm/2e − 1) = n− dm/2e steps at each of which one
of the links in Er is missing. Since at most one link is missing at each step and Er ∩ El = ∅, every link
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in El exists at each of the n− dm/2e steps. By this and |El | = n− dm/2e, A succeeds to reach vi+dm/2e
by moving to left, which means at least dm/2e nodes are explored.

Exploration algorithm. Algorithm 5 describes the exploration algorithm. The algorithm repeats
EXPH(t, vi) for b(n− H′)/H′c times (lines 1–5) and EXPHALF(t, vi) for dlog(n− H′b(n− H′)/H′c − 1)e
times (lines 6–10). We call the part repeating EXPH(t, vi) (lines 1-5) the first part and the part repeating
EXPHALF(t, vi) the second part (lines 6–10). In the first part, H′b(n− H′)/H′c+ 1 nodes are explored
and, in the second part, the remaining n− H′b(n− H′)/H′c − 1 nodes are explored.

Algorithm 5 Exploration algorithm for S ≥ n− 1

1: p← 1 //starting the first part
2: while (p ≤ b(n− H′)/H′c) do
3: Let t be the current step and vi be the current node
4: EXPH(t, vi)
5: p← p + 1
6: p← 1 //starting the second part
7: while (p ≤ dlog(n− H′b(n− H′)/H′c − 1)e) do
8: Let t be the current step and vi be the current node
9: EXPHALF(t, vi)

10: p← p + 1

Theorem 3. For S ≥ n− 1, the exploration time of 1-interval connected rings by a single agent with the (H, S)
view is upper-bounded by O(n2/H + n log H).

Proof. It suffices to show that A completes exploration within O(n2/H + n log H) steps by Algorithm 5
when S ≥ n− 1. It is proven that the total exploration time of the first part is O(n2/H) and that of the
second part is O(n log H).

We first consider the first part. Note that, since 2H′ ≤ n, 1 ≤ b(n− H′)/H′c and thus the first
part is always executed at least once. Let tp be the step when A starts the p-th EXPH(t, vi). We can
show that for 1 ≤ p ≤ b(n− H′)/H′c, A can explore H′ nodes by EXPH(tp, vi) by induction and the
exploration time of the first part is O(n2/H) as in the proof of Lemma 2.

We then consider the second part. By Lemma 2, A exists at the right or left extremity of Vt and
|Vt| = n− H′b(n− H′)/H′c − 1 ≤ 2H′ at the start of the second part. Thus, since A explores a half of
Vt within n− 1 steps by Lemma 4, the exploration time of the second part is O(n log H). As a result,
the exploration time of Algorithm 3 is O(n2/H + n log H).

6. Lower Bound of Exploration Time

A lower bound of the exploration time for any S is given in this section. The following theorem holds.

Theorem 4. The exploration time of 1-interval connected rings by a single agent with the (H, S) view is
lower-bounded by Ω(n2/H).

Proof. We first show that, provided that A is at the right or left extremity, say vi, of Vt at the t-th
step where |Vt| ≤ n− 2H + 1, it takes at least |Vt|+ H − 1 steps for A to explore H nodes from the
circumstance under the following link scheduling: ei+H−1 (resp., ei−H) is deleted until the (t + |Vt|+
H − 1)-th step if vi is the right (resp., left) extremity of Vt. Without loss of generality, we assume that
vi is the right extremity of Vt in the following. Figure 5 depicts the situation.
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Figure 5. The situation where A exists on vi at the t-th step (vi is the right extremity of Vt).
The adversary deletes ei+H−1 until the (t + |Vt|+ H − 1)-th step in this situation.

Assume for contradiction that A explores the H nodes within |Vt| + H − 1 steps under the
scheduling. Since ei+H−1 is missing until the (t+ |Vt|+ H− 1)-th step, A never reaches vi+H . Therefore,
A must explore at least one node on the left side of Vt. This and exploring H nodes take at least
|Vt|+ H − 1 steps; a contradiction.

Now, apply the above claim from the first step repeatedly. When applying the claim for the p-th
time, |Vt| = (p− 1)H + 1 and then it takes |Vt|+ H − 1 = pH steps. Note that we can apply the
claim while (p− 1)H + 1 ≤ n− 2H + 1, i.e., p ≤ b(n− H)/Hc. We then derive the lower bound of
the exploration time, ∑

b(n−H)/Hc
p=1 pH = Ω(n2/H).

7. Discussion

In this paper, we studied the exploration problem on dynamic networks with its partial
information, where we focused on 1-interval connected rings as a first step. In this section, we
discuss what happens when we consider other connectivity and/or general graphs.

When considering 1-interval connected rings, we yields the restriction that at most one link is
missing at each step. By this restriction, an agent gets to know that all the links outside its view exist
when a link in its view is missing and can make the action plan to visit an unvisited node using the
information. It is interesting to investigate such conditions on the space and the time of a view (H and
S in this paper) for more general graphs under some assumptions on the temporal connectivity and/or
more general graphs. On the other hand, even under the assumption of 1-interval connectivity and/or
the restriction on the number of missing links at each step, an agent cannot necessarily get the whole
information of the temporal topology, which may prevent the agent from making the action plan to
visit an unvisited node and makes the exploration problem more challenging.

We also conjecture that the space and the time of a view which are necessary and sufficient for
an agent to explore depend on temporal diameter. Intuitively, temporal diameter is the maximum
duration of the foremost path (the path with the least duration from a node to another node departing
at specified time) in a dynamic network (see e.g., Section 4.6 of [1] for a formal definition). The fact that
the temporal diameter of a 1-interval connected graph with n nodes is at most n− 1 fits a possibility
result of this paper, i.e., H + S ≤ n. To investigate the relation of temporal distance and the power of a
view is one of the intriguing research directions.

8. Conclusions

In this paper, we introduced the (H, S) view which can be used to model some situations where
an agent (or robot) can partly see their nearby environment or can predict the near-future changes
of the environment. To the best of our knowledge, this is the first work considering such a model.
For a single agent with the (H, S) view, we studied the exploration of 1-interval connected rings.
We give some fundamental results, i.e., impossibility of the exploration for H + S < n or S < dn/2e,
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possibility of the exploration for H + S ≥ n and S ≥ dn/2e, and upper bounds and a lower bound of
the exploration time for some cases.
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