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Abstract: It is very often the case that at some moment a time series process abruptly changes its
underlying structure and, therefore, it is very important to accurately detect such change-points.
In this problem, which is called a change-point (or break-point) detection problem, we need to find
a method that divides the original nonstationary time series into a piecewise stationary segments.
In this paper, we develop a flexible method to estimate the unknown number and the locations of
change-points in autoregressive time series. In order to find the optimal value of a performance
function, which is based on the Minimum Description Length principle, we develop a Cross-Entropy
algorithm for the combinatorial optimization problem. Our numerical experiments show that the
proposed approach is very efficient in detecting multiple change-points when the underlying process
has moderate to substantial variations in the mean and the autocorrelation coefficient. We also apply
the proposed method to real data of daily AUD/CNY exchange rate series from 2 January 2018 to
24 March 2020.
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1. Introduction

Change-point detection in time series processes, or time series segmentation, has been discussed
by many authors in the fields of statistics, computer science, and data mining for several decades [1].
Change-point detection has a broad range of applications, including financial time series analysis [2,3],
econometrics [4,5], and science and engineering [6–8]. Change-point problems are traditionally divided
into two large categories: posterior (off-line) and sequential (on-line) problems; see, for example, [9].
The former is often referred to as segmentation of a signal or time series when all data are observed,
while the latter assumes a stream of data coming in real-time. In this paper, we focus on the time series
segmentation problem.

A change-point is defined when at least one statistical parameter in a given time series process
suddenly changes, which may be caused by the variation in the mean, trend, or other internal
parameters. Following the assumption of [10] and [7], a non-stationary time series process is assumed
to be segmented by change-points into a sequence of piecewise stationary processes. We are interested
in modeling the non-stationary autoregressive AR (p) process and estimating the unknown number of
segments and the locations of change points.

Various algorithms have been proposed in time series segmentation with the aim of searching
for the optimal solutions based on different types of objective (or score) functions. There are two
main streams of widely used optimization methods; one is related to the Binary segmentation [11–14],
and the other method is based on the dynamic programming algorithm [15–17]. In addition, several
well-known computational approaches have been applied to change-point problems. These include

Algorithms 2020, 13, 128; doi:10.3390/a13050128 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/ https://orcid.org/0000-0001-6892-3790
https://orcid.org/https://orcid.org/0000-0001-5342-7559
http://www.mdpi.com/1999-4893/13/5/128?type=check_update&version=1
http://dx.doi.org/10.3390/a13050128
http://www.mdpi.com/journal/algorithms


Algorithms 2020, 13, 128 2 of 17

the EM algorithm [18], the genetic algorithm [19,20], sequential importance sampling [21,22], MCMC
algorithms [23–25], hybrid algorithms [26–29], and the Cross-Entropy method [8,30–35].

Many of the existing multiple change-point methods assume independence of observations.
Because of this assumption, these methods tend to either underestimate or overestimate the number of
change-points in autoregressive time series due to its endogenous dependent structure. For example,
a stationary AR(1) process with moderate to strong autocorrelation can be confused with a change-point
process with independent observations causing these segmentation methods to overestimate the
number of structural breaks. References [7] and [36] took the dependence structure of autoregressive
time series into account and developed a segmentation method to identify break-points using a genetic
algorithm and a dynamic programming algorithm, respectively, with the objective function based
on the minimum description length (MDL) information criterion. Another paper [4] implemented a
strucchange algorithm designed for estimating structural changes in linear regression. Recently, [37]
proposed a AR1seg approach for estimating change-points in the AR(1) model based on the assumption
of a common autocorrelation coefficient for all segments. In this paper, we apply the Cross-Entropy
(CE) method with the MDL principle to identify the number of and locations of change-points.
In contrast to [35], we assume that observations from different segments may be generated from
different AR(pi) processes. The statistical features, such as the order of autoregressive processes,
the autocorrelation parameter, and the mean of the homogeneous segment, can be estimated if the
change-points are detected, but our focus is on the detection accuracy of identifying change-points.
Through extensive numerical experiments, our method shows superior detection accuracy when the
underlying autocorrelation structure changes.

The paper is organized as follows. Section 2 introduces the MDL-based objective function and
compares it with other popular model selection criteria, and the detailed derivation is provided.
In Section 3, we describe the proposed algorithm in detail. Section 4 shows the design and results
of numerical experiments. Real data analysis is shown in Section 5. Lastly, Section 6 provides a
general discussion.

2. Model Selection Criteria

2.1. Change-Point Detection Problem

Firstly, let us formulate the change-point detection problem. Let X = (X1, X2, . . . , XT) denote a
data sequence of length T. Assume there are N unknown change-points, so X is segmented into N + 1
segments by the set of locations τ = (τ1, τ2, . . . , τN), 0 = τ0 < τ1 < τ2 < · · · < τN < τN+1 = T, where
the i-th segment consists of observations (Xτi−1+1, . . . , Xτi ); i is numbered from 1 to N + 1. Next, we
assume that the data sequence X is generated by piecewise stationary AR(pi) processes, the model
assumes that the observations within each segment are generated by a stationary AR(pi) process with
autocorrelation coefficients ρi = (ρi1, . . . , ρipi ), mean δi, and variance ν2

i . The segments are assumed
to be independent of each other. The parameters δi, ν2

i , and ρi are not known in advance, whereas pi
is known.

Ut,i =
pi

∑
j=1

ρijUt−j,i + εt,i, t = 1, . . . , T, i = 1, . . . , N + 1, j = 1, . . . , pi

Xt,i = δi + Ut,i (1)

where the noise εt,i ∼ i.i.d. Normal
(
0, ν2

i
)
, p = (p1, p2, . . . , pN+1), ρ = (ρ1, ρ2, . . . , ρN+1), and the

model allows for shifts in the mean, δ = (δ1, δ2, . . . , δN+1); also define ν2 = (ν2
1 , . . . , ν2

N+1),
θ = (δ, ρ, p, ν2). It is necessary to specify the unknown parameter N, the number of change-points.
Theoretically, N could be any integer between 0 and T − 1, while in practice, we can set a maximum
value for N, perhaps via the rough graphical inspection. Additionally, the change-point problem
is characterized by N; if N is greater than 1, we call it multiple change-point problem; otherwise,
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the process is stationary. A model selection procedure is often used to determine the number of
change-points; one can minimize an objective function of the form [38]:

N+1

∑
i=1

[
C(X(τi−1+1):τi

)
]
+ P(τ, N, θ) (2)

where the C is a cost function for a segment and P is a penalty term. In this paper, we consider the
negative log-likelihood as the cost function by rewriting (2) as a penalized likelihood information
criterion:

−
N+1

∑
i=1

[
L(X(τi−1+1):τi

)
]
+ P(τ, N, θ). (3)

Akaike’s information criterion (AIC), Bayesian information criterion (BIC), and modified BIC are
well-known information criteria. The significant difference between these information criteria is the
amount of penalty added to each parameter of the model. The penalty terms for the AIC and the BIC
are given below:

AIC : P = k, (4)

BIC : P =
1
2

log(T)k (5)

The total number of parameters in the model is denoted by k. Thus, each parameter is penalized
by the same amount. Because the AIC and BIC are not theoretically designed for the change-point
problems, Zhang and Siegmund [39] proposed the modified BIC (mBIC) for determining the number
of change-points in array-based comparative genomic hybridization data. The mBIC follows the classic
BIC, while it differs in the penalty term. The general form that penalizes for model dimensions is given:

mBIC : P ≈ 3
2

N log(T) +
1
2

N+1

∑
i=1

log(τi − τi−1). (6)

In addition, Lavielle [40] proposed a penalty function with an adjustable shrinkage parameter β

for the change-point problem:

ShrinkageIC : P ≈ βN log(T). (7)

In this paper, we introduce the two-stage minimum description length (MDL) for our change-point
problem based on model (1); the superior flexibility is one strength of MDL. It was proposed by
Rissanen (1978), based on Kolmogorov’s theory of algorithmic complexity and rooted in information
theory. In developing MDL, Rissanen’s idea was to select the model with an excellent fit to the observed
data while generating the least description. The term “description length” is interchangeable with
“code length,” which is used to describe the complexity of each statistical model. In other words,
the best model was defined by MDL as the one that can compress a vast amount of information
by using less computer memory storage; the amount of computer memory is called code length,
denoted by CL. Figure 1 summarizes the aforementioned penalized likelihood methods.
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Penalized likelihood methods
used in change-point problem

Fixed penalty term Flexible
penalty term

AIC

BIC

Modified BIC

MDL

ShrinkageIC

Figure 1. Popular methods for model selection used in change-point problems.

2.2. The Principle of Minimum Description Length

The MDL criterion can tailor penalties for parameters having different natures, while the other
information criteria treat every parameter as imposing the same penalty; therefore, which parameter to
be penalized and the amount to be encoded need to be formalized according to the general principles
of Rissanen [41]:

• For an integer parameter N, when its value is not bounded, approximately log2(N) bits are
encoded. If N is limited by the upper bound value Nu, then approximately log2(Nu) bits
are needed.

• To encode a real parameter, if it is estimated from T observations, 1
2 log2(T) bits are required.

Then, we use the framework set out by [7] to derive the description length based on model (1);
the MDL consists of the following four components:

1. As mentioned above, the first part of two-stage MDL can be considered as a negative log-likelihood
function of the whole process, by assuming that the segments are independent, and using the
approximation in McLeod et al. [42] for the exact loglikelihood for the AR(p) model, the likelihood
of segment i can be written as − T

2 log(ν̂2)− 1
2 log(Γs) (see [42] for further details), where ν̂2 is the

Yule-Walker estimate, log(Γs) is the covariance determinant of first s observations.
2. For the number N, the penalty term is log2(N). Since it can be considered as an integer parameter

without being bounded, the code length is log2(N).
3. The length for each of N + 1 segments cannot exceed T. This means that, according to the integer

parameter principle, the lengths of the segments can be encoded with log2(T) bits.
4. pi represents the order of the AR process for each segment, which should be an integer. So the

parameter can be encoded with log2(pi) bits; see [7].
5. For each segment i, i = 1, . . . , N + 1, we estimate three real-valued parameters. These are mean

shift δi; autocorrelation coefficient ρij, where j = 1, . . . , pi; and variance ν2
i . Under the real

parameter principle, each of these parameters can be computed from τi − τi−1 − 1 observations.
Hence, each of them need 1

2 log2(τi − τi−1 − 1) bits.



Algorithms 2020, 13, 128 5 of 17

Thus, we can get the objective functions based on the MDL for the multiple change-points model:

MDL(N, τ, δ, ρ, p, ν2) = −
N+1

∑
i=1

logL(X(τi−1+1):τi
| θ̂i) + P(N, τ, θi)

= −
N+1

∑
i=1

(
T
2

log(ν̂i
2) +

1
2

log(Γis)

)
︸ ︷︷ ︸

stochastic complexity of the model

+ log N + (N + 1) log T +
N+1

∑
i=1

log pi +
N+1

∑
i=1

pi + 2
2

log(τi − τi−1 − 1)︸ ︷︷ ︸
penalty terms

. (8)

If there are no change-points in the model (N = 0), the MDL for a stationary AR(p) process will be

MDL(δ, ρ, p, ν2) = − logL(X1, X2, . . . , XT | θ̂) +
p + 2

2
log T

= −
(

T
2

log(ν̂2) +
1
2

log(Γs)

)
+

p + 2
2

log T. (9)

3. The Cross-Entropy Algorithm

In order to identify the locations of change-points in the problem—Equations (8) and (9), which can
be considered a combinatorial optimization problem—we use the cross-entropy (CE) algorithm. The CE
method was originally developed to estimate the rare-event probabilities as an adaptive importance
sampling method, based on the Kullback–Leibler divergence (or cross-entropy) minimization [43].
The main idea of the CE method can be described by a two-step iterative procedure:

1. Generate a sample from a probability distribution.
2. In order to obtain a better sample, find the minimum cross-entropy distance between the sample

distribution and a target distribution.

Rubinstein [44,45] then realized that the CE method can be used to solve combinatorial
optimization problems. We recommend [46] for getting familiar with the principals and the applications
of the CE method.

Firstly, we formulate the rare-event probability estimation problem:

l(α) = Pv(F(C) ≤ α) = Ev[I{F(C)≤α}] = ∑
c

I{F(c)≤α} f (c, v),

where F(C) is the objective (or score) function defined on a finite set C, α is a threshold, Pv(F(C) ≤ α)

is the corresponding probability measure when C follows the probability density function (pdf)
f (·, v) with a real parameter v, and I is an indicator function. The main idea of the CE method is to
obtain the optimal pdf from a set of pdfs { f (·, v)} through minimizing Kullback–Leibler (or relative
entropy) distance.

v∗ = argmin
v

D{z∗(c), f (c, v)}

= argmax
v

Eu[I{F(C)≤α}] ln f (C, v) (10)

It allows us to generate a sequence { f (·, v)} by multi-level CE implementation to get the final
optimal pdf f (·, v∗). During adaptive updating procedure, a family of {(αk, vk)} is generated and
eventually converges to the optimal state (α∗, v∗).
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As the F(C) defined as (8) or (9), our goal is to find the minimum value of F(c), denoted by α∗,

α∗ = min
c∈C

F(c)

Then, the two-step iterative procedure mentioned above can be written in the following way:

1. Updating of the level parameter αk. Order the performance score increasingly, F(C(1)) ≤ · · · ≤
F(C(M)), C(1), . . . , C(M) iid∼ f (C, vk−1). Let α̂k be the β-quantile of the ordered performance scores,
which can be denoted as,

α̂k = F̂(dβMe).

2. Updating the reference parameter vk. Given αk and vk−1, we can derive vk from Equation (10),

v̂k = argmax
vk

Evk−1 [I{F(C)≤α̂k}] ln f (C, vk).

More formally, the generic CE optimization algorithm can be described as follows (Algorithm 1).

Algorithm 1 Basic CE optimization algorithm.

1: Specify the initial parameter v̂0 of f (·, v). Let k = 1.
2: Generate a random sample C(1), . . . , C(M) from f (·, v̂k−1). Evaluate and order the performance

score, F(1) ≤ · · · ≤ F(M), level parameter is estimated as α̂k = F̂(dβMe).
3: Update the current parameter vk by solving the stochastic problem:

v̂k = argmax
vk

1
M

M

∑
i=1

I{F(C(i))≤α̂k} ln f (C(i), vk)

4: Stop the process if a certain stopping criterion is met; otherwise allow k = k + 1 and return to
step 2.

The detailed information about the properties of the CE algorithm as well as its diverse
applications can be found in [43] and [44]. To date, the CE method has been modified and applied to
different multiple change-point problems as a combinatorial optimization algorithm in [8,30–35].

Let us now formulate the CE algorithm for the multiple change-point problem. Let C1, C2, . . . , CN
be a sequence representing the locations of change-points. Since the location space is finite, we can carry
out the CE combinatorial optimization algorithm, and generate M rows of random samples. So here

we deal with the objects C(j) = (C(j)
1 , C(j)

2 , . . . , C(j)
N )

iid∼ f (·, v), j = 1, 2, . . . , M. The external parameters
are Nmax, β, and ε; we apply the CE.AR algorithm at 1 ≤ N ≤ Nmax. The normal distribution is
served as f (·, v). In practice, the users need to specify the external parameters. The main steps of our
proposed CE.AR algorithm are as follows (Algorithm 2).
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Algorithm 2 The CE.AR algorithm.

1: Set initial parameters of normal distribution for µ(0) =
(
µ(0),1, µ(0),2, . . . , µ(0),N

)
and (σ2)(0) =(

(σ2
(0),1), (σ

2
(0),2), . . . , (σ2

(0),N)
)
. The length of both vectors is N corresponding to N change-points.

Set k = 1.
2: Generate a sequence of random samples C(1), C(2), . . . , C(M) from the normal distributions with

parameters
(
µ(k−1), (σ

2)(k−1)
)
, where C(j) =

(
C(j)

1 , C(j)
2 , . . . , C(j)

N
)
, for j = 1, 2, . . . , M, where the

vector
(
C1, C2, . . . , CN

)
is a vector of simulated change-points.

3: For each j = 1, 2, . . . , M, arrange C(j)
1 , C(j)

2 , . . . , C(j)
N from smallest to largest and store into c(j).

4: Evaluate the objective function (8) for each c(1), c(2), . . . , c(M). Choose the elite samples
{c(j), F(c(j))}, where j = 1, 2, . . . , Melite. Updating level parameter α̂k.

5: For all i = 1, 2, . . . , N, estimate the parameters µ(k),i and (σ2
(k),i by solving the equations:

µ̂(k),i =

∑
j∈J

c(j)
i

Melite
,

(
σ̂2
(k),i

)
=

∑
j∈J

(
c(j)

i − µ(k),i

)2

Melite
,

where J is the set of indices of the best performing samples.
6: Stopping criterion is maxi(σ

2
(k),i) < ε.

7: If the stopping criterion is met, so stop the process, then identify the combination of the
positions of change-points and compare its performance score with the score of N = 0 from
(9). If MDLN≥1(·) > MDLN=0(·), then there are no change-points. Estimate the parameters of the
model for all obtained segments. If the stopping criterion is not met, set k = k + 1 and iterate from
step 2.

4. Numerical Experiments

We provide three simulated examples to illustrate the proposed CE.AR method, compared with
the current methods on offer in the R packages AR1seg [37] and strucchange [47]. In the simulation
study, we aim to present a detailed evaluation of the estimated number of change-points through
these three methods. The CE algorithm discussed above was implemented using the breakpoint
package [8] with the external settings as follows: the elite proportion value β = 0.05 and the sample
size M = 200.

4.1. Example 1: Simulated AR(1) Processes with No Change-Point

The null case is considered first with three standard AR(1) processes simulated with no
change-point. Three sets of 100 AR(1) sequences are generated with each sequence of length T = 201.
The autocorrelation coefficients were set to be 0.1, 0.5, and 0.9, respectively, for each set. The variance
was set globally to be ν = 1, and the mean was set to be δ = 0.

Table 1 shows that both strucchange and CE.AR perform well for all values of ρ, while AR1seg
tends to slightly overestimate the number of change-points when the value autocorrelation parameter
increases. The best performing method is the CE.AR method.

Table 1. The estimated number of change-points in an AR(1) with no change points.

AR parameter ρ = 0.1 ρ = 0.5 ρ = 0.9

Algorithm
N̂ N̂ N̂

0∗ 1 ≥ 2 0∗ 1 ≥ 2 0∗ 1 ≥ 2

AR1seg 95% 4% 1% 89% 3% 8% 36% 17% 47%
strucchange 97% 3% 0% 100% 0% 0% 94% 5% 1%
CE.AR 100% 0% 0% 100% 0% 0% 100% 0% 0%
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4.2. Example 2: Simulated AR(1) Processes with a Single Change-Point

In this example, we would like to understand how a change in either the mean or the
autocorrelation coefficient affects the performances of the algorithms. To study these individual
effects, we design two scenarios. In the first scenario, we assume that autocorrelation ρ remains the
same in a time series, while the mean jumps at each segment; the second scenario shows the opposite
situation: the mean is fixed and the autocorrelation coefficient varies across segments.

4.2.1. Example 2.1

In scenario 1, we generated three sets of 100 AR(1) sequences of length 201 with a fixed
autocorrelation ρ = 0.5 and one abrupt change-point at position τ1 = 100, which partitions a time
series into two segments. The mean of first segment, δ1, equal 0, and then jumps from 0 to δ2 = 1 or
δ2 = 2 or δ2 = 3 at the second segment. For each set, three sequences of simulated piecewise AR(1)
process are graphically demonstrated by Figure 2.
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Figure 2. (a) The three samples of the simulated AR(1) process whose mean varies from δ1 = 0 to
δ2 = 1. (b) The sample with a shift from δ1 = 0 to δ2 = 2. (c) The simulated sample from δ1 = 0 to
δ2 = 3.

Table 2 shows that the detection accuracies of all the methods strucchange, AR1seg, and
CE.AR improved while the value of δ increased. Generally, the best performing method was the
strucchange package.

Table 2. The estimated number of change-points under scenario 1.

Mean Shift δ2 = 1 δ2 = 2 δ2 = 3

Algorithm
N̂ N̂ N̂

0 1∗ ≥ 2 0 1∗ ≥ 2 0 1∗ ≥ 2

AR1seg 58% 29% 13% 20% 65% 15% 10% 68% 22%
strucchange 60% 40% 0% 2% 97% 1% 0% 97% 3%
CE.AR 97% 3% 0% 41% 58% 1% 2% 97% 1%

We use the histogram (see Figure 3) to illustrate the performance of the estimated single
change-point location under three levels of mean shifts by looking at the plot vertically to compare
three methods (a,b,c) under the same settings. Overall, all methods tend to more accurately identify the
change-point’s location as the mean shifts become more significant. By examining the case of δ2 = 2 or
3, we can see that AR1seg identified a few change-points located at the beginning of the process, while
the CE.AR method tended to seek locations around 100. Under the case of δ2 = 1, all the methods
perform poorly; the CE.AR method especially is insensitive to the small mean change.
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Figure 3. Frequency of the estimated locations filtered by the correct number of change-points; the
true number was 100. (a) The results from mean shifts δ2 = 1. (b) The results from mean shifts δ2 = 2.
(c)The results from δ2 = 3.

4.2.2. Example 2.2

In scenario 2, we generated three sets of 100 AR(1) sequences of length 201 with a homogeneous
mean δ = 0 and one abrupt change-point at position τ1 = 100 caused by the variation in autocorrelation
coefficient. Three settings are displayed in Table 3; in the first set, a weak positive correlation is
followed by a moderate correlation; the change occurs from weak to strong, and from moderate to
vigorous, in the second and third sets respectively. In general, the performance of strucchange is
relatively better than AR1seg and CE.AR. AR1seg is not explicitly designed for this scenario since
the autoregressive parameter changes between segments. It is interesting to see that CE.AR method
performs very well only when ρ varies dramatically. When ρ does not change that much, the algorithm
tends to underestimate the number of change-points, preferring a model with a smaller number of
change-points.

Table 3. The estimated number of change-points under scenario 2.

Coefficient Shift ρ1 = 0.1, ρ2 = 0.5 ρ1 = 0.1, ρ2 = 0.9 ρ1 = 0.5, ρ2 = 0.9

Algorithm
N̂ N̂ N̂

0 1∗ ≥ 2 0 1∗ ≥ 2 0 1∗ ≥ 2

AR1seg 82% 6% 12% 29% 9% 62% 46% 10% 44%
strucchange 68% 32% 0% 0% 97% 3% 36% 61% 3%
CE.AR 96% 4% 0% 6% 92% 2% 90% 8% 2%

Figure 4 displays that the estimation performance of each method under scenario 2.
The strucchange shows better performance than the other two. Compared with scenario 1, when the
autoregressive parameter ρ varies weakly or moderately, it is more difficult for the three methods to
estimate the correct number of and the locations of change-points. Lastly, the histogram shows that the
estimated location of strucchange has a broader spread than CE.AR method.



Algorithms 2020, 13, 128 10 of 17

a b c

A
R

1seg
strucchange

C
E

50 100 150 200 50 100 150 200 50 100 150 200

0

20

40

0

20

40

0

20

40

F
re

qu
en

cy

Figure 4. Under scenario 2, frequency of the estimated locations was filtered by the correct number of
change-points; the true change-point number was 100. (a) The results under ρ1 = 0.1, ρ2 = 0.5. (b) The
results under ρ1 = 0.1, ρ2 = 0.9. (c) The results under ρ1 = 0.5, ρ2 = 0.9.

In addition, we run more tests when ρ changes from negative to positive; three settings are
displayed in Table 4. The detection rates of strucchange and CE.AR methods increased in comparison
with the previous settings.

Table 4. The estimated number of change-points under scenario 2.

Coefficient Shift ρ1 = −0.5, ρ2 = 0.9 ρ1 = −0.5, ρ2 = 0.5 ρ1 = −0.5, ρ2 = 0.1

Algorithm
N̂ N̂ N̂

0 1∗ ≥ 2 0 1∗ ≥ 2 0 1∗ ≥ 2

AR1seg 2% 0% 98% 47% 9% 44% 84% 5% 11%
strucchange 0% 97% 3% 0% 98% 2% 25% 74% 1%
CE.AR 0% 99% 1% 3% 95% 2% 87% 13% 0%

In Example 2, we have considered two scenarios of single change-point detection. The first
scenario assumes that there are no coefficient changes while the mean changes between different
segments. In the second scenario, the coefficient parameter ρ changes, but the mean is assumed to be
0. Individually, the coefficients are simulated to change weakly, moderately, and strongly; we have
considered six cases, which are graphically illustrated in Figure 5 by plotting one time series out of the
100 simulated AR(1) sequences. The frequency charts are used to measure the performances of the
three methods in terms of accuracy of estimating the location of the change-point. We found that the
CE.AR method tends to concentrate on the accuracy of the change-point locations more than the other
two methods, as long as the number of change-points is accurately estimated. The detection accuracies
of three methods for estimating the number of change-points is summarized in Tables 2–4, which
illustrate that the detection rates of all methods increase as the shift in the mean increases. From Table 4,
it is evident that the CE.AR method performs better when ρ changes from −0.5 to 0.5, from −0.5 to 0.9,
and from 0.1 to 0.9; strucchange generally performs better than CE.AR and AR1seg. Therefore, we
can conclude that the CE.AR method is not sensitive to mild coefficient changes, and it is suitable for
the situations in which either there is a dramatic change in the mean or the correlation coefficient.
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Figure 5. The figure describes the setting of scenario 2 in Example 2.2 by using one simulated AR(1)
process. The plots display the autocorrelation coefficient variation: (a) from 0.1 to 0.5, (b) from 0.1 to
0.9, (c) from 0.5 to 0.9, (d) from −0.5 to 0.1, (e) from −0.5 to 0.5, and (f) from −0.5 to 0.9.

4.3. Example 3: AR(1) Processes with Multiple Change-Points

In this example, we consider a case of multiple change-points assuming that both the mean and
the autocorrelation coefficient may change at the same time.

Firstly, we generated one set of 100 AR(1) sequences of length 201 with three change-points
located at τ1 = 20, τ2 = 60, and τ3 = 120. For each segment we used the following parameters: the
mean levels of δ1 = 0, δ2 = 3, δ3 = 1, and δ4 = 0; the autocorrelation coefficients of ρ1 = 0.1, ρ2 = 0.9,
ρ3 = 0.9, and ρ4 = 0.5, respectively.

Table 5 illustrates that none of the three methods could estimate the number of changes well
enough. AR1seg performs the best under this test. A similar underestimation issue persists in
the strucchange and CE.AR methods. The underestimation is less severe in the CE.AR method;
strucchange shows the least accuracy in this case.

Table 5. Estimated number of multiple change points.

Algorithm N̂
0 1 2 3∗ 4 ≥ 5

AR1seg 26% 8% 25% 10% 31% 0%
strucchange 22% 68% 9% 1% 0% 0%
CE.AR 74% 13% 10% 3% 0% 0%

Next, we generated another set of 100 AR(1) sequences of length 201 with three change-points
at τ1 = 20, τ2 = 60, and τ3 = 120. For each segment, the mean levels were δ1 = 0, δ2 = 3, δ3 = 1,
and δ4 = 0, while the autocorrelation coefficients were ρ1 = −0.1, ρ2 = 0.9, ρ3 = −0.9, and ρ4 = 0.5.
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Table 6 shows that AR1seg serves as the best method for estimating the number of change-points
under this setting. Both strucchange and CE.AR methods show the heavy underestimation, while the
reason could be that they ignored the τ1. In order to evaluate the multiple segmentation performance,
we introduce the Hausdorff metric, which measures the greatest distance between the estimated
locations and true change-points.

Hausdorff(τ, τ̂) = max {max
τi∈τ
{min

τ̂i∈τ̂
‖τ̂ − τi‖}, max

τ̂i∈τ̂
{min

τi∈τ
‖τ̂ − τi‖}}.

Table 7 shows the Hausdorff distances for each of the three methods, the first line presents the
results for the first choice of the parameters, while the second line displays the distances for the second
choice mentioned above.

Table 6. Estimated number of multiple change points.

Algorithm N̂
0 1 2 3∗ 4 ≥ 5

AR1seg 3% 1% 10% 23% 63% 0%
strucchange 0% 0% 90% 9% 1% 0%
CE.AR 0% 0% 100% 0% 0% 0%

Table 7. Hausdorff distance for each algorithm and two choices of the parameters.

AR1seg strucchange CE.AR

73 46 39
73 30 19

Figure 6 shows the frequency of estimated locations for each method under the Table 6 scenario
with at least one change-point detected. The AR1seg method tends to estimate the first change-point
location accurately. The CE.AR1 method has 100% power to identify the second and third locations;
strucchange is less capable of detecting the first change-point at τ1 = 20, while it performs well at
τ2 = 60 and τ3 = 120. It is noted that all the estimations obtained from CE.AR method cluster around
60 and 120 and tend to ignore the earliest location.
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Figure 6. Frequency of the estimated locations when N > 0; the true profile of change-points is at 20,
60, 120.
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5. Discussion

In this section, we aim to recapitulate the discussion of the results of the numerical experiments.
We will also apply the proposed method to real data analysis.

5.1. Simulation Results

The objective of the simulation study was to evaluate the performance of the three change-point
detection methods (AR1seg and strucchange and the proposed CE.AR) under various scenarios
looking at two aspects of the methods’ detection accuracies: the number of estimated change-points
and their locations. We use tables to summarize the estimated number of change-points, while
histograms are used to measure the detection accuracy in change-point locations. The simulation study
consists of three examples. In the first example, there is no change-point in the AR(1) process; the
CE.AR method achieves 100% exact detection rate under each of the three choices of the autocorrelation
coefficient, 0.1, 0.5, and 0.9. The second example includes two scenarios, in which we study how a
change in either the mean or the autocorrelation coefficient affects the performances of the algorithms.
In scenario 1, it can be seen that the detection accuracy of the CE.AR method significantly improves as
the shift in the mean increases from 1 to 3. In scenario 2, the autocorrelation coefficients differ between
adjacent segments; we have considered six cases, whose profiles are shown in Figure 5. The cases
with weak changes in the autocorrelation coefficient, such as ρ1 = −0.5, ρ2 = 0.1; ρ1 = 0.5, ρ2 = 0.9;
or ρ1 = 0.1, ρ2 = 0.5, remain a challenge for the CE.AR method; it showed a heavy under-segmentation.
In the third example, we consider a combined effect of the mean shift and the autocorrelation coefficient
variation on piecewise AR(1) with multiple change-points. The two scenarios in this example show that
the CE.AR method tends to disregard the first small segment, even if the mean or the autocorrelation
coefficient changes dramatically. The histograms and Hausdorff distance show a low variation in
estimated locations of change-points for the CE.AR method.

5.2. Application

We use a new real data set to demonstrate the practical aspects of our algorithm. The data
were downloaded from the Reserve Bank of Australia—the daily AUD/CNY exchange rate from 2nd
January 2018 to 24th March 2020. Both ARIMA and AR models have been used in the literature to
model different exchange rates [48–50]. If an ARIMA process is used to model an exchange rate, then
a change-point is recorded as a change in either the coefficients of AR part, or the MA part, or both
of them. Dealing with the parameter change in the MA part of ARIMA process will be a matter of
our future research. Before applying the CE.AR method, the stationary test and pre-examination are
needed; the first difference of AUD/CNY is non-stationary, and we can get the rough profile of this
series by using auto.arima() function which is built in forecast package [51]. If there is no obvious
change in autocorrelation coefficient but in the mean level, AR1seg or the similar methods are preferred.

Figure 7 shows the estimation results obtained by the CE.AR and strucchange method. Since
the actual number and the locations of change-points can not be identified in advance, we need to
take both methods into account and seek for the agreement between them. The CE.AR method yields
four possible change-points in 4 December 2018, 4 March 2019, 2 January 2020, and 9 September 2020,
while strucchange” method presents three change-points that occurred in 3 May 2018, 28 February
2018, and 6 May 2019. Both methods have correctly identified the period from December of 2018 to
May of 2019, and it seems that a regime started around 4 March 2019. According to the CE.AR method,
the new regime started on 9 March 2020, so it managed to identify a very volatile period related to the
COVID-19 pandemic.

If we bring the views from data itself to the real world, the cause of the changes may be the
fallout from the China–United States trade war since 2018 or the uncertain climate in the Eurozone.
The external shock has an impact on the Australian market, which has been reflected by the data and
the estimated change points.
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Hence, we suggest that the CE.AR algorithm would be a good tool for analyzing the daily
AUD/CNY exchange rate; combined with the strucchange method, it will reveal more historical
information. Forecasting the exchange rate based on the recent change-points will be done in the
future research.
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(b) CE.AR−Strucchange Method

Figure 7. The orange dotted line in the plot represents estimated change-points using CE.AR, while
the blue line represents the change-points detected by the strucchange method. In (a), we show the
comparison of two methods on the daily exchange rate of AUD/CNY. (b) The change-point detection
resulted by applying both methods on the first difference of AUD/CNY daily exchange rate. The data
were downloaded from https://www.rba.gov.au/statistics/historical-data.html.

6. Conclusions

In this paper, we have proposed a new change-point detection algorithm, named CE.AR.
The algorithm is able to detect change-points in piecewise AR(p) sequences, allowing variations
in all parameters of the model. Our method involves two steps. Firstly, we build the MDL-based
objective function to estimate the correct number of AR(p) segments. Then, we apply the Cross-Entropy
algorithm for solving the combinatorial optimization problem. The numerical results show that, when
the mean and the autoregression coefficient change moderately or strongly, the CE.AR method is
very efficient at estimating multiple change-points. The Cross-Entropy algorithm also shows superior
performance in detecting the locations of change-points. These two features make the proposed
algorithm very useful from a practical point of view. We have demonstrated its usefulness by applying
it to the latest real data set on the AUD/CNY exchange rate. The model considered here assumes
an AR process; generalization to an ARIMA model is a matter for our further research. A limitation
of the method comes from the under-segmentation when there is a small change in the mean or the
autocorrelation coefficient. The improvement of detection accuracy for this problem needs to be taken
into consideration in future research. In addition, it may be worth examining the impact of the lengths
of the segments on the performance of the algorithm. Lastly, the question of whether our method
would be helpful to improve the forecast’s accuracy is also a topic for our future research.
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Abbreviations

The following abbreviations are used in this manuscript:

AR Autoregressive
AR(1) Autoregressive model of order 1
AR(p) Autoregressive model of order p
MDL Minimum description length
AIC Akaike’s information criterion
BIC Bayesian information criterion
mBIC Modified Bayesian information criterion
ShrinkageIC A penalty function with an adjustable shrinkage parameter
CL Code length
EM Expectation-maximization
MCMC Markov chain Monte Carlo
CE Cross-Entropy
ARIMA Autoregressive integrated moving average
MA Moving average
AUD Australian dollar
CNY Chinese yuan
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