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Abstract: One of the main issues addressed in any engineering design problem is to predict the
performance of the component or system as accurately and realistically as possible, taking into
account the variability of operating conditions or the uncertainty on input data (boundary conditions
or geometry tolerance). In this paper, the propagation of uncertainty on boundary conditions through
a numerical model of supersonic nozzle is investigated. The evaluation of the statistics of the
problem response functions is performed following ‘Surrogate-Based Uncertainty Quantification’.
The approach involves: (a) the generation of a response surface starting from a DoE in order to
approximate the convergent–divergent ‘physical’ model (expensive to simulate), (b) the application
of the UQ technique based on the LHS to the meta-model. Probability Density Functions are
introduced for the inlet boundary conditions in order to quantify their effects on the output nozzle
performance. The physical problem considered is very relevant for the experimental tests on the
UQ approach because of its high non-linearity. A small perturbation to the input data can drive
the solution to a completely different output condition. The CFD simulations and the Uncertainty
Quantification were performed by coupling the open source Dakota platform with the ANSYS Fluent®

CFD commercial software: the process is automated through scripting. The procedure adopted in
this work demonstrate the applicability of advanced simulation techniques (such as UQ analysis) to
industrial technical problems. Moreover, the analysis highlights the practical use of the uncertainty
quantification techniques in predicting the performance of a nozzle design affected by off-design
conditions with fluid-dynamic complexity due to strong nonlinearity.
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1. Introduction

In recent years, an important part of the research in numerical simulations, in many engineering
sectors, has been dedicated to the performance prediction of systems and components in off-design
conditions. The behavior of a system or a component in conditions different from those for which it
was designed is not only related to the deterministic variation of the input parameters, but also to
the aleatory uncertainty which can characterize the input data and the geometrical tolerances. Hence,
in order to improve the accuracy and the reliability of the numerical predictions, it is necessary to
understand how the uncertainties can affect the results of the problem under investigation. This is
one of the main targets of Uncertainty Quantification (UQ) analysis with direct positive fall-out on
engineering problems. Computational Fluid Dynamics (CFD) is one of the disciplines where UQ
is increasingly applied within a simulation environment. The UQ analysis is becoming an effective
approach for industrial use thanks to the concurrent development of both soft-computing methods
and computer performance. The use of CFD coupled to optimization algorithms for the automatic
design optimization of industrial components is nowadays a mature technology [1,2]. More recently,
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the development of Response Surface Methodology (RSM) has significantly enhanced the effectiveness
of the design optimization based on simulation [3,4], as an industrial standard or for data mining and
diagnostic applications [5,6]. The same RSM approach can be used to develop very efficient frameworks
for UQ analysis [7]. A contribution to this field is given in the paper with reference to one of the most
interesting examples of compressible flow thanks to its high non-linearity: the adiabatic flow in a
variable section duct. It is a relevant case for its physical and mathematical background, and it has also
a wide range of engineering applications. The best known application is for spacecraft propulsion in
aircraft engines or in supersonic wind tunnel [8]. Convergent–divergent nozzles are also applied in gas
burners [9,10] and in supersonic water separators for natural gas purification [11,12]. The preliminary
design of a supersonic nozzle (De Laval nozzle) is based on the basic gas-dynamic equations in order
to have a reference, ideal, operative condition of a fully expanded jet [8]. However, the theory is based
on some assumptions, such as isentropic flow conditions, that can affect the actual nozzle performance.
Moreover, the real operating conditions (pressure, temperature, gas mixture composition, etc.) can
cause a significant change in the flow structure and in the shock waves generation with direct outcomes
on nozzle performance.

The main goal of this paper is to answer to the following questions: a small variation of some
input parameters can remarkably affect the performance of a designed convergent–divergent nozzle?
Can UQ methods help to quantify the above effect and give more insight into the nozzle behavior?

The uncertainties propagation through the CFD model of the nozzle was performed using an
automated procedure developed by the authors within the Dakota open source platform. The UQ
approach is a ‘surrogate-based’ approach: a response surface was generated from a DoE, and then,
the Latin Hypercube Sampling (LHS) was applied to the meta-model to perform the UQ analysis.
The use of a surrogate model is highly effective in reducing calculation times when a sampling-based
UQ method is used: in this case, in fact, a high number of response function evaluations is required to
generate converging statistics.

The LHS was performed both for the DoE generation and for the UQ analysis. In LHS, the design
space (with dimensions equal to the problem variables) is subdivided into an orthogonal grid with N
elements per parameter. Within the grid, N sub-volumes are located so that along each row and column
of the grid, only one sub-volume is chosen. Inside each sub-volume, a sample is chosen randomly [13].
The LHS method is widely used because it ensures a better coverage of the design space [14–17] and a
faster convergence with respect to the basic Monte Carlo method.

The surrogate model was generated through the Gaussian Process (also known as Kriging)
approach which uses a Gaussian correlation function with parameters that are selected by Maximum
Likelihood Estimation (MLE); this correlation function results in a response surface that is C∞

continuous [14].
In a first application, an optimized nozzle geometry with air flowing at a supersonic Mach number

was considered. The commercial software ANSYS Fluent® was used to generate a series of CFD
simulations to identify the influence of the nozzle discharge pressure on the convergent–divergent
operating condition, flow structure and performance. A perturbation range of the exit static pressure
was chosen with respect to the critical gas-dynamic condition, where the normal shock wave is
positioned at the nozzle exit section (referred to the r2 condition in classical literature). The choice of
this particular condition is related to the potential performance drop that will occur if the shock wave
moves into the divergent part of the nozzle. After a preliminary sensitivity analysis, a full UQ approach
was developed to quantify the effects of the input variable distribution (ambient static pressure) on the
nozzle performance.

A second application considers the flow of natural gas in a convergent–divergent nozzle to
understand the effects of the gas chemical composition on the expansion nozzle performance. The gas
composition variation can occur on a daily or seasonal base, according to the geographical area and
pipeline used [18], and it is a serious problem for several industrial applications, where large quantities
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of natural gas are treated and energy consumption is an issue [19,20]. The same investigation approach
was applied as for the first case and the effectiveness of the UQ analysis is confirmed.

2. CFD Model

The fluid domain consists of a 2D axisymmetric De Laval nozzle with an “expansion volume”
(Figure 1) at the exit, which represents the discharge environment at constant pressure. The axisymmetric
RANS equations were solved using an ‘axis’ boundary condition at the nozzle axis, as common
practice [21]. A structured grid was used for the spatial discretization. As shown in Figure 2, a grid
refinement was performed near the nozzle wall, in order to ensure a y+ value close to one. The Reynolds
Averaged Navier Stokes Equations (RANS) in the steady form are numerically solved with the addition
equation for the turbulence closure. The two equation k-ω SST turbulence model is selected based
on previous experience on the application case; it allows a good accuracy both in proximity and far
from the walls. A second order upwind scheme was selected for the spatial discretization, because if
the flow is not aligned with the structured mesh (e.g., oblique shock waves) the first-order convective
discretization is not appropriate.
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Table 1 and Figure 1 summarize and show the set of boundary conditions used in the CFD
simulations:

- total pressure and total temperature at the nozzle inlet;
- static pressure on expansion volume (outlet domain) side walls.
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Table 1. Boundary conditions.

Domain Zone Type

Nozzle Inlet Total pressure; Total temperature

Environment Side walls Discharge pressure

Nozzle walls No slip condition; adiabatic

In the first part of the work, the operating fluid is air as an ideal compressible gas with constant Cp.
Sutherland’s law with three coefficients (Equation (1)) is adopted to model the variation of viscosity
with temperature.

µ = µref

(
T

Tref

) 3
2 (Tref − S

T − S

)
(1)

In the second part of the article, the working fluid is natural gas treated as an ideal and compressible
gas and the viscosity is computed through Sutherland’s law with suitable coefficients for methane.

3. UQ Analysis on Nozzle Discharge Pressure

3.1. Sensitivity Analysis on Discharge Pressure

The value of the discharge pressure ps has a remarkable impact on the nozzle flow structure,
especially in determining the position and strength of the shock wave: this is evident referring to
the ‘r2’ condition where the shock wave is positioned at the nozzle exit section [8]. As a proof of the
reliability of the CFD model, similar results have been obtained in similar conditions in the experimental
case by Zapryagaev et al. [22]. Figure 3 shows Mach number contours for five different ps values
(80 kPa ÷ 120 kPa) around the ‘r2’ condition. The flow structure and the shock wave location change
significantly even with a small ∆ of 10 kPa (about 10% of the pressure range mean value).
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The performance variation of the nozzle within the above range is further confirmed by the charts
in Figure 4, which represent the Mach and the Pressure Ratio (PR) along the nozzle axis (Equation (2)).

PR = ps/pt in (2)
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It is evident that the position of the shock wave close to the nozzle exit is affected by the small
change in the environment discharge static pressure. Another important parameter, which confirms
the performance variation, is the ∆pt (Equation (3)) i.e., the total pressure drop through the nozzle
that quantifies the mechanical losses due to viscous or compressible flow effects. In Table 2, the large
variation of this quantity was reported: losses tend to decrease with outlet static pressure in a non-linear
way (see the difference between cases 1 and 2 compared to 2 and 3); this is related to the shock wave
location (inside/outside the convergent–divergent).

∆pt = pt in − pt out (3)

Table 2. Total pressure drop values with respect to the operative condition.

CASE Discharge Pressure (ps) [kPa] ∆pt [Pa]

1 80 19,270

2 90 20,145

3 100 31,926

4 110 32,675

5 120 34,972

This off-design behavior makes the UQ analysis useful to study the component response to a
non-deterministic input variable.

3.2. Uncertainty Quantification Analysis

A UQ analysis was carried out considering the discharge pressure as the variable parameter.
The Quantities of Interest (QoI) considered as output performance parameters are the Mach number at
the nozzle exit (Mexit) and the total pressure drop (∆pt). With a fully automated procedure implemented
in the Dakota environment, a DoE for the two QoI based on LHS method was performed for the
pressure range 80–120 [kPa]. The outlet static pressure values provided by Dakota, according to
LHS scheme, were used as the input variable in Fluent CFD software, which allowed us to obtain
the corresponding response functions values (see Figure 5). In order to approximate the ‘physical’
(numerical) model, 121 samples were chosen inside the design space. Equations (4)–(6) show the
response functions in the normalized form:

p∗s =
ps − ps min

ps max − ps min
(4)

M∗exit =
Mexit −Mexit min

Mexit max −Mexit min
(5)
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∆p∗t =
∆pt − ∆pt min

∆pt max − ∆pt min
(6)

Algorithms 2019, 12, x FOR PEER REVIEW 6 of 17 

∆𝑝௧∗ ൌ ∆𝑝௧ െ ∆p୲ ୫୧୬∆p୲  ୫ୟ୶ െ ∆p୲ ୫୧୬  (6) 

  
  

 

 

Figure 5. Response functions: (a) Mach number at nozzle exit, (b) Nozzle total pressure drop. 

Kriging or ‘Gaussian Process’ Response Surface Methodology is considered and the response 
surfaces for the above functions were generated from the training points given by the DoE. The UQ 
analysis was then performed through Latin Hypercube sampling method, considering 1000 samples 
taken on the generated response surfaces.  

In order to ensure the meta-model reliability, a cross-validation analysis was performed. In 
Dakota, the type of cross-validation which can be exploited is the k-fold cross-validation: at first, the 
DoE dataset is divided into k partitions and k meta-models are generated, each excluding the k-th 
partition of training data. Each surrogate is tested at the points that were excluded in its generation 
and the user-specified diagnostic metrics are computed with respect to the held out data [14]. In this 
work, a particular type of k-fold cross-validation was performed, i.e., the Leave-one-out cross-
validation or Prediction Error Sum of Squares (PRESS). In this special case, the number of partitions 
is equal to the number of data points. The results obtained from this analysis, reported in Table 3, 
include the Root Mean Squared, the Mean Absolute Value and the Maximum Absolute Value of the 
prediction error (calculated between the observed value and the surrogate model prediction for the 
training data points). 

Table 3. Metrics for cross validation analysis of the response surfaces. 

Metrics  M exit Δpt [Pa] 
Root Mean Squared (RMS) 4.15 × 10−3 175.2 

Mean Absolute Value 2.84 × 10−3 97.9 
Maximum Absolute Value 1.70 × 10−2 739.7 

 
Moreover, three random operating points were selected from the UQ database of 1000 samples, 

and then, simulated with the CFD solver. The corresponding fluid dynamics results for the QoI were 
given in input to Dakota as a challenge set of data. The metrics calculated with respect to this dataset 
are reported in Table 4.  

The outcomes of the previous analyses were supplemented by the calculation of the relative 
percentage error (Table 5) between the CFD and the surrogate model response function values. The 
obtained results certify the reliability of the meta-model. 

Table 4. Metrics for challenge data. 

Metrics  M exit Δpt [Pa] 
Root Mean Squared (RMS) 5.06 × 10−4 189.7 

R squared 0.998411 0.97978 
Mean Absolute Value 4.57 × 10−4 119.2 

Maximum Value 7.00 × 10−4 327.9 

Figure 5. Response functions: (a) Mach number at nozzle exit, (b) Nozzle total pressure drop.

Kriging or ‘Gaussian Process’ Response Surface Methodology is considered and the response
surfaces for the above functions were generated from the training points given by the DoE. The UQ
analysis was then performed through Latin Hypercube sampling method, considering 1000 samples
taken on the generated response surfaces.

In order to ensure the meta-model reliability, a cross-validation analysis was performed. In Dakota,
the type of cross-validation which can be exploited is the k-fold cross-validation: at first, the DoE
dataset is divided into k partitions and k meta-models are generated, each excluding the k-th partition
of training data. Each surrogate is tested at the points that were excluded in its generation and the
user-specified diagnostic metrics are computed with respect to the held out data [14]. In this work,
a particular type of k-fold cross-validation was performed, i.e., the Leave-one-out cross-validation
or Prediction Error Sum of Squares (PRESS). In this special case, the number of partitions is equal to
the number of data points. The results obtained from this analysis, reported in Table 3, include the
Root Mean Squared, the Mean Absolute Value and the Maximum Absolute Value of the prediction
error (calculated between the observed value and the surrogate model prediction for the training
data points).

Table 3. Metrics for cross validation analysis of the response surfaces.

Metrics Mexit ∆pt [Pa]

Root Mean Squared (RMS) 4.15 × 10−3 175.2

Mean Absolute Value 2.84 × 10−3 97.9

Maximum Absolute Value 1.70 × 10−2 739.7

Moreover, three random operating points were selected from the UQ database of 1000 samples,
and then, simulated with the CFD solver. The corresponding fluid dynamics results for the QoI were
given in input to Dakota as a challenge set of data. The metrics calculated with respect to this dataset
are reported in Table 4.

Table 4. Metrics for challenge data.

Metrics Mexit ∆pt [Pa]

Root Mean Squared (RMS) 5.06 × 10−4 189.7

R squared 0.998411 0.97978

Mean Absolute Value 4.57 × 10−4 119.2

Maximum Value 7.00 × 10−4 327.9
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The outcomes of the previous analyses were supplemented by the calculation of the relative
percentage error (Table 5) between the CFD and the surrogate model response function values.
The obtained results certify the reliability of the meta-model.

Table 5. Relative percentage error between CFD and response surfaces values for random samples.

ps [Pa] Percentage Error Mexit Percentage Error ∆pt

80,870 0.043% −0.053%

100,451 0.015% 0.964%

117,848 0.042% −0.056%

At first, a uniform distribution of the ps variable were considered as the input probability density
function (pdf): in this case, any pressure values within the established range have the same probability.
Results of the uncertainty propagation through the surrogate model are the output functions (Mexit

and ∆pt) discretized pdfs, reported in Figure 6. It is evident that the pdfs of the QoI are very far from
the uniform distribution of the input variable (ps). The physical explanation of these non-uniform pdfs
can be found, considering that the ‘r2’ state matches with the case ps = 100 [kPa], i.e., the mean of the
uncertain input variable distribution. Around this value, two kinds of solutions are highly probable,
as evidenced by the exit Mach and ∆pt pdfs (Figure 6):

• high exit Mach and low losses→ overexpanded jet with shock waves outside the nozzle;
• low exit Mach and high losses→ shock waves inside the nozzle.
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This means that even with a large variation of the input variable, the most frequent flow structures
can be restricted to two main ranges of M exit and ∆pt.

In order to provide more reliable results for the UQ analysis, a second case with an increased
number of samples (10,000, one order of magnitude greater than the previous one) was considered.
The comparison among the histograms obtained for the QoI is reported in Figure 7: differences between
the two distributions can be detected, but they are so small that the 1000 samples UQ analysis can be
considered satisfactory.
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Another case was performed, assigning a normal distribution for the input pdf with a mean value
‘m’ (100 [kPa]) centered on the previously considered variation range and a standard deviation σ chosen
in order to have a small perturbation of the pressure: e.g., σ ≈ 1% of the mean value. The resulting pdf
for the input variable ps is shown in Figure 8.
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Using again the LHS method for the uncertainty quantification propagation (1000 samples as
before), the distributions reported in Figure 9 are obtained for the response functions. It is evident,
especially for the losses, that even in this case, the output pdfs are different from the input one (normal
distribution). Table 6 summarizes the data of the statistical moments calculated for these distributions.
The red curves over the histograms of Figure 9 represent the reference Gaussian continuous distributions
associated with the mean and standard deviation values of each discretized distribution obtained from
Dakota. Comparing to the normal pdf (in red), the M exit distribution is more flat (negative value of
Kurtosis) and slightly asymmetrical. The distribution of the total pressure drop is shifted to the right
(negative Skewness) and sharper (positive Kurtosis) with respect to the Gaussian pdf.

The results analysis suggests that in this case, the values of the QoI are spread over a wider range
of values. Hence, a small variation in the input discharge pressure (with respect to r2 discharge pressure
which is approximately 100 [kPa]) can change drastically the operative condition, and consequently,
the nozzle performance.
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Table 6. Statistical moments for the response functions distributions.

Statistical Moments M exit ∆pt

Mean 1.2 3.1 × 104 [Pa]

Standard Deviation 0.1 3.2 × 103 [Pa]

Skewness 0.013 −0.98

Kurtosis −0.8 0.05

The comparison between the pdf histograms for the QoI in both cases of 1000 and 10,000 samples
is reported in Figure 10. Even in this case, it can be observed that the increase in the number of samples
used for the LHS method has no remarkable influence on the pdfs and on the corresponding normal
distributions, which remain almost unchanged.
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4. UQ Analysis on Gas Properties

4.1. Sensitivity Analysis on Gas Composition

In the previous part of the paper, an important operating parameter like the nozzle discharge
pressure was considered as the input variable to quantitatively appreciate its influence on
convergent–divergent performance using UQ approach.
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The purpose of this section is to quantify the effect of a change in natural gas composition on
the nozzle performance with fixed boundary conditions (total pressure, static pressure and total
temperature). The natural gas case is of particular interest for industrial applications; the actual
chemical composition of the gas delivered to a site is not constant, but can change significantly on a
daily or seasonal base according to the pipeline used and the geographical extraction region.

Table 7 summarizes some reference data of the most interesting cases for the Italian market: four
different real natural gas compositions were selected and their properties were calculated. The variables
obtained are the specific heat at constant pressure Cp and the molecular weight MW of the mixture.
The choice of these variables is related to the option of the fluid specification inside the CFD code that
allows an easy automation of the simulation process through scripting.

Table 7. Natural gas compositions and properties [16].

Composition [%Vol] Italian Libyan North Europe Russian

Methane 99.61% 87.41% 91.58% 98.08%

Ethane 0.06% 9.81% 4.82% 0.98%

Carbon Dioxide 0.02% 1.88% 1.23% 0.10%

Others 0.31% 0.90% 2.37% 0.84%

Properties Italian Libyan North Europe Russian

Cp [J/(kg K)] 2214 2031 2057 2154

MW [kg/kmol] 16.1 19.5 18.2 16.2

Four CFD simulations were performed, keeping constant the nozzle pressure ratio close to the r2
gas-dynamic condition (shock wave at the nozzle exit): Figure 11 shows Mach number contours for
the different working conditions.
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Comparing the results to those related to the discharge pressure (ps) sensitivity analysis, it is
evident that operating fluid properties (Cp and MW) have a lower influence on the flow structure and
on the Mach number values inside the nozzle.
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This is also confirmed by the charts in Figure 12, where the Mach number and PR variation along
the nozzle axis are displayed. A slight change of the shock wave position can be observed, caused by
the different gas properties.
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On the other hand, due to gas composition change, a significant variation of the total pressure
losses can be noticed (see Table 8): more than 10 [kPa] difference within the examined dataset.

Table 8. Total pressure drop values with respect to gas origin.

Natural Gas ∆pt [Pa]

Italian 31,100

Libyan 21,407

North Europe 23,933

Russian 33,579

4.2. Uncertainty Quantification Analysis

The UQ analysis for the gas composition was performed with the same approach of the previous
test. The operating range for the variables Cp and MW (domain space) was identified from the
preliminary sensitivity analysis: the specific heat at constant pressure varies from 2031 [J/(kgK)] to
2214 [J/(kgK)], whereas the MW is in the range 16.1 ÷ 19.5 [kg/kmol]. The considered QoI are again the
nozzle exit Mach number (Mexit) and the total pressure drop (∆pt—Equation (3)).

The DoE was generated with 121 samples according LHS methodology. The response functions
scattered distributions are reported in Figure 13 (MW* and Cp* are in normalized form, as in
Equations (7) and (8)).
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MW∗ =
MW −MWmin

MWmax −MWmin
(7)

Cp∗ =
Cp−Cpmin

Cpmax −Cpmin
(8)

A surrogate model based on the DoE (121 samples) was obtained using Kriging Response Surface
Methodology. The resulting response surfaces for the QoI are shown in Figure 14.
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The cross-validation results reported in Table 9 confirm the model reliability. Even in this second
application, the validation with three random points of the database was performed.

Table 9. Metrics for cross validation analysis of the response surfaces.

Metrics Mexit ∆pt [Pa]

Root Mean Squared (RMS) 2.87 × 10−3 384.8

Mean Absolute Value 1.65 × 10−3 251.2

Maximum Value 1.42 × 10−2 1416.6
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The results of the challenge set and the comparison in terms of relative percentage error with
respect to the CFD results are reported in Tables 10 and 11 respectively.

Table 10. Metrics for challenge data.

Metrics Mexit ∆pt [Pa]

Root Mean Squared (RMS) 1.17 × 10−3 283.7

R squared 0.916084 0.806983

Mean Absolute Value 9.99 × 10−4 192.6

Maximum Value 1.81 × 10−3 483.2

Table 11. Relative percentage error between CFD and response surface values for random samples.

Cp [J/(kg K)] MW [kg/kmol] Percentage Error Mexit Percentage Error ∆pt

2099 17.53 −0.13% 1.80%

2113 17.95 0.06% −0.39%

2159 18.01 0.02% −0.02%

The low values of the errors certify the reliability of the response surfaces.
The UQ analysis was implemented according LHS method (1000 samples) in order to evaluate the

component response to input variables statistical distributions. A Gaussian probability distribution
function was considered for both variables Cp and MW. The characteristics of the pdfs are reported in
Table 12 and the corresponding trends are shown in Figure 15.

Table 12. Pdfs characteristics for the input variables.

Statistical Moments Cp [J/(kgK)] MW [kg/kmol]

Mean 2122 17.8

Standard deviation 21.2 0.178
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The mean values m1 and m2 of the pdfs were chosen as the arithmetic mean of the selected ranges.
The standard deviations σ1 and σ2 are about 1% of the corresponding mean values in order to simulate
the effects of a small perturbation of the involved variables.

The uncertainties propagation through the meta-model determines the output distributions for
the QoI (see Figure 16); the statistical moments of the resulting pdfs are summarized in Table 13.
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Table 13. Statistical moments for the response functions distributions.

Statistical Moments M exit ∆pt

Mean 1.39 2.36 × 104 [Pa]

Standard Deviation 0.015 1.42 × 103 [Pa]

Skewness −1.00 0.819

Kurtosis 1.73 0.497

The ‘shape’ of the response functions pdfs is very different from the corresponding reference
Gaussian distribution: both of them are sharper (positive Kurtosis) and slightly shifted from the mean.
The range of M exit variation, with the selected input, is very narrow. The Mach number is slightly
influenced by the gas composition, confirming what was previously observed in the sensitivity analysis.

Regarding total pressure losses, it can be noticed that even with a small variation in Cp and MW,
the range of the possible total pressure drop values (∆pt) is quite wide, and consequently, the probability
to fall into a non-optimal operating condition is high.

Finally, to test the results with a higher number of samples, a second UQ analysis was performed
with 10,000 LHS samples. The comparison between the statistical distributions of the QoI for the two
cases are reported in Figure 17. The very small differences in the pdf trends confirm that 1000 samples
are sufficient to accurately detect the system response to input data.
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5. Conclusions

The quantitative analysis of the influence on supersonic nozzle performance of the variation of
selected input variables leads to the following conclusions.

The perturbation of the discharge pressure ps within a range centered on the r2 operating condition
leads to a remarkable variation of the flow structure inside the nozzle, even with a pressure change of
a few thousand of Pa, i.e., few percentage points (3% if uncertainty is considered as 3σ) with respect to
the r2 discharge pressure condition. This is confirmed by the UQ analysis, with a uniform uncertainty
to the input variable (ps), the performance parameters (exit Mach number and total pressure drop) can
assume a large range of possible values. If a normal uncertainty is considered, it can be observed that
even with a small pressure variation, a significant change in the output parameters is detectable, with a
resulting statistical distribution that is very far from the input one, due to the strong non-linearity
of the physical problem under study. The investigation on the effects of natural gas composition
(Cp, MW) variation showed that it has a slight influence on the flow structure but can remarkably
affect the total pressure losses. The UQ analysis with Gaussian uncertainties distributions of the input
variables put in evidence a limited effect on the exit Mach number and a non-negligible influence on
the total pressure drop that has a wide range of variation. The statistical distributions of the output
variables differ from the normal pdfs of the input parameters because of the uncertainties propagation
through the nonlinear model. The proposed workflow for the UQ analysis, implemented into the
Dakota platform, has shown its effectiveness in a quantitative evaluation of the effect of changes in
input parameters on the response functions of the engineering design problem; it may be applied to
other design applications with the same structure.
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Nomenclature

Cp Specific heat at constant pressure [J/(kg K)]
∆p Pressure difference [Pa]
M Mach number
MW Molecular Weight [kg/kmol]
m Mean value
p Pressure [Pa]
r2 Nozzle reference condition of normal shock at outlet section
S Sutherland’s coefficient
T Static temperature [K]
X Axial coordinate [m]
y+ Dimensionless wall distance
µ Dynamic viscosity [Pa s]
σ Standard deviation
Subscripts
exit, out Outlet nozzle section
in Inlet nozzle section
max Maximum value
min Minimum value
ref Reference value
s Discharge static pressure
t Total condition
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Superscripts
* Normalized value
Acronyms
CFD Computational Fluid Dynamics
DoE Design of Experiments
LHS Latin Hypercube Sampling
MLE Maximum Likelihood Estimation
QoI Quantity of Interest
RANS Reynolds Averaged Navier Stokes
SST Shear Stress Transport
UQ Uncertainty Quantification
PR Pressure Ratio
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