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Abstract: High-dimensional system identification problems can be efficiently addressed based on
tensor decompositions and modelling. In this paper, we design a recursive least-squares (RLS)
algorithm tailored for the identification of trilinear forms, namely RLS-TF. In our framework,
the trilinear form is related to the decomposition of a third-order tensor (of rank one). The proposed
RLS-TF algorithm acts on the individual components of the global impulse response, thus being
efficient in terms of both performance and complexity. Simulation results indicate that the proposed
solution outperforms the conventional RLS algorithm (which handles only the global impulse
response), but also the previously developed trilinear counterparts based on the least-mean-
squares algorithm.

Keywords: adaptive filters; recursive least-squares (RLS) algorithm; system identification; tensor
decomposition; trilinear forms

1. Introduction

Currently, there is an increasing interest in developing methods and algorithms that exploit tensor
decompositions and modelling [1,2]. These techniques become of significant importance in many
real-world scenarios, e.g., when dealing with large amounts of data, processing multidimensional
signals, or solving high-dimensional system identification problems. Many important applications
rely on such tensor-based techniques, which can be successfully used in the fields of big data [3],
source separation [4], machine learning [5], multiple-input multiple-output (MIMO) communication
systems [6], and beamforming [7].

Tensor decompositions and their related applications are frequently addressed based on
multilinear signal processing techniques [8,9]. For example, in the context of system identification
scenarios, the problems can be formulated in terms of identifying multilinear forms. As particular
cases, we can mention the bilinear and trilinear forms, where the decomposition is performed using
two and three components, respectively. Since the Wiener filter and adaptive algorithms represent
popular methods to address system identification problems, their applicability was also extended to
the multilinear framework. Among the recent related works, we can mention the iterative Wiener
filter for bilinear forms [10] and the subsequent adaptive filtering methods [11–13], together with their
extensions to trilinear forms [14–17].

In this context, the work in [17] provided a system identification framework based on tensor
decomposition, which was suitable for the trilinear approach. This work presents the iterative Wiener
filter and least-mean-squares (LMS) adaptive algorithms tailored for trilinear forms. Among those,
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the normalized LMS (NLMS) algorithm for trilinear forms, namely NLMS-TF, represents a practical
solution in terms of both performance and complexity. Nevertheless, it is known that the recursive
least-squares (RLS) algorithm [18] could provide improved performance as compared to the LMS-based
algorithms, especially in terms of the convergence rate. This represents the motivation behind the
solution proposed in this paper, which targets the development of the RLS algorithm for trilinear forms,
namely RLS-TF. Therefore, the goal of this work is mainly twofold. First, we aim to design a faster
converging algorithm as compared to the recently developed NLMS-TF. Second, we intend to outline
the performance features of the RLS-TF algorithm as compared to the conventional RLS benchmark.

Besides the conventional adaptive algorithms (which usually act as supervised methods),
we should also note that unsupervised algorithms can be used in conjunction with tensor-based
approaches, e.g., [19,20]. In this context, we can mention the single-channel blind source separation
problem, which targets the identification of individual source signals from a single mixture recording.
Such an approach can be found in [19], where the parameters of a so-called “imitated-stereo” mixture
model (i.e., one real and the other virtual microphones, which results in an artificial mixing system of
dual channels) were found by applying tensor estimation and exploiting sparsity features. The method
proposed in [20] also exploits sparsity (using the Gibbs distribution) for multichannel source separation,
by solving the underdetermined convolutive mixture separation, while considering the reverberations
of the surrounding environment. Another appealing field where such tensor-based techniques can
be applied is video processing. For example, unsupervised algorithms can be used for detecting
anomalies in a video sequence, e.g., detecting micro defects while employing a thermography imaging
system [21].

Currently, in many real-world applications related to MIMO systems, speech processing,
and image/video processing, the received signals are tensors or can be grouped in a tensorial form.
Consequently, as outlined before, utilizing estimation techniques from tensor algebra is beneficial.
Moreover, in most of these applications, the underlying parameters to be estimated are sparse, so that
specific features could be exploited, thus bringing additional advantages, especially for systems of
large dimensions. The tensor-based RLS algorithm proposed in this paper represents an improved
solution (in terms of convergence rate) as compared to the existing solution based on the NLMS
algorithm [17], but also an efficient version (in terms of computational complexity) as compared to the
conventional RLS algorithm [18].

The rest of the paper is organized as follows. Section 2 provides a background on third-order
tensors, which represents the framework of trilinear forms. The proposed RLS-TF algorithm is
developed in Section 3. Simulation results are provided in Section 4, outlining the main performance
features of the designed solution. Finally, Section 5 concludes this paper and discusses several
perspectives for future works.

2. Third-Order Tensors

In this section, we provide a brief summary on tensors, outlining the main definitions and
operations, while also establishing the notation. A tensor can be defined as a multidimensional array
of data [22,23]. For example, a matrix and a vector can be referred to as second- and first-order
tensors, respectively. Tensors of order three or higher are called higher order tensors. In the following,
the notation used for a tensor, a matrix, a vector, and a scalar isA, A, a, and a, respectively. In this
work, we are focusing only on real-valued third-order tensors, i.e.,A ∈ RL1×L2×L3 , so that the array
dimension is L1 × L2 × L3.

The entries of a tensor can be referred to by using multiple indices. In our case, for a third-order
tensor, the first and second indices l1 (with l1 = 1, 2, . . . , L1) and l2 (with l2 = 1, 2, . . . , L2) correspond to
the row and column, respectively (like in a matrix); in addition, the third index l3 (with l3 = 1, 2, . . . , L3)
corresponds to the tube and describes its depth. Consequently, these three indices describe the
three different modes. In terms of notation, the entries of the different order tensors are denoted by
(A)l1l2l3 = al1l2l3 , (A)l1l2 = al1l2 , and (a)l1 = al1 .
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In the case of a matrix, the vectorization operation leads to a vector that contains the concatenated
columns of the original matrix. In the case of a third-order tensor, the so-called matricization operation
concatenates the “slices” of the tensor and produces a large matrix. Of course, the result depends on
which index, all the elements of which are considered first. Thus, the matricization can be performed
along three different modes [8,9]. For example, considering the mode row and then varying the
columns and the tubes, we obtain:

A[1] = A:,1:L2,1:L3

=
[

A::1 · · · A::L3

]
,

where A[1] ∈ RL1×L2L3 and the matrices A::l3 ∈ RL1×L2 with l3 = 1, 2 . . . , L3 denote the frontal slices.
Similarly, we can take the mode column and then vary the lines and the tubes, which results in
A[2] = A1:L1,:,1:L3 , with A[2] ∈ RL2×L1L3 . Finally, we can take the mode tube and then vary the rows
and the columns, in order to obtain A[3] = A1:L1,1:L2,:, where A[3] ∈ RL3×L1L2 . The ranks of A[1], A[2],
and A[3] represent the mode-1, mode-2, and mode-3 ranks of the tensor, respectively. Furthermore,
the vectorization of a tensor (e.g., following mode-1) is

vec (A) = vec
(

A[1]

)

=

 vec (A::1)
...

vec
(
A::L3

)
 ∈ RL1L2L3 .

Nevertheless, there are some fundamental differences between the rank of a matrix A ∈ RL1×L2

and the rank of a tensor A ∈ RL1×L2×L3 . For example, the rank of A can never be larger than
min{L1, L2}, while the rank ofA can be greater than min{L1, L2, L3}. A rank-1 tensor (of dimension
L1 × L2 × L3) is defined as:

B = b1 ◦ b2 ◦ b3, (1)

where b1, b2, and b3 are vectors of lengths L1, L2, and L3, respectively, ◦ is the vector outer product,
and the elements of B are given by (B)l1l2l3 = b1,l1 b2,l2 b3,l3 , where bi,li are the elements of the vector bi,
with i = 1, 2, 3 and li = 1, 2, . . . , Li. In this case, it can be easily verified that:

vec (B) = b3 ⊗ b2 ⊗ b1, (2)

where ⊗ denotes the Kronecker product [24]. In this context, the rank of a tensorA, denoted rank (A),
is defined as the minimum number of rank-1 tensors that generateA as their sum. For example, if:

A =
R

∑
r=1

a1r ◦ a2r ◦ a3r, (3)

where a1r, a2r, and a3r are vectors of lengths L1, L2, and L3, respectively, then rank (A) = R when R is
minimal and (3) is called the canonical polyadic decomposition (CPD) ofA.

Another important operation is the multiplication of a tensor with a matrix [1,2], which can also
be defined in different ways. For example, the mode-1 product between the tensorA ∈ RL1×L2×L3

and the matrix M1 ∈ RM1×L1 gives the tensor:

U = A×1 M1, U ∈ RM1×L2×L3 , (4)
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whose entries are um1l2l3 = ∑L1
l1=1 al1l2l3 mm1l1 (for m1 = 1, 2, . . . , M1) and U[1] = M1A[1]. Similarly,

the mode-2 product between the same tensorA and the matrix M2 ∈ RM2×L2 leads to the tensor:

U = A×2 M2, U ∈ RL1×M2×L3 , (5)

with the entries ul1m2l3 = ∑L2
l2=1 al1l2l3 mm2l2 (for m2 = 1, 2, . . . , M2) and U[2] = M2A[2]. Finally,

the mode-3 product between the tensorA and the matrix M3 ∈ RM3×L3 results in the tensor:

U = A×3 M3, U ∈ RL1×L2×M3 , (6)

having the entries ul1l2m3 = ∑L3
l3=1 al1l2l3 mm3l3 (for m3 = 1, 2, . . . , M3), while U[3] = M3A[3]. Clearly, we

can multiply the tensorA with the three previously defined matrices M1, M2, and M3. In this case,
we get the tensor:

T = A×1 M1 ×2 M2 ×3 M3 (7)

= A×1 M1 ×3 M3 ×2 M2

= A×2 M2 ×1 M1 ×3 M3

= A×2 M2 ×3 M3 ×1 M1

= A×3 M3 ×1 M1 ×2 M2

= A×3 M3 ×2 M2 ×1 M1,

where T ∈ RM1×M2×M3 . As a consequence, considering b1, b2, and b3 three vectors of lengths L1, L2,
and L3, respectively, the multiplication of the tensorA with the transposed vectors gives the scalar:

c = A×1 bT
1 ×2 bT

2 ×3 bT
3

=
L1

∑
l1=1

L2

∑
l2=1

L3

∑
l3=1

al1l2l3 b1l1 b2l2 b3l3 , (8)

where T is the transpose operator. It is easy to check that (8) is trilinear with respect to b1, b2, and b3.
At this point, we can also define the inner product between two tensors A and B of the same

dimension (L1 × L2 × L3), which is:

〈A,B〉 =
L1

∑
l1=1

L2

∑
l2=1

L3

∑
l3=1

al1l2l3 bl1l2l3

= vecT (B) vec (A) . (9)

Therefore, Expression (8) can also be written in a more convenient way, i.e.,

c = 〈A,B〉
= vecT (B) vec (A)

= vecT (b1 ◦ b2 ◦ b3) vec (A)

= (b3 ⊗ b2 ⊗ b1)
T vec (A) , (10)

where B = b1 ◦ b2 ◦ b3 (see (1)). Moreover, ifA is also a rank-1 tensor, i.e.,A = a1 ◦ a2 ◦ a3, where
the vectors ai have the lengths Li (with i = 1, 2, 3), then:

〈A,B〉 = bT
1 a1 × bT

2 a2 × bT
3 a3. (11)
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Furthermore, it is easy to check that:

B×1 M1 = M1b1 ◦ b2 ◦ b3,

B×2 M2 = b1 ◦M2b2 ◦ b3,

B×3 M3 = b1 ◦ b2 ◦M3b3,

where the matrices M1, M2, and M3 were previously defined (related to (4)–(6)).
The short background on tensors provided before and the main related operations

(e.g., matricization, vectorization, rank, and different types of product) aim to facilitate the development
that follows in Section 3. It is also important to outline that the trilinear forms result in the context of the
decomposition of third-order tensors. Extension to higher order tensors and multilinear forms could
be straightforward when dealing with rank-1 tensors. Otherwise, in the general case, decomposing
higher rank higher order tensors (see (3)) raises additional difficulties, as will be briefly pointed out at
the end of Section 5.

3. RLS Algorithm for Trilinear Forms

In the following, for the sake of consistency with the development of the NLMS-TF algorithm,
we will keep the framework and notation from [17]. Therefore, let us consider the output of a
multiple-input single-output (MISO) system (with real-valued data) at the discrete-time index n
defined as:

y(n) = X (n)×1 hT
1 ×2 hT

2 ×3 hT
3

=
L1

∑
l1=1

L2

∑
l2=1

L3

∑
l3=1

xl1l2l3(n)h1,l1 h2,l2 h3,l3 , (12)

where the tensorial form X (n) ∈ RL1×L2×L3 groups the input signals, with:

[X (n)]l1l2l3 = xl1l2l3(n), li = 1, 2, . . . , Li, i = 1, 2, 3,

and the vectors hi, i = 1, 2, 3 (of lengths L1, L2, and L3, respectively) define the three impulse responses,
i.e.,

hi =
[

hi,1 hi,2 · · · hi,Li

]T
, i = 1, 2, 3.

As we can notice, y(n) represents a trilinear form (see (12) as compared to (8)), because it is a
linear function of each of the vectors hi, i = 1, 2, 3, if the other two are fixed.

Next, we can also introduce a rank-1 tensor of dimension L1 × L2 × L3, using the three impulse
responses of the MISO system:

H = h1 ◦ h2 ◦ h3, (13)

whose elements are:

(H)l1l2l3 = h1,l1 h2,l2 h3,l3 , li = 1, 2, . . . , Li, i = 1, 2, 3.

Consequently, the output signal results in:

y(n) = vecT (H) vec [X (n)] , (14)
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where:

vec (H) =

 vec (H::1)
...

vec
(
H::L3

)
 , (15)

vec [X (n)] =

 vec [X::1(n)]
...

vec
[
X::L3(n)

]
 , (16)

with H::l3 and X::l3(n) (l3 = 1, 2 . . . , L3) being the frontal slices ofH and X (n), respectively. At this
point, we can introduce the notation:

h , vec (H) = h3 ⊗ h2 ⊗ h1, (17)

x(n) , vec [X (n)] , (18)

where h and x(n) are two long vectors, each of them having L1L2L3 elements. Thus, the output signal
can also be expressed as:

y(n) = hTx(n). (19)

The main goal is to estimate the output of the MISO system, which is usually corrupted by an
additive noise. Hence, the reference signal results in:

d(n) = y(n) + w(n)

= hTx(n) + w(n), (20)

where w(n) is a zero-mean additive noise, which is uncorrelated with the input signals. Alternatively,
we could estimate the global impulse response h, using an adaptive filter ĥ(n) (of length L1L2L3).
At this point, we may also define the error signal:

e(n) = d(n)− ŷ(n)

= d(n)− ĥT(n− 1)x(n), (21)

which represents the difference between the reference signal and the estimated signal, ŷ(n).
Based on (17), we can notice that the global impulse response h (of length L1L2L3) results based

on a combination of the shorter impulse responses hi, i = 1, 2, 3, of lengths L1, L2, and L3, respectively.
Consequently, the estimated impulse response can also be decomposed as:

ĥ(n) = ĥ3(n)⊗ ĥ2(n)⊗ ĥ1(n), (22)

where ĥi(n), i = 1, 2, 3 are three adaptive filters (with L1, L2, and L3 coefficients, respectively), which
aim to model the individual impulse responses hi, i = 1, 2, 3. Nevertheless, we should notice that
there is no unique solution related to the decomposition in (22). It is obvious that, for any constants
η1, η2, and η3, with η1η2η3 = 1, we have:

h = h3 ⊗ h2 ⊗ h1

= η3h3 ⊗ η2h2 ⊗ η1h1. (23)

Hence, ηihi, i = 1, 2, 3 also represent a set of solutions. However, the global impulse response h
is identified with no scaling ambiguity.
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Following the decomposition from (22), we can easily verify that:

ĥ(n) = Ĥ32(n)ĥ1(n) (24)

= Ĥ31(n)ĥ2(n) (25)

= Ĥ21(n)ĥ3(n), (26)

where:

Ĥ32(n) = ĥ3(n)⊗ ĥ2(n)⊗ IL1 , (27)

Ĥ31(n) = ĥ3(n)⊗ IL2 ⊗ ĥ1(n), (28)

Ĥ21(n) = IL3 ⊗ ĥ2(n)⊗ ĥ1(n), (29)

and ILi , i = 1, 2, 3 are the identity matrices of sizes L1× L1, L2× L2, and L3× L3, respectively. Moreover,
introducing the notation:

x32(n) = ĤT
32(n− 1)x(n), (30)

x31(n) = ĤT
31(n− 1)x(n), (31)

x21(n) = ĤT
21(n− 1)x(n), (32)

the error signal from (21) can be expressed in three equivalent ways as:

e(n) = d(n)− ĥT
1 (n− 1)x32(n), (33)

= d(n)− ĥT
2 (n− 1)x31(n), (34)

= d(n)− ĥT
3 (n− 1)x21(n). (35)

Based on the least-squares error criterion [18] applied in the context of (20) and (21),
the conventional RLS algorithm is derived from:

J
[
ĥ(n)

]
=

n

∑
i=1

λn−i
[
d(i)− ĥT(n)x(i)

]2
, (36)

where λ ≤ 1 is a positive constant known as the forgetting factor. On the other hand, based on (24)–(26),
the cost function from (36) can be expressed in three different ways, targeting the optimization of the
individual components, i.e.,

Jĥ3,ĥ2

[
ĥ1(n)

]
=

n

∑
i=1

λn−i
1

[
d(i)− ĥT

1 (n)x32(i)
]2

, (37)

Jĥ3,ĥ1

[
ĥ2(n)

]
=

n

∑
i=1

λn−i
2

[
d(i)− ĥT

2 (n)x31(i)
]2

, (38)

Jĥ2,ĥ1

[
ĥ3(n)

]
=

n

∑
i=1

λn−i
3

[
d(i)− ĥT

3 (n)x21(i)
]2

, (39)

where λ1, λ2, and λ3 are the individual forgetting factors. The previous cost functions suggest a
“trilinear” optimization strategy [25], where we assume that two components are fixed during the
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optimization of the third one. Consequently, based on the minimization of (37)–(39) with respect to
ĥ1(n), ĥ2(n), and ĥ3(n), respectively, the following set of normal equations are obtained:

R32(n)ĥ1(n) = p32(n), (40)

R31(n)ĥ2(n) = p31(n), (41)

R21(n)ĥ3(n) = p21(n), (42)

where:

R32(n) =
n

∑
i=1

λn−i
1 x32(i)xT

32(i)

= λ1R32(n− 1) + x32(n)xT
32(n),

p32(n) =
n

∑
i=1

λn−i
1 x32(i)d(i)

= λ1p32(n− 1) + x32(n)d(n),

R31(n) =
n

∑
i=1

λn−i
2 x31(i)xT

31(i)

= λ2R31(n− 1) + x31(n)xT
31(n),

p31(n) =
n

∑
i=1

λn−i
2 x31(i)d(i)

= λ2p31(n− 1) + x31(n)d(n),

R21(n) =
n

∑
i=1

λn−i
3 x21(i)xT

21(i)

= λ2R21(n− 1) + x21(n)xT
21(n),

p21(n) =
n

∑
i=1

λn−i
3 x21(i)d(i)

= λ3p21(n− 1) + x21(n)d(n).

Solving (40)–(42), the updates of the individual filters result in:

ĥ1(n) = ĥ1(n− 1) + R−1
32 (n)x32(n)e(n)

= ĥ1(n− 1) + k32(n)e(n), (43)

ĥ2(n) = ĥ2(n− 1) + R−1
31 (n)x31(n)e(n)

= ĥ2(n− 1) + k31(n)e(n), (44)

ĥ3(n) = ĥ3(n− 1) + R−1
21 (n)x21(n)e(n)

= ĥ3(n− 1) + k21(n)e(n), (45)

where k32(n) = R−1
32 (n)x32(n), k31(n) = R−1

31 (n)x31(n), and k21(n) = R−1
21 (n)x21(n) are the Kalman

gain vectors, while the error signal can be computed based on (33). At this point, the main task is to
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update the inverse of the matrices R32(n), R31(n), and R21(n) efficiently. The solution relies on the
matrix inversion lemma [18], which leads to the following updates:

R−1
32 (n) =

1
λ1

[
IL1 − k32(n)xT

32(n)
]

R−1
32 (n− 1), (46)

R−1
31 (n) =

1
λ2

[
IL2 − k31(n)xT

31(n)
]

R−1
31 (n− 1), (47)

R−1
21 (n) =

1
λ3

[
IL3 − k21(n)xT

21(n)
]

R−1
21 (n− 1). (48)

Therefore, the Kalman gain vectors are evaluated as:

k32(n) =
R−1

32 (n− 1)x32(n)

λ1 + xT
32(n)R

−1
32 (n− 1)x32(n)

, (49)

k31(n) =
R−1

31 (n− 1)x31(n)

λ2 + xT
31(n)R

−1
31 (n− 1)x31(n)

, (50)

k21(n) =
R−1

21 (n− 1)x21(n)

λ3 + xT
21(n)R

−1
21 (n− 1)x21(n)

. (51)

For initialization, we can choose:

ĥ1(0) =

[
1
0L1−1

]
, (52)

ĥ2(0) =
1
L2

1L2 , (53)

ĥ3(0) =
1
L3

1L3 , (54)

where 0N and 1N are two vectors of length N, all elements of which are equal to zero and one,
respectively.

The proposed RLS algorithm for trilinear forms, namely RLS-TF, is summarized in Table 1. It could
also be interpreted as an extension of the RLS-based algorithm tailored for bilinear forms, which was
presented in [12]. However, if the MISO system identification problem results based on (12), it is natural
to use the RLS-TF algorithm, which is designed for the identification of third-order (rank-1) tensors.

In terms of computational complexity, it can be noticed that the proposed RLS-TF algorithm
combines the solutions provided by three RLS-based filters, i.e., ĥ1(n) (of length L1), ĥ2(n) (of length
L2), and ĥ3(n) (of length L3). Since the complexity of a regular RLS-based algorithm is proportional
to the square of the filter length, the overall complexity of the RLS-TF algorithm roughly results in
O(L2

1 + L2
2 + L2

3). On the other hand, the system identification problem can also be handled based on
the conventional RLS algorithm, which results following (20) and (21), together with the cost function
from (36). However, in this case, there is a single adaptive filter ĥ(n), of length L = L1L2L3, so that
the computational complexity is of the order of O(L2). This could be much more computationally
expensive as compared to the proposed RLS-TF algorithm.
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Table 1. RLS algorithm for trilinear forms (RLS-TF).

Initialization:
Set ĥ1(0), ĥ2(0), and ĥ3(0) based on (52)–(54)
R−1

32 (0) = 1
δ1

IL1 , R−1
31 (0) = 1

δ2
IL2 , R−1

21 (0) = 1
δ3

IL3

(Regularization parameters: δ1 > 0, δ2 > 0, δ3 > 0)
λ1 = 1− 1

KL1
, λ2 = 1− 1

KL2
, λ3 = 1− 1

KL3

(Tuning constant : K ≥ 1)
For n = 1, 2, . . . , number of iterations :
Compute Ĥ32(n− 1), Ĥ31(n− 1), and Ĥ21(n− 1) based on (27)–(29)
Compute x32(n), x31(n), and x21(n) based on (30)–(32)
Evaluate the error signal e(n) based on (33)
Compute k32(n), k31(n), and k21(n) based on (49)–(51)
Update ĥ1(n), ĥ2(n), and ĥ3(n) based on (43)–(45)
Update R−1

32 (n), R−1
31 (n), and R−1

21 (n) based on (46)–(48)
Evaluate ĥ(n) based on (22)

Basically, the RLS-TF algorithm “transforms” a large system identification problem of length
L = L1L2L3 into three “smaller” problems of lengths L1, L2, and L3, respectively, with advantages
in terms of both performance (as will be shown in simulations) and complexity. As outlined before,
the proposed RLS-TF algorithm combines the solutions provided by three adaptive filters of lengths
L1, L2, and L3, respectively, while the conventional RLS algorithm deals with a single filter of length
L = L1L2L3, which is usually much longer. Since the length of the filter highly influences the main
performance criteria, i.e., convergence rate and misadjustment [18], the proposed algorithm is able
to outperform the conventional one in terms of both criteria. In other words, the shorter the length,
the faster the convergence and the lower the misadjustment. This expected behaviour will be supported
by the simulation results provided in the next section.

Finally, we should observe that there are some extra operations specific to the RLS-TF algorithm.
For example, the “input” signals x32(n), x31(n), and x21(n) result based on (30)–(32), which rely
on (27)–(29). Furthermore, the global impulse response (if required within the application) can be
evaluated based on (22). These operations require Kronecker products, but the related computational
complexity is moderate, i.e., of the order of O(L1L2L3) = O(L).

The detailed computational complexities of the proposed RLS-TF algorithm and other benchmark
algorithms (i.e., the conventional RLS and NLMS algorithms) are summarized in Table 2. For a
better visualization, the computational complexities are also illustrated in Figure 1, in terms of the
number of multiplications and additions (per iteration), for different values of L1; the other lengths
are fixed to L2 = 8 and L3 = 4 (similar to the experimental setup from Section 4). As we can notice,
the computational complexity of the conventional RLS algorithm was significantly greater, while
the computational amount of the proposed RLS-TF algorithm was closer to the conventional NLMS
algorithm, especially for higher lengths.

Table 2. Computational complexity of the RLS-TF algorithm, as compared to the conventional RLS and
NLMS algorithms.

Algorithms × + ÷

RLS 2L2 + 2L 2L2 + L + 1 1

RLS-TF 4L + 3
(

L2
1 + L2

2 + L2
3
)
+ 3 (L1 + L2 + L3) +

min(L1, L2, L3)
3L + 2

(
L2

1 + L2
2 + L2

3
)

+ L1 + L2 + L3 +
min(L1, L2, L3)

3

NLMS 2L + 2 2L + 3 1
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Figure 1. Computational complexity of the proposed RLS-TF algorithm, as compared to the
conventional RLS and NLMS algorithms, as a function of L1; the other dimensions are set to L2 = 8
and L3 = 4: (a) number of multiplications per iteration and (b) number of additions per iteration.

4. Simulation Results

Simulations were performed in the framework of a tensor-based system identification problem,
which resulted following the MISO model defined by (12) and (20) and was similar to the setup used
in [17]. The input signals that form the third-order tensorX (n) are AR(1) processes; they are generated
by filtering white Gaussian noises through a first-order system 1/

(
1− 0.9z−1). The additive noise

w(n) is white and Gaussian; its variance was set to σ2
w = 0.01.

The third-order system used in the simulations and its components (h1, h2, and h3) are depicted in
Figure 2. First, the component h1 is an impulse response from the G168 Recommendation [26], of length
L1 = 64; it is provided in Figure 2a. Second, in Figure 2b, the component h2 is a random impulse
response (with Gaussian distribution) of length L2 = 8. Third, the coefficients of the last component,
i.e., the impulse response h3, are depicted in Figure 2c; those were evaluated as h3,l3 = 0.5l3−1, l3 =

1, 2, . . . , L3, using the length L3 = 4. Therefore, the global impulse response from Figure 2d resulted as
h = h3 ⊗ h2 ⊗ h1, and its length was L = L1L2L3 = 2048. This global impulse response resembled a
channel with echoes, e.g., like an acoustic echo path [27]. Finally, the third-order (rank-1) tensorH of
dimension L1 × L2 × L3 could be formed according to (13). In order to test the tracking capabilities
of the algorithms, an abrupt change of the system was introduced in the middle of each experiment,
by changing the sign of the coefficients of each impulse response.
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Figure 2. The components of the third-order system used in simulations: (a) h1 is the first impulse
response (of length L1 = 64) from the G168 Recommendation [26]; (b) h2 is a randomly generated
impulse response (of length L2 = 8), with Gaussian distribution; (c) the impulse response h3 (of length
L3 = 4), with the coefficients computed as h3,l3 = 0.5l3−1, with l3 = 1, 2, . . . , L3; and (d) the global
impulse response (of length L = L1L2L3 = 2048) results based on (17), h = h3 ⊗ h2 ⊗ h1.

As shown in Section 3, the proposed RLS-TF algorithm was designed to estimate the individual
components of the global system. However, we could identify h1, h2, and h3 up to some scaling
factors, as explained using (23). Therefore, to evaluate the identification of these individual impulse
responses, a proper performance measure is the normalized projection misalignment (NPM) [28]:

NPM
[
h1, ĥ1(n)

]
= 1−

 hT
1 ĥ1(n)

‖h1‖2

∥∥∥ĥ1(n)
∥∥∥

2

2

, (55)

NPM
[
h2, ĥ2(n)

]
= 1−

 hT
2 ĥ2(n)

‖h2‖2

∥∥∥ĥ2(n)
∥∥∥

2

2

, (56)

NPM
[
h3, ĥ3(n)

]
= 1−

 hT
3 ĥ3(n)

‖h3‖2

∥∥∥ĥ3(n)
∥∥∥

2

2

, (57)

where ‖·‖2 denotes the Euclidean norm. On the other hand, the global impulse response h results
without any scaling ambiguity. Consequently, we can use a performance measure based on the regular
normalized misalignment (NM):

NM
[
h, ĥ(n)

]
=

∥∥∥h− ĥ(n)
∥∥∥2

2

‖h‖2
2

, (58)

which is also equivalent to
∥∥∥H− Ĥ(n)

∥∥∥2

F
/ ‖H‖2

F, where Ĥ(n) = ĥ1(n) ◦ ĥ2(n) ◦ ĥ3(n) and ‖·‖F

denotes the Frobenius norm (the Frobenius norm of a third-order tensor A is defined as ‖A‖F =√
〈A,A〉 =

∥∥∥A[1]

∥∥∥
F
=
∥∥∥A[2]

∥∥∥
F
=
∥∥∥A[3]

∥∥∥
F
).
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The simulation results should provide answers to several important questions, as follows. (i) What
is the influence of the forgetting factors on the performance of the proposed RLS-TF algorithm?
(ii) What are the advantages of the RLS-TF algorithm over the previously developed NLMS-TF
counterpart [17]? (iii) What are the advantages of the RLS-TF algorithm over the conventional RLS
benchmark? The following three experiments are designed to address these issues.

In the first experiment, the performance of the proposed RLS-TF algorithm was analysed
with respect to its main parameters, i.e., the forgetting factors λ1, λ2, and λ3. In the case of an
RLS-based algorithm, the value of the forgetting factor is usually related to the filter length, following a
well-known rule of thumb, as shown in Table 1 (see “Initialization”). In our case, the forgetting factors
of the RLS-TF algorithm were set to λ1 = 1− 1/(KL1), λ2 = 1− 1/(KL2), and λ3 = 1− 1/(KL3). As
we can notice, the value of each forgetting factor depended on the length of its related filter (i.e., L1,
L2, or L3), but also on the constant K. This tuning parameter could be used to adjust the values of
the forgetting factors, as indicated in Figures 3 and 4. Clearly, a higher value of K would result in a
higher value of the forgetting factor (i.e., closer to one). We could expect that a higher value of the
forgetting factor would reduce the misalignment, but slowing down the convergence/tracking [29].
On the other hand, reducing the forgetting factor improves the convergence/tracking, but increasing
the misalignment. This behaviour was supported by the results depicted in Figures 3 and 4, in terms of
NPM and NM, respectively. As we can notice, the value K = 20 lead to a good compromise between
the performance criteria, so that it would be used in the following experiments.
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Figure 3. Normalized projection misalignment (NPM) evaluated based on (55)–(57), in dB, for the
identification of the individual impulse responses from Figure 2a–c, using the RLS-TF algorithm
with different values of the forgetting factors λi = 1− 1/(KLi), i = 1, 2, 3 (varying the value of K):

(a) NPM
[
h1, ĥ1(n)

]
, (b) NPM

[
h2, ĥ2(n)

]
, and (c) NPM

[
h3, ĥ3(n)

]
.
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Figure 4. Normalized misalignment (NM) evaluated based on (58), in dB, for the identification of
the global impulse response h (of length L = 2048) from Figure 2d, using the RLS-TF algorithm with
different values of the forgetting factors λi = 1− 1/(KLi), i = 1, 2, 3 (varying the value of K).

Next, we compare the performance of the proposed RLS-TF algorithm with its previously
developed counterpart based on the NLMS algorithm, i.e., NLMS-TF [17]. The overall performance of
this algorithm is mainly controlled by its normalized step-sizes, which are positive constants smaller
than one. Using notation similar to that involved in [17], we set equal values for these parameters,
i.e., α1 = α2 = α3 = α. In the case of the NLMS-TF algorithm, the fastest convergence mode was
obtained when α1 + α2 + α3 ≈ 1, so that we could use α = 0.33. Smaller values of the normalized
step-sizes (e.g., α = 0.1) reduced the convergence/tracking, but led to a lower misalignment. As shown
in Figures 5 and 6 (in terms of NPM and NM, respectively), the RLS-TF algorithm clearly outperformed
the NLMS-TF counterpart, achieving a faster convergence rate and tracking, together with low
misalignment.

Finally, in the last experiment, we investigated the comparison between the RLS-TF solution and
the conventional RLS algorithm. As explained in the last part of Section 3 (related to the computational
complexity), the conventional RLS algorithm could also be used for the identification of the global
impulse response of length L, based on the cost function from (36). This algorithm uses a single
forgetting factor, which can also be set as λ = 1− 1/(KL), where K is the same tuning constant.
The influence of the value of λ on the performance of the algorithm is also related to the well-known
compromise between low misalignment and fast tracking. In the experiment reported in Figure 7,
the conventional RLS algorithm uses two values of the forgetting factor, which were set by varying
the tuning constant to K = 1 and K = 20. As we can notice, even if the largest value of the forgetting
factor (obtained for K = 20) led to a lower misalignment, the tracking capability of the conventional
RLS algorithm was significantly reduced. Clearly, the tracking was improved when using a smaller
forgetting factor (corresponding to K = 1), but the misalignment of the conventional RLS algorithm
was much higher in this case. On the other hand, the RLS-TF algorithm outperformed by far its
conventional counterpart, in terms of both performance criteria. Moreover, the complexity of the
conventional RLS algorithm, i.e., O(L2), was prohibitive for practical implementations, due to the
long length of the global filter (L = 2048). On the other hand, the RLS-TF algorithm worked on the
individual components and combined the solutions of three shorter filters, of lengths L1, L2, and L3

(with L1L2L3 = L); thus, it was much more computationally efficient. As a trivial example related to
the last experiment given in Figure 7, we could mention that the simulation time (using MATLAB) of
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the RLS-TF algorithm was less than one minute, while the conventional RLS algorithm took hours to
reach the final result.
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Figure 5. Normalized projection misalignment (NPM) evaluated based on (55)–(57), in dB, for the
identification of the individual impulse responses from Figure 2a–c, using the NLMS-TF algorithm [17]
(with different normalized step-sizes α1 = α2 = α3 = α) and the RLS-TF algorithm (with the forgetting

factors λi = 1− 1/(KLi), i = 1, 2, 3, where K = 20): (a) NPM
[
h1, ĥ1(n)

]
, (b) NPM

[
h2, ĥ2(n)

]
, and (c)

NPM
[
h3, ĥ3(n)

]
.
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Figure 6. Normalized misalignment (NM) evaluated based on (58), in dB, for the identification of the
global impulse response h (of length L = 2048) from Figure 2d, using the NLMS-TF algorithm [17]
(with different normalized step-sizes α1 = α2 = α3 = α) and the RLS-TF algorithm (with the forgetting
factors λi = 1− 1/(KLi), i = 1, 2, 3, where K = 20).
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Figure 7. Normalized misalignment (NM) evaluated based on (58), in dB, for the identification of the
global impulse response h (of length L = 2048) from Figure 2d, using the conventional RLS algorithm
(with different values of the forgetting factor λ = 1− 1/(KL), varying the value of K) and the RLS-TF
algorithm (with the forgetting factors λi = 1− 1/(KLi), i = 1, 2, 3, where K = 20).

5. Conclusions and Future Works

In this paper, we explored the identification of trilinear forms using the RLS algorithm.
The approach was developed in the framework of an MISO system identification problem, based on
the decomposition and modelling of third-order tensors. The resulting RLS-TF algorithm was tailored
for the identification of such trilinear forms in a more efficient way as compared to the conventional
RLS algorithm. Moreover, the proposed RLS-TF algorithm outperformed its previously developed
NLMS-TF counterpart in terms of the main performance criteria, providing a faster convergence rate
and tracking, together with low misalignment.

The ideas presented in this paper could be further exploited in an extended framework, aiming
to identify more general forms of global impulse responses, which cannot be decomposed as rank-1
tensors. Several preliminary results can be found in [30–32], but they are applicable only in the
bilinear context (i.e., second-order tensors). The extension to the trilinear case represents a very
challenging problem, since finding (and approximating) the rank of a higher order tensor is a much
more sensitive task. Furthermore, it would be interesting to extend other versions of the NLMS and
RLS algorithms (e.g., based on variable step-sizes [33] and variable forgetting factors [34], respectively)
to the trilinear forms.

Finally, it would be useful to evaluate how the proposed algorithm could benefit (in terms of
implementation) from the current technology of the tensor processing unit (TPU) and the TensorFlow
software [35]. This aspect could bring additional advantages, especially in the framework of specific
applications related to machine learning/vision, neural networks, and artificial intelligence.
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