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Abstract: The topic of this paper is modeling based on Hamiltonian spin interactions. Preliminary
studies on the identification of quasi-static magnetizing field in a magnetic system were presented.
The random-field Ising model was then used to simulate the simplified ferromagnetic structure. The
validation of algorithms and simulation tests were carried out for the 2D and the 3D model spaces
containing at least 106 unit cells. The research showed that the response of a slowly driven magnetic
system did not depend on the external field sweep rate. Changes in the spatial magnetization of the
lattice were very similar below a certain rate of the external field change known as the quasi-static
boundary. The observed differences in obtained magnetization curves under quasi-static conditions
stemmed from the random nature of the molecular field and the avalanche-like magnetization process
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1. Introduction

The concept of a cellular automaton was introduced by Ulam and Von Neumann [1,2]. At present,
cellular automata are used as a scientific tool in studies of complex dynamic systems, microstructures,
and many other applications [3–7]. Cellular automaton (CA) is an example of how simple rules and
local interactions can lead to very diverse and complicated behaviors [8,9]. Usually, cellular automata
are simple and regular grids. Each node of the grid is in a defined discrete state. The states of the nodes
are updated synchronously at discrete moments and the state of each node at the next moment is a
function of the state of its neighbors in the current moment. The Ising model, being a magnetic system
based on statistical mechanics, is a magnificent example of a cellular automaton that was developed
much earlier than the aforementioned cellular automaton concept [10,11]. The model is widely used in
computer physics for the analysis of magnetic hysteresis [12,13] phase transitions [14,15], dynamics of
magnetization [16,17], Barkhausen noise [13,15,17,18], and energy loss in magnetic materials [19], as
well as for defect and inhomogeneity studies in magnetic structures [20–25].

Magnetic modeling using the interactions of so-called “spins” arranged in a lattice of regular
unit cells is the most widely used approach. A single spin can be interpreted as a magnetic moment
of an atom in a crystal lattice, crystal grain, magnetic domain, or quantized amorphous space [26].
Modeling of spontaneous magnetization processes including hysteresis, displacements of domain
walls, and the Barkhausen effect are some of the common applications of the Ising model [26–28]. The
vast majority of works use the random-field Ising model (RFIM) based on the Hamiltonian as the
energy function with an additional term representing the random molecular magnetic field assigned to
each spin [13,14,29,30].

However, the RFIM does not explicitly take into account the time scale. Therefore, the simulation
results are qualitatively and quantitatively consistent only for time-independent processes such as the
primary magnetization curve or the static magnetic hysteresis loop [28].
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Studies of hysteresis in soft magnetic materials have always been a part of scientific work. Various
magnetic, physical, structural, thermodynamic, and many other parameters are identified on the basis
of the shape and area of the hysteresis loop. Basically, loops can be classified as static or dynamic [12,31],
but the magnetizing field must be variable over time to obtain both hysteresis loops. The static loop is
interesting because it illustrates the magnetizing process without time-dependent effects. In practice,
the change in material magnetization is quite complex and there is no strict interpretation when the
process can be considered static, even when an extremely low frequency sweep rate is used [6,32].
Therefore, this approach shall only be considered as a quasi-static approximation of a boundary static
process [32]. Many works on testing magnetic materials arbitrarily assume, without any explanation,
that the frequency sweep rate is low enough that, e.g., eddy currents may be neglected. The real
limitation of the static condition results very often from the technical limitations of the measuring
instruments. In this case, one cannot assess how large the discrepancy of such an approximation
is. In this context, the paper provides a contribution in the field of slowly driven magnetic systems
through the identification of the quasi-static limiting of magnetization processes in magnetic materials.
Coliaori et al. [19] showed the dependency of field sweep rate in the RFIM on the coercive field
of magnetic thin films and pointed out a direct link between the theory of loss separation for bulk
materials and a simple magnetic system with disorder. Thus, the aim of this work is to check if
RFIM, as a mathematical model of ferromagnetism, shows a tendency to reach the limit of quasi-static
magnetization under general conditions.

2. Random-Field Ising Model

The model space is defined as a set of unit cells associated with the Szi spin operators. Spins
denoted as Szi are surrounded by j = 2D adjacent spins Szj. The Szi spin is coupled with Szj through
exchange interactions. Spin operators take values from the set of Szi, Szj = { S−z = −1, S+

z = +1} and
change the values to the opposite by spin flip.

A set of periodically arranged unit cells creates either a spatial or a flat model lattice with spins
placed in all sites of the lattice. The number of spins in the model space depends on the form of the
unit cell, the number of space dimensions D and the lattice length L for each dimension. The unit cell
is here referred to as a site in the lattice. The model space is therefore defined as the D-dimensional
lattice of regular unit cells limited in each direction by its pertinent length LD, and comprising N sites
with localized spins (Equation (1)).

N =
∏

D

(LD) (1)

Other magnetic structures require consideration of both other forms of unit cells and other
numbers of localized spins coupled by exchange interactions [20,27]. The use of regular cells instead
of more complicated forms is a typical simplification of the model space. In other cases, when the
structure is not a crystal lattice or has a very heterogeneous form, one can quantize the space with
regular cells and estimate equivalent parameters. The fundamental Hamiltonian formH of the Ising
model takes into account both the exchange interactions between the nearest-neighbored spins in the
lattice and the applied external field H. The Hamiltonian of the RFIM (Equation (2)) imposes quenched
disorder in the form of a random molecular field hi assigned to all sites i of the lattice [26].

H = −Jij

∑
i,j

SziSzj −
∑

i
Szihi −

∑
i
SziH (2)

The value of the hi field in Equation (2) has an impact only on triggering the spin Szi flip induced
either by adjacent spins Szj or by the external field H [28]. Parallel polarization of all spins in the lattice
occurs under the influence of exchange interactions in the Weiss molecular field [12,13]. In the RFIM,
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the subsequent values of the hi field are random variables and depend on the parameters of the random
distribution described by Equation (3).

p(hi) =
1
√

2πR
exp

− h2
i

2R2

 (3)

The set of random values hi ∈ {h0, h1, . . . hN-1} is generated on the basis of the Gaussian distribution
function described by the relationship in Equation (3) and is additionally subject to the limitations
defined by Equation (4). The mean value of the set hi in the space defined by N spins tends to zero
(Equation (4)). Variance of random fields hi is a function of the disorder R at the temperature T ~0 K.

hi

∣∣∣∣
i→N
→ 0 (4)

The range of changes in the parameter R is limited by the value of critical disorder Rc [13,28]. The
sequence of random hi ∈ {h0, h1, . . . hN-1} for R > Rc may contain hi elements that do not guarantee
the convergence of the simulation process (non-ergodic sequence of random variables) [29]. A more
comprehensive analysis of the disorder parameter in the RFIMs was carried out in works [15,17,18,26,28].
If the effective field heff (Equation (5)) acting in a given site i changes the sign to the opposite, then
flipping of the Szi spin occurs and its value is also changed to the opposite.

heff(Szi) = J
∑

j

Szj + hi + H (5)

The flip condition (Equation (6)) may occur if there is either a change in the configuration of
adjacent spins Szj for a given instantaneous value of field H, or a change in the instant value of the
magnetizing field H with a fixed configuration of spins Szj.

S−zi →
sign[he f f (Szi)]

S+
zi (6)

The initial equilibrium of the model is achieved at a temperature close to absolute zero (with no
thermal fluctuations, accidental spin excitations, changes in spontaneous magnetization saturation):
Ms (T = 0, H = 0). Evolution from the initial equilibrium state to the subsequent equilibrium or
metastable states takes place in the magnetization process, forced by a homogeneous, external H field.
The estimation of average magnetization during metastable magnetization states (H, m = const) is
based on the relationship in Equation (7),

m =

∑
i

(
S−zi

)
−

∑
i

(
S+

zi

)
N

(7)

Where Szi
+ denotes spins that have been flipped and Szi

- spins that remain in their initial
configuration. To estimate the area of the model space where unstable changes in magnetization are
induced, the correlation function (Equation (8)) of x number of spin flips denoted as x and random
field disorder R was used [13,26,28].

Gint(x, R) ≈
1

xD+β/ν
G± (x|r|ν) (8)

Values of β, ν, and G were assumed accordingly to the relationships in Equation (9) [13,26,28].

G± =

{
+1 f or sign(+r)
−1 f or sign(−r)

}
; r = Rc−R

R

β = 1.81± 0.32; ν = 1.39± 0.20; D = 3
(9)
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The estimation of the G value for a given R indicates the dynamics of magnetization and shows
changes in the number of correlated spin flips (avalanches) triggered by a single spin flip.

3. Numerical Implementation

Numerical implementation of the RFIM involves the algorithms for generation of pseudo-random
numbers and collective spin flipping.

To determine the sequence of random fields hi, the three-stage random number generator was
used. In the first step, a start sequence of five pseudo-random values initiated the relevant generator.
The initial set was generated by a linear congruential generator for a given seed value [33]. Next, a
sequence of pseudo-random numbers from the range (0,1) was generated on the basis of the Tausworth
algorithm [34]. In the third stage, one random variable with a Gaussian distribution was calculated
from the two previously generated independent variables of the even distribution by means of the
Box–Muller method [33,35]. The output value was scaled according to the determined standard
deviation specified by the disorder R. All Szi spins were set to −1 and random values hi are assigned to
them. The initial value of the external field Hmin < min(hi) was determined.

Avalanche spin flipping was triggered by increasing gradually the external field with a step ∆H.
The condition (Equation (5)) of spin flip was checked by the brute force linear search method [18]. The
algorithm is not very effective numerically, but allows one to determine explicitly the instantaneous
changes in spatial magnetization and map other parameters of the model. The space was searched
as long as all spins for the given external field H could be flipped. In the next step, the external field
Hi+1 = Hi + ∆H was again increased and the subsequent step of the search algorithm was executed.
The procedure was repeated until all spins in the entire model space were flipped (Equation (6)).

4. Results and Discussion

Numerical simulations using RFIM were carried out to verify the Gaussian pseudo-random
number generator and spin flip procedure. Subsequently, the dynamics of the magnetization process
of 2D and 3D structures was examined.

Model verification included both the discrepancies in the average value of the generated
pseudo-random set hi according to dependencies 3 and 4 and the correlation of the spin flip process
G (x, R) depending on the set of pseudo-random parameter values using the correlation functions
(Equations (8) and (9)).

Analyzing the changes in the average value of the hi parameters against the size of the model space
N for various values of the disorder R (Figure 1), one can assume that these changes are negligibly small
in comparison with the hi values for the model space comprising above N = 104 spins. However, if the
value N falls below 104, one should either consider the non-equilibrium magnetization state resulting
from the non-zero mean hi or reduce the discussed problem by increasing the size of the model space
so that the number of spins would exceed 104. Thus, the reduced impact of the non-equilibrium initial
state occurs in simulations of two-dimensional spaces (D = 2) for the values of the parameter L > 100,
and L > 22 in the case of the three-dimensional model (D = 3).

Another tested parameter of the model was the correlation of spin flips in areas of the model
where avalanche processes occurred. The effect of avalanches, which introduce discontinuous changes
in the magnetization of the model space, was determined on the basis of Equation (9). It can therefore
be assumed that the discrete states of magnetization, recorded in the course of simulation, also
strongly depend on the correlation of spin flips. The value of spin flip correlation can be estimated by
determining the distance x (avalanche size) defined as the number of sites of inverted spins relative to
the spin starting the avalanche process. Based on the normalized number of classes, range width, and
class limits, the histogram of correlated inversions was determined in accordance with the relationships
found in Equations (8) and 9). A graph of the spin flip correlation function was created by accumulating
number of flipped spins in class intervals for a given distance x of correlated spin interactions (Figure 2)
The high variability of the spin flip correlation function indicated that avalanches were nucleated
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frequently [13,30], but their propagation was often quenched by fluctuations of random fields hi. The
size of avalanches depended on the value of disorder introduced to the model space.
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Figure 2. Influence of the disorder R on changes in the correlation of spin flips Gint (x, R) and the
dynamics of the magnetization process.

Test results of the developed pseudo-random number generator (PRNG) showed that the numerical
performance of the generator did not introduce significant limitations associated with simulation time.
The implementation efficiency of the PRNG algorithm at 107 numbers per second was sufficient for the
RFIM model, because the simulation did not require the generation of pseudo-random numbers ad
hoc. Considering the limitations related to the mean value of the hi set, it should be stated that the
model space with 106 spins guarantees the correct convergence of computer simulations [26,27].

The developed algorithm of a three-stage pseudo-random generator (Section 3) led to the formation
of clusters. These were areas where the directly coupled spins had random values of hi and the same
sign. Clusters can introduce a weak effect of collective interactions. It is very likely that all spins in a
cluster will be flipped in the same simulation step. Clusters are able to boost occurring avalanches or
trigger the new ones. Figure 3 shows the distribution of random fields with the same sign over the 2D
model space. Additionally, the exemplary clusters are highlighted.
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The impact of both the disorder and the range of variation of the disorder parameter R on
magnetization were examined. The magnetizing process depending on the disorder parameter R was
depicted in graphs of meta-stable magnetization changes dM/dH (Figures 4 and 5) and hysteresis loops
(Figure 6).
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A greater magnetic order of the magnetic system and thus a smaller standard deviation of the
random field component in each site of the model space affected the exchange energy of the localized
spins in the considered site. The ratio of the strength of exchange interactions to the random field hi

was greater, and therefore the energy needed to overcome the magnetic order in each site was also
greater. Therefore, the coercive field was the highest when the influence of the random field component
in the model space was the lowest. A magnetic system with higher disorder tends to lower magnetic
susceptibility and reduces the coercive field as well [19]. Hence, smooth hysteresis loops significantly
depend on the symmetrical shape of the hi distribution rather than the nearest neighbor interactions.
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Figures 7a–d and 8a–d respectively present mapping of the 2D and the 3D metastable states of
magnetization due to spin flipping. Single-colored areas (the colors are attributed randomly) refer to
regions in which the magnetization processes were avalanche-like. Flip of spins in these areas occurred
under conditions of the temporarily determined value of the external field H. Each single spin flip for a
given field value was marked with the same color of pixels/cubes on the 2D and 3D maps.

Algorithms 2020, 13, x FOR PEER REVIEW 8 of 12 

loops significantly depend on the symmetrical shape of the hi distribution rather than the nearest 
neighbor interactions. 

Figures 7a–d and 8a–d respectively present mapping of the 2D and the 3D metastable states of 
magnetization due to spin flipping. Single-colored areas (the colors are attributed randomly) refer to 
regions in which the magnetization processes were avalanche-like. Flip of spins in these areas 
occurred under conditions of the temporarily determined value of the external field H. Each single 
spin flip for a given field value was marked with the same color of pixels/cubes on the 2D and 3D 
maps. 

(a) (b) 

(c) (d) 

Figure 7. (a–d) Two-dimensional maps (D = 2, L = 5000) illustrating the dynamics of the magnetization 
process for various values of the external field step ∆H = {0.1, 0.01, 0.001, 0.0001}. Single-colored areas 
represent spins that were flipped due to avalanche interactions in metastable conditions. 

Figure 7. (a–d) Two-dimensional maps (D = 2, L = 5000) illustrating the dynamics of the magnetization
process for various values of the external field step ∆H = {0.1, 0.01, 0.001, 0.0001}. Single-colored areas
represent spins that were flipped due to avalanche interactions in metastable conditions.



Algorithms 2020, 13, 134 9 of 12Algorithms 2020, 13, x FOR PEER REVIEW 9 of 12 

 
 

(a) (b) 

 

 

(c) (d) 

Figure 8. (a–d) Three-dimensional maps (D = 3, L = 1000, ∆H = 0.001) illustrating the dynamics of the 
magnetization process for various disorders R = {2.5, 2.0, 1.5, 1.0} respectively. Single-colored areas 
represent spins that were flipped due to avalanche interactions in metastable conditions. 

Simulations of the quasi-static process were performed in the same way as earlier tests of 
numerical implementation efficiency of the RFIM model. A single-spin flip method and a sorting 
algorithm were used to identify spins meeting the conditions described by the relationships 5 and 6. 

The quasi-static magnetization process, almost independent of the external field step rate, is 
depicted in Figure 9. Hence, it is possible to achieve a similar course of metastable changes in 
magnetization triggered by an external field with a different rate of change. Similar shapes of 
avalanches presented in Figure 7c,d also may prove the quasi-static magnetization process. The 
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magnetization process for various disorders R = {2.5, 2.0, 1.5, 1.0} respectively. Single-colored areas
represent spins that were flipped due to avalanche interactions in metastable conditions.

Simulations of the quasi-static process were performed in the same way as earlier tests of numerical
implementation efficiency of the RFIM model. A single-spin flip method and a sorting algorithm were
used to identify spins meeting the conditions described by the relationships 5 and 6.

The quasi-static magnetization process, almost independent of the external field step rate,
is depicted in Figure 9. Hence, it is possible to achieve a similar course of metastable changes in
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magnetization triggered by an external field with a different rate of change. Similar shapes of avalanches
presented in Figure 7c,d also may prove the quasi-static magnetization process. The observed damping
of the metastable changes in magnetization was generally consistent with experimental data [12]
(Vol.II, Ch.3). The small increment of the external field H had a negligible impact on the occurring
avalanche-like changes in magnetization. The avalanche of spin flips caused discrete changes in
magnetization called the Barkhausen effect [15,27]. The greatest impact of the spin-flip avalanche on
the change of magnetization was observed in simulations with moderate disorder R∈<1.0, 2.0> of
random field hi.
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matter. Further development of the model should be focused on the implementation of an explicit 
time scale and implementation of the long-range magnetic interactions. The quasi-static boundary 
may be quantified in the expanded model with time-dependent spin interactions and a time-varying 
external magnetizing field. 
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Figure 9. Metastable changes in magnetization for given steps of the external magnetizing field (D = 2,
R = 1.5, L = 5000, ∆H = 1 × 10−2,1 × 10−3, 1 × 10−4, 1 × 10−5).

5. Conclusions

The RFIM model was applied for the numerical studies on slowly driven magnetic systems.
Preliminary research on the identification of a quasi-static magnetizing processes in 2D magnetic
systems was presented. The paper proves that the a magnetic system driven with a field sweep rate
below the quasi-static limit reaches convergent response. Hence, if the response of the system does
not depend on the magnetizing field sweep rate, the shape of the magnetizing waveform should not
matter. Further development of the model should be focused on the implementation of an explicit
time scale and implementation of the long-range magnetic interactions. The quasi-static boundary
may be quantified in the expanded model with time-dependent spin interactions and a time-varying
external magnetizing field.
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