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Abstract: The expected utility principle is often used to compute the insurance premium through a
second-order approximation of the expected value of the utility of losses. We investigate the impact
of using a more accurate approximation based on the fourth-order statistics of the expected loss and
derive the premium under this expectedly more accurate approximation. The comparison between
the two approximation levels shows that the second-order-based premium is always lower (i.e., an
underestimate of the correct one) for the commonest loss distributions encountered in insurance.
The comparison is also carried out for real cases, considering the loss parameters values estimated in
the literature. The increased risk of the insurer is assessed through the Value-at-Risk.

Keywords: risk management; insurance; premium; expected utility; CARA

1. Introduction

Insurance has long been considered a major pillar in risk management [1,2]. Insurance allows the
transfer of risks to the insurer under the payment of a fee (the premium).

Beside its traditional domains (e.g., car and life), insurance has spread to many new application
contexts, e.g., communications [3,4], cloud services [5,6], critical infrastructures [7], and cyber-security[8–13].

A critical element in the application of insurance mechanisms to new contexts, where the statistics
of claims may not be as established, is how to set the insurance premium that customers are asked to pay.
The expected utility paradigm has been shown to be a powerful approach to premium pricing [14,15],
with the so-called non-expected utility approach being rather its generalization [16]. Though the
expected utility in its original formulation provides an upper bound for the insured, i.e., the maximum
premium the insured should pay, we consider here as the actual price set by the insurer, assuming that
it wishes to set the premium as high as possible. If that is not the case, what follows applies anyway to
the maximum premium. However, this approach requires knowledge of the expected value of utility,
i.e., a generally nonlinear function of the random loss, which may not be exactly known or easy to
compute [17]. That is the case when asymmetric information is present [18], or when we do not know
enough about the probability distribution of losses, as in cyber-insurance. The textbook treatment, as
in [14], is to approximate the expected utility through a function of the first- and second-order moments
of the loss (which we refer to as second-order approximation in the following). This may be too harsh
an approximation when we think of the consequences for the insurer: setting the price too high will
lead to potential insureds diverted from subscribing the policy, while the opposite mistake may lead to
huge losses for the insurer.

In this paper, we wish to investigate the consequences of the second-order approximation.
In particular, we compare it with a fourth-order approximation, which is based on the loss statistics up
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to the fourth order. Intuitively, we expect the fourth-order approximation to be closer to what the full
knowledge of the loss distribution would tell us. However, the computation of the amount of premium
misestimation when we stop at the second-order approximation matters: if the difference between
the premiums returned by the two methods is low, asking for estimating fourth-order statistics is
not worthwhile. We build on a previous paper of ours, where the fourth-order approximation was
computed for loss occurrences following a Poisson model [19]. Here, we make the following original
contributions:

• the pricing formula is derived under a fourth-order approximation for several choices of the
risk-aversion coefficient (Section 2);

• by comparing the premiums under the two approximation levels, we derive the conditions for the
second-order approximation to lead to premium underestimation, which is the most dangerous
case for the insurer (Section 3);

• the second-order approximation is shown to lead to premium underestimation for the commonest
loss distributions employed in insurance (Section 3.1);

• an estimate is provided for the impact of an imperfect knowledge of the fourth-order loss statistics
(Section 3.2);

• the differences between second- and fourth-order approximations are analyzed for realistic values
of the loss distribution parameters, as extracted from the literature (Section 3.3);

• the risk of premium underestimation is assessed for the insurer by using the Value-at-Risk metrics
(Section 4).

2. The Expected Utility Principle for Premium Computation

In this paper, we adopt the expected utility principle to compute the insurance premium.
The principle is well-rooted in the literature. In this section, starting from its general definition, as
described in [14], we derive the premium. We largely follow the derivation reported in [6,19]. The list
of symbols used throughout the paper are shown in Table 1 for convenience.

Table 1. Variables and parameters used.

Parameters/Variables Meaning

α Risk-aversion coefficient
Γ(a, b) Gamma distribution, with shape parameter a and scale parameter b
Gev(µ, σ, η) Generalized Extreme Value distribution, with location (µ), scale (σ) and shape (η) parameters
GPD(β, ξ) Generalized Pareto distribution, with its scale (β) and shape (ξ) parameters
η Probability premium
λ Frequency of claims
Li Loss suffered during i-th event
Logn(µ, σ2) Lognormal distribution, with its mean-log (µ) and variance-log (σ2)
p Probability of an event
Par(a, h) Pareto distribution, with its shape (a) and scale (b) parameters
T Length of observation period
θ Confidence level
X Random loss
xθ Value at Risk
w Wealth under no losses

Under the expected utility principle, the relevance of the loss suffered by the insured is evaluated
through the utility function u : R→ R, which is assumed to be a monotone non-decreasing function.
In the absence of any event, the utility of the insured depends just on its assets w, so that it is u(w).
In the absence of an insurance policy, the occurrence of a damaging event would provoke a monetary
loss X, which would bring its utility down to u(w − X). Here, we do not make any assumption
about the nature of the events leading to the loss, since what follows is derived under very general
assumptions. An example of application of the expected utility principle to cloud storage is reported
in [6] (where the loss is the compensation provided by the cloud service provider to its customers
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when service quality falls below what is stated in Service Level Agreements). In Section 3.3, the
pricing formulas are instantiated for some contexts. Since the insured has bought an insurance policy
(assuming that the event falls fully under the coverage umbrella of the policy), it pays a (fixed) premium
P, so that its utility decreases to the fixed quantity u(w− P). The insured can then compare the two
alternatives: buying an insurance policy and end up with utility u(w − P) or suffer the (random)
monetary loss X and end up with utility u(w− X).

A crucial element in deciding whether to buy an insurance policy is then the premium P. Under
the expected utility principle, the fair premium is defined as that for which the two alternatives are
utility-equivalent (on average), i.e., that resulting from the following equilibrium equation:

E[u(w− X)] = u(w− P) (1)

We can solve that equation for P through an approximation provided by the Taylor series
expansion for both sides, centered in w−E[X]:

u(w− P) ' u(w−E[X]) + ui(w−E[X])(E[X]− P)

u(w− X) ' u(w−E[X]) + ui(w−E[X])(E[X]− X) +
1
2

uii(w−E[X])(E[X]− X)2

+
1
6

uiii(w−E[X])(E[X]− X)3 +
1

24
uiv(w−E[X])(E[X]− X)4.

(2)

It is to be noted that contrary to the standard treatment reported in [14] and applied, e.g., in [6],
where the expansion stops at the second order, here we go through the fourth-order term. We aim
to seek for a more accurate, though more complex, premium computation. When we replace those
approximate expressions into Equation (1), omitting the argument w−E[X] of the utility function for
the sake of simplicity, we obtain

(E[X]− P)ui =
1
2

uiiV[X]− 1
6

uiiiS[X]V3/2[X] +
1

24
uivK[X]V2[X], (3)

where we have introduced the third- and fourth-order statistics (skewness and kurtosis)

S[X] = E
[
(X−E[X])3

V3/2[X]

]

K[X] = E
[
(X−E[X])4

V2[X]

] (4)

Equation (3) can be solved for the premium (which we label as P4 := P, to make it clear that we
stop at the fourth-order term of Taylor’s expansion)

P4 = E[X]− 1
2

uii

ui V[X] +
1
6

uiii

ui S[X]V3/2[X]− 1
24

uiv

ui K[X]V2[X], (5)

This is to be compared with the standard second-order approximation, which would give us

P2 = E[X]− 1
2

uii

ui V[X], (6)

However, both expressions depend on the choice of the utility function.
We can now introduce the Arrow–Pratt measure of Absolute Risk Aversion (ARA) [20]:

A(x) := −uii(x)
ui(x)

, (7)
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where the normalization by ui(x) makes that measure of risk aversion independent of the unit of
measurement adopted so that A(x) is a dimensionless quantity (hence the absolute qualification).
The second-order premium is then

P2 = E[X] +
1
2

A(X)V[X], (8)

A popular choice for the utility function is the exponential form

u(x) = 1− e−αx, (9)

which results in the risk-aversion measure being constant A(x) ≡ α, where α is called the risk-aversion
coefficient. The exponential function is the only one possessing this Constant Absolute Risk Aversion
(CARA) property. Due to the CARA property, the exponential utility function has been extensively
employed in the literature, see, e.g., [8,10,21,22]. In addition to the immediate simplification of the
second-order premium, we can also recognize that the ratios of derivatives of the utility functions
involved in the fourth-order premium become

uii

ui =
−α2e−αx

αe−αx = −α

uiii

ui =
α3e−αx

αe−αx = α2

uiv

ui =
−α4e−αx

αe−αx − α3,

(10)

so that the premium can then be rewritten as

P4 = E[X] +
1
2

αV[X] +
1
6

α2S[X]V3/2[X] +
1

24
α3K[X]V2[X] (11)

for the fourth-order case and
P2 = E[X] +

1
2

αV[X] (12)

for the second-order case.
As to the proper value to assign to the risk-aversion coefficient, it should be chosen to reflect

the individual sensitivity towards risk: the higher is α, the more importance is attributed to risk.
However, some proposals have appeared in the literature to assign sensible values to α. Bohme and
Schwartz have considered the range of values α ∈ [0.5, 4] [23]. Raskin et al. [24] and Thomas [25] have
considered several alternatives for risk-aversion coefficient. Pitacco et al. [26] proposed to set it as the
inverse of the expected loss

αPit =
1

E[X]
. (13)

Babcock et al. proposed to set it as proportional to the inverse of the expected loss through the
following formula [27]:

αBab =
ln 1+2η

1−2η

E[X]
, (14)

where η ∈ [0, 0.5] is the probability premium, i.e., the event probability in excess of 0.5 so that an
individual gets the same utility as the status quo (i.e., it sees its utility unchanged by the event).
As can be seen, Equation (14) is a perturbation of (13) through a logarithmic function of the probability
premium.

In Figure 1, we can see that the perturbation factor is lower than 1 for η < 1
2

e−1
e+1 ' 0.231 but can

be significantly larger than 1 for higher probability premium values. We have therefore αPit ≶ αBab.
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Figure 1. Ratio of the Pitacco and Babcock risk-aversion coefficient.

The resulting premiums P2 and P4 using αPit and αBab for the specific risk-aversion coefficient are
respectively

P2−Pit = E[X] +
1
2

1
E[X]

V[X]

P2−Bab = E[X] +
1
2

ln 1+2η
1−2η

E[X]
V[X]

(15)

P4−Pit = E[X] +
1
2

1
E[X]

V[X] +
1
6

1
E2[X]

S[X]V3/2[X] +
1
24

1
E3[X]

K[X]V2[X]

P4−Bab = E[X] +
1
2

ln 1+2η
1−2η

E[X]
V[X] +

1
6

ln2 1+2η
1−2η

E2[X]
S[X]V3/2[X] +

1
24

ln3 1+2η
1−2η

E3[X]
K[X]V2[X]

(16)

3. Comparison of Premiums

In Section 2, we have derived the premium under two different approximation levels. We wish to
see if the more accurate fourth-order approximation entails a higher premium, i.e., if the use of the
usual second-order approximation results in an underestimated premium, which may be dangerous for
the insurer. Though overestimation is similarly dangerous, here we take the viewpoint of the insurer,
for which premium overestimation is the lesser problem, since it may result in a reduced number of
insurance subscriptions. In the following, we limit ourselves to consider underestimation. In this
section, we compare the two expressions and look for the conditions where that happens. Throughout
this section, the number n of claims will be considered to be a fixed quantity; this limitation will be
removed in Section 4.

From the two expressions (11) and (12), we can form their ratio

R =
P4

P2
=

E[X] + 1
2 αV[X] + 1

6 α2S[X]V3/2[X] + 1
24 α3K[X]V2[X]

E[X] + 1
2 αV[X]

= 1 +
1

12
4α2S[X]V3/2[X] + α3K[X]V2[X]

2E[X] + αV[X]

(17)

We consider the case when setting the premium through the usual second-order approximation
can lead to underestimating the premium; we focus on underestimation, since it is the more dangerous
error of the two (under- vs overestimation), leading to the possibility that premiums do not cover
losses. Going back to Equation (17), we see that we have underestimation when R > 1. Therefore,
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whether the fourth-order premium is larger or not than its second-order counterpart depends just on
the sign and relative values of the skewness and kurtosis of the loss. In Table 2, we report the general
conditions for underestimation of the premium when we stop at the second-order approximation.
In two out of four cases (same signs for skewness and kurtosis), the conclusions are general. In the
other two cases, the possibility of underestimation depends on the specific distribution of losses. Since
we must have R > 1 for underestimation, the underestimation condition can be formulated as

4α2S[X]V3/2[X] + α3K[X]V2[X] > 0→ S[X] > −1
4

αK[X]
√
V[X] (18)

Since the overall loss is determined by the accrual of losses over the single events, we can derive a
condition on the statistics of any single event by recalling that

X =
n

∑
i=1

Li, (19)

where Li is the loss suffered during th i-th event and n is the overall number of events (and therefore
claims), with L1,..., Ln being i.i.d. random variables.

Due to the i.i.d. nature of the Li variables, the skewness and the kurtosis of the random variable
X may be derived from that of the loss in any single event (see [28]):

S[X] =
1√
n
S[Li]

K[X] =
1
n
K[Li].

(20)

The underestimation condition can then be reformulated as follows, by replacing Equation (20) in
Equation (18):

1√
n
S[Li] > −

1
4n

αK[Li]
√

nV[Li]→ S[Li] > −
1
4

αK[Li]
√
V[Li] (21)

Table 2. Conditions for underestimation of the premium.

Skewness Kurtosis Underestimation

+ + YES
- + Distribution dependent
+ - Distribution dependent
- - NO

3.1. Premium Underestimation for Major Distributions

It is interesting to analyze if the underestimation condition, as ascertained through Table 2 or
Equation (18), is met for the commonest distribution of losses. In particular, we consider the following
distributions: Generalized Pareto (GPD), Lognormal, Gamma, Pareto. The main features of those
distributions are shown in Table 3, while their skewness and kurtosis are reported in Table 4 [29–31].

We now examine the underestimation condition for each distribution.
For the Generalized Pareto distribution, we see from Table 4 that both the skewness and the

kurtosis are positive under the same conditions for the existence of finite skewness and kurtosis (the
shape parameter must be lower than 1/3 and 1/4 respectively), so that we fall into the underestimation
condition of Table 2.

Similarly, for the lognormal distribution, we have positive skewness and kurtosis. In particular,
the kurtosis is always larger than 3. The second-order premium is an underestimate again.
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For the Gamma distribution, the positivity of the shape parameter a implies that both the skewness
and the kurtosis are positive, ending up again under the underestimation case.

Finally, for the Pareto distribution, the conditions for the existence of finite skewness and kurtosis
guarantee the positive of both central moments and therefore the underestimation.

We can then conclude that for all these 4 common distributions, stopping at the second order in
the premium computation leads us to underestimate the actual premium.

Table 3. Some common distribution for losses

Distribution Parameters PDF

GDP β, ξ f (x) = 1
β

(
1 + ξx

β

)− ξ+1
ξ

Lognormal µ, σ2 f (x) = 1√
2πσx

e−
ln(x)−µ

2σ2

Gamma a, b f (x) = ba

Γ(a) xa−1e−bx

Pareto a, h f (x) = α ha

xa+1

Table 4. Moments of common distributions and underestimation presence (the conditions on parameters
ξ and a assure that skewness and kurtosis are not infinite).

Intensity of Losses Distribution Skewness Kurtosis Underestimation

GPD 2(1+ξ)
√

1−2ξ
1−3ξ , ξ < 1

3
3(1−2ξ)(2ξ2+ξ+3)

(1−3ξ)(1−4ξ)
, ξ < 1

4 YES

Lognormal (eσ2
+ 2)

√
eσ2 − 1 e4σ2

+ 2e3σ2
+ 3e2σ2 − 3 YES

Gamma 2√
a

6
a + 3 YES

Pareto 2(1+a)
a−3

√
a−2

a , a > 3 6(a3+a2−6a−2)
a(a−3)(a−4) + 3, a > 4 YES

3.2. Premium Uncertainty

So far, we have assumed that the insurer can compute the premium if it knows the distribution of
losses. However, such knowledge is typically approximate, since the insurer will typically estimate the
parameters of the loss model based on observations. Consequently, the premium computed according
to Equations (11) or (12) will be just an approximation of the correct value. It is important to quantify
the uncertainty associated with the premium since that is an additional source of error, which may
even mask the error due to a lower-order approximation. In this section, we compute the uncertainty
in the premium due to an approximate knowledge of the loss distribution parameters.

Since the computation of the premium is carried out through a complex function, we resort to
a Taylor series approximation of that function by considering it as a function of the loss distribution
parameters. The expansion is performed around the expected values of those parameters. All the
distributions considered so far rely on two parameters so that we can write the Taylor series expansion
T(·) of the premium by adopting the following generic notation

T(x, y) =
∞

∑
n=0

∞

∑
m=0

(x− x0)
n(y− y0)

m

n!m!
∂n+m f (x0, y0)

∂xn∂ym (22)

where x and y are the estimates of the two parameters, and x0 and y0 are their expected values. If we
stop at the first order, we get

T(x, y) ' f (x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y− y0) (23)
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In the following, the parameters of the distributions of interest will be considered to be random
variables to describe their uncertainty, so that the premium (from now on we use the generic symbol P)
is a random variable as well. To gauge the uncertainty on the premium, we will compute its variance.
As a simplifying assumption, we consider the estimates of the two parameters as independent of each
other, though they will be typically estimated on the same sample of observations.

The general expression for the variance of P is then

V[P] 'V[P(x0, y0) + Px(x0, y0)(x− x0) + Py(x0, y0)(y− y0)]

= V[P(x0, y0)] +V[Px(x0, y0)(x− x0) + Py(x0, y0)(y− y0)]

= P2
x (x0, y0)V[x] + P2

y (x0, y0)V[y] + Px(x0, y0)Py(x0, y0)Cov[x, y]

= P2
x (x0, y0)V[x] + P2

y (x0, y0)V[y]

(24)

We can now compute the variance of the premium for the loss distributions we have reported in
Table 3.

After recalling the premium expressions for the Pareto distribution

P2 = n

[
ah

a− 1
+

α

2
ah2

(a− 1)2(a− 2)

]
(25)

P4 = n

[
ah

a− 1
+

α

2
ah2

(a− 1)2(a− 2)
+

α2

3
a(a + 1)h3

(a− 1)3(a− 2)(a− 3)
+

α3

8
a(3a2 + a + 2)h4

(a− 1)4(a− 2)(a− 3)(a− 4)

]
(26)

we can get the variances, by indicating with ā e h̄ the expected values of the two parameters

V[P2] =n2

(
ā

ā− 1
+ α

āh̄
(ā− 1)2(ā− 2)

)2

V[h + n2

(
h̄

(ā− 1)2 + α
(ā2 − ā− 1)h̄2

(ā− 1)3(ā− 2)2

)2

V[a] (27)

V[P4] =n2

(
ā

ā− 1
+ α

āh̄
(ā− 1)2(ā− 2)

+ α2 ā(ā + 1)h̄2

(ā− 1)3(ā− 2)(ā− 3)

+
α3

2
ā(3ā2 + ā + 2)h̄3

(ā− 1)4(ā− 2)(ā− 3)(ā− 4)

)2

V[h]

+ n2

(
h̄

(ā− 1)2 + α
(ā2 − ā− 1)h̄2

(ā− 1)3(ā− 2)2 + α2 (ā4 − 2ā3 − 5ā2 + 8ā + 2)h̄3

(ā− 1)4(ā− 2)2(ā− 3)2

+ α3 (3ā6 − 19ā5 + 26ā4 + 17ā3 − 3ā2 − 48ā− 12)h̄4

(ā− 1)5(ā− 2)2(ā− 3)2(ā− 4)2

)2

V[a].

(28)

Similarly, for the Generalized Pareto distribution we get

P2 = n

[
β

1− ξ
+

α

2
β2

(1− ξ)2(1− 2ξ)

]
(29)

P4 = n

[
β

1− ξ
+

α

2
β2

(1− ξ)2(1− 2ξ)
+

α2

3
(1 + ξ)β3

(1− ξ)3(1− 2ξ)(1− 3ξ)

+
α3

8
(2ξ2 + ξ + 3)β4

(1− ξ)4(1− 2ξ)(1− 3ξ)(1− 4ξ)

] (30)



Algorithms 2020, 13, 116 9 of 18

and consequently, we get the variances

V[P2] = n2

(
1

1− ξ̄
+ α

β̄

(1− ξ̄)2(1− 2ξ̄)

)2

V[β] + n2

(
β̄

(1− ξ̄)2 − α
(3ξ̄ − 2)β̄2

(1− ξ̄)3(1− 2ξ̄)2(1− 3ξ̄)2

)2

V[ξ] (31)

V[P4] = n2

(
1

1− ξ̄
+ α

β̄

(1− ξ̄)2(1− 2ξ̄)
+ α2 (1 + ξ̄)β̄2

(1− ξ̄)3(1− 2ξ̄)(1− 3ξ̄)

+
α3

2
(2ξ̄2 + ξ̄ + 3)β̄3

(1− ξ̄)4(1− 2ξ̄)(1− 3ξ̄)(1− 4ξ̄)

)2

V[β]

+ n2

(
β̄

(1− ξ̄)2 − α
(3ξ̄ − 2)β̄2

(1− ξ̄)3(1− 2ξ̄)2 + α2 (8ξ̄3 + 3ξ̄2 − 10ξ̄ + 3)β̄3

(1− ξ̄)4(1− 2ξ̄)2(1− 3ξ̄)2

− α3

2
(60ξ̄5 − 28ξ̄4 + 95ξ̄3 − 152ξ̄2 + 71ξ̄ − 10)β̄4

(1− ξ̄)5(1− 2ξ̄)2(1− 3ξ̄)2(1− 4ξ̄)2

)2

V[ξ].

(32)

Under the gamma distribution, we have instead:

P2 = n

[
a
b
+

α

2
a
b2

]
(33)

P4 = n

[
a
b
+

α

2
a
b2 +

α2

3
a
b3 +

α3

8
a(a + 2)

b4

]
(34)

so that the variances are

V[P2] = n2

(
1
b̄
+

α

2
1
b̄2

)2

V[a] + n2

(
ā
b̄2 + α

ā
b̄3

)2

V[b] (35)

V[P4] = n2

(
1
b̄
+

α

2
1
b̄2 +

α2

3
1
b̄3 +

α3

4
ā + 1

b̄4

)2

V[a] + n2

(
ā
b̄2 + α

ā
b̄3 + α2 ā

b̄4 +
α3

2
ā(ā + 2)

b̄5

)2

V[b]. (36)

Finally, for the lognormal distribution we have

P2 = n

[
eµ+ σ2

2 +
α

2
(eσ2 − 1)e2µ+σ2

]
(37)

P4 = n

[
eµ+ σ2

2 +
α

2
(eσ2 − 1)e2µ+σ2

+
α2

6
(eσ2 − 1)2(eσ2

+ 2)e3(µ+ σ2
2 )

+
α3

24
(e6σ2 − 4e3σ2

+ 6e3σ2 − 3e2σ2
)e4µ+2σ2

] (38)

and the variances are

V[P2] = n2

(
eµ̄+ σ̄2

2 + α(eσ̄2 − 1)e2µ̄+σ̄2

)2

V[µ] + n2

(
σ̄eµ̄+ σ̄2

2 + ασ̄(2eσ̄2 − 1)e2µ̄+σ̄2

)2

V[σ] (39)
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V[P4] = n2

(
eµ̄+ σ̄2

2 + α(eσ̄2 − 1)e2µ̄+σ̄2
+

α2

2
(eσ̄2 − 1)(eσ̄2

+ 2)e3(µ̄+ σ̄2
2 )

+
α3

6
(e6σ̄2 − 4e3σ̄2

+ 6eσ̄2 − 3)e4µ̄+2σ̄2

)2

V[µ]

+ n2

(
σ̄eµ̄+ σ̄2

2 + ασ̄(2eσ̄2 − 1)e2µ̄+σ̄2
+

α2

6
σ̄(7e2σ̄2

+ 5eσ̄2 − 6)e3(µ̄+ σ̄2
2 )

+
α3

12
σ̄(8e6σ̄2 − 10e3σ̄2

+ 18eσ̄2 − 3)e4µ̄+2σ̄2

)2

V[σ].

(40)

3.3. An Application to Realistic Cases

In the previous sections, we have derived two metrics (underestimation factor and premium
estimator variance) that allow us to compare the insurance premium as computed at two different
approximation levels: second and fourth order. In this section, we get a feeling of how the two
approximation levels compare in realistic cases, i.e., when the loss distribution parameters take
realistic values.

For this purpose, we consider the parameter values obtained in [6,30,31], which we report in
Table 5. In particular, the Generalized Pareto distribution describes the duration (in minutes) of a
cloud service outage, where the amount of economic losses is proportional to the duration of the
outage. The lognormal distribution describes the severity of the losses due to a cyber-attack by a hacker.
The Gamma distribution describes the severity of the losses due to a natural catastrophe (as a hurricane).
The Pareto distribution is one of the most used distributions in the literature to describe the severity of
losses in many cases, for example, losses due to fire damages, car accidents, and ICT service failures.

Table 5. Parameters values

Loss Distribution Parameter 1 Parameter 2

GPD ξ̄ = −0.64 β̄ = 192.47
Lognormal µ̄ = 6.83 σ̄ = 0.87
Gamma ā = 0.78 b̄ = 12.58
Pareto ā = 4.1 h̄ = 12

All the cases we consider here refer to a policy duration of one year, and assume full compensation.
In this section, we adopt the Babcock method with η = 0.4 to determine the risk-aversion coefficient.
As assumed in Section 3.2, for the sake of computing the premium uncertainty, the loss distribution
parameters are considered to be random variables. We plug their estimators, assumed to be unbiased
and with a standard deviation equal to 1% of their expected value (this value is taken as a
reference for convenience, but it should be assessed for the specific case at hand), in the premium
computation formula.

To compare the two approximations, we first compute the underestimation factor through
the percentage relative difference of the premiums, assuming that the distribution parameters are
known exactly:

DP(n) =
P4(n)− P2(n)

P4(n)
· 100 (41)

As a second metric for comparison, we compute the coefficient of variation (i.e., the ratio of
standard deviation to expected value) for the two approximation levels. We obviously wish that
coefficient to be as low as possible.
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CVi(n) =
√
V[Pi(n)]
E[Pi(n)]

· 100 i ∈ {2, 4} (42)

In Figures 2, 3, 4 and 5, we can see the two metrics to compare the two approximations for the
Pareto, GPD, Gamma, and Lognormal distributions respectively.

Moreover, in Tables 6 and 7, we report the underestimation DP and the coefficient of variation for
two different values of the number of events n.
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(b) Coefficient of variation
Figure 2. Performance metrics for the Pareto case (distribution parameters as in Table 5).
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Figure 3. Performance metrics for the GPD case (distribution parameters as in Table 5)
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Figure 4. Performance metrics for the Gamma case (distribution parameters as in Table 5).
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Figure 5. Performance metrics for the lognormal case (distribution parameters as in Table 5).

Table 6. Underestimation DP and coefficients of variation CV in percentage for the two premium for
values considered in Section 3.2 for n = 5.

Intensity of Losses Distribution Underestimation[%] CVP2 [%] CVP4 [%]

GPD 0.31 1.15 1.2
Lognormal 23.89 8.31 13.85
Gamma 11.6 0.06 31.4
Pareto 4.3 1.14 23.29

Table 7. Underestimation DP and coefficients of variation CV in percentage for the two premiums for
values considered in Section 3.2 for n = 10.

Intensity of Losses Distribution Underestimation[%] CVP2 [%] CVP4 [%]

GPD 0.08 1.17 1.135
Lognormal 5.85 7.66 8.83
Gamma 2.91 0.05 6.84
Pareto 0.67 1.08 6.76

In all cases, we can see that V[P4] > V[P2].
Naturally, using αBab (therefore also αPit) the difference DP between the two approximation levels

tends to zero

limn→∞ DP(n) = limn→∞

1
6n ln2(

1+2η
1−2η )

S[Li ]V
3
2 [Li ]

E2 [Li ]
+ 1

24n2 ln3(
1+2η
1−2η )

K[Li ]V
2 [Li ]

E3 [Li ]

nE[Li ]+
1
2 ln( 1+2η

1−2η )
V[Li ]
E[Li ]

+ 1
6n ln2(

1+2η
1−2η )

S[Li ]V
3
2 [Li ]

E2 [Li ]
+ 1

24n2 ln3(
1+2η
1−2η )

K[Li ]V2 [Li ]
E3 [Li ]

= 0. (43)

In fact, for large values of n, P4(n) ≈ P2(n). Instead, if α is a fixed real constant, the relative difference
DP is always positive and does not depend on the number of events n:

DP(n) =

n
6

[
α2S[Li]V

3
2 [Li] +

1
4 α3K[Li]V2[Li]

]

n

[
E[Li] +

1
2 αV[Li] +

1
6 α2S[Li]V

3
2 [Li] +

1
24 α3K[Li]V2[Li]

]

=
α2S[Li]V

3
2 [Li] +

1
4 α3K[Li]V2[Li]

6

[
E[Li] +

1
2 αV[Li] +

1
6 α2S[Li]V

3
2 [Li] +

1
24 α3K[Li]V2[Li]

] .

(44)
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4. Insurer’s Risk

As in any total coverage insurance scheme, the insured is held indemnified against any damage
by just paying the premium. On the other hand, the insurer must cover all the losses the insured
suffers. Since the premium is a fixed quantity and the loss is a random variable, the insurer incurs the
risk of paying more than what is cashed in. Of course, this risk is different for the two approximation
levels we have considered so far. It is larger for the second-order approximation as long as its premium
is lower than the fourth-order approximation. In this section, we quantify that risk by computing the
Value-at-Risk (VaR), also considering the number n of events as a random variable.

The Value-at-Risk is a well-known measure of risk, defined first in the financial world and then
extended to other fields. For example, it has been employed in the ICT sector in [3,32,33]. In our case,
the Value-at-Risk at the confidence level θ is the smallest number xθ such that the probability that the
loss X exceeds xθ is not larger than θ [34]:

VaRθ = inf{xθ ∈ R : P[X > xθ ] ≤ 1− θ}. (45)

We can now compute the VaR for the four distributions we have considered so far. For the sake of
simplicity, we use the notation Pi, i = {2, 4} to represent the insurance premium. In the following, the
number of claims n is considered to follow a Poisson random variable with parameter λT, where λ

refers to the frequency of the claims, and T is the length of the observation period. The losses taking
place over the sequence of events are assumed to be i.i.d. random variables.

Lognormal case: For the case of the lognormal distribution we use Wilkinson’s method as
employed in [35] to estimate the queue of lognormal sums. They assume that the sum of lognormal
variables is still lognormal. So that the overall loss X = ∑n

i=1 Li follows a lognormal distribution, in
particular X ∼ eZ, with Z being a Gaussian variable with mean mZ ≡ E[X] and variance σ2

Z ≡ V[X],
which we can compute using Wald identity:

mZ = E[X] = E[n]E[Li] = λTeµ+ σ2
2

σ2
Z = V[X] = E[n]V[Li] +E2[Li]V[n] = λTe2µ+2σ2

(46)

The Value-at-Risk can therefore be determined as follows

P(X > xθ) = 1− θ =⇒ P(eZ > xθ) = 1− θ =⇒ P(Z > ln(xθ)) = 1− θ

G
(

ln(xθ)−mZ√
2σZ

)
= θ =⇒ xθ = e(G

−1(θ)
√

2σZ+mz)

VaRθ = xθ = e(G
−1(θ)

√
λTeµ+σ2

+λTeµ+ σ2
2 )

(47)

where G(∗) is the cumulative distribution function of a standard (zero-mean, unit-variance) Gaussian
random variable. In Figure 6, we see how the extreme loss (i.e., the difference between the Value-at-Risk
and the premium) grows with the expected number of claims λT.

Pareto case: In the Pareto and GPD cases, we can use the Generalized Extreme Value Theory [36–38]
to compute the VaR.

As can be seen, for example, in [39], we can approximate the sum of n i.i.d. Pareto-distributed
variables through a Generalized Extreme Value (GEV) variable, so that the overall loss X exhibits the
probability density function

f (µ, σ, η) =
1
σ

r(x)η+1e−r(x) (48)

where

r(x) =


(

1 + η

(
x−µ

σ

))− 1
η

if η 6= 0

e−
x−µ

σ if η = 0
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and µ, σ and η are the location, scale and shape parameter of the GEV distribution. η is a parameter
that governs the shape of the tail under consideration: the fatness of the tail will then depend on the
exact value assumed by it. We can observe that η is related to the number of events n, in fact, when
n increases, it changes the slope of the distribution and consequently also η. The most used range
in which η is found is [−0.5, 0.5]. In our case, we estimate the location scale and shape parameters
through an R-package (ismev). Therefore, if p is the probability that an event occurs, the quantile
function for GEV distribution is

Q =

µ + σ
η

[
ln
(

1
p

)−η
− 1
]

if η 6= 0

µ− σ ln(− ln(p)) if η = 0
(49)

Assuming η 6= 0, we can compute the VaR as follows.

P(X > xθ) = 1− θ =⇒ P(X < xθ) = θ

=⇒ xθ =
σ

η

[
ln
(

1
θ

)−η

− 1

]
+ µ

VaRθ = xθ =
σ

η

[
ln
(

1
θ

)−η

− 1

]
+ µ

(50)

In Figure 7, we see how the extreme loss grows with the number of claims: the extreme loss is
anyway lower for the fourth-order approximation.
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Figure 6. Insurer’s extreme loss in the lognormal case (distribution parameters as in Table 5).
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Figure 7. Insurer’s extreme loss in the Pareto case (distribution parameters as in Table 5).
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GPD case:
Now, using the same arguments that we adopted for Pareto case, we can find the VaR for the

GPD case.

P(X > xθ) = 1− θ =⇒ P(X < xθ) = θ

=⇒ xθ =
σ

η

[
ln
(

1
θ

)−η

− 1

]
+ µ

VaRθ = xθ =
σ

η

[
ln
(

1
θ

)−η

− 1

]
+ µ

(51)

In Figure 8 the curves are actually very close but not coincident, because the difference in
percentage between the two premiums, P2 and P4, is very low.
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300

400

Expected number of claims

V
aR
−

P
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]

P2
P4

Figure 8. Insurer’s extreme loss in the GPD case (distribution parameters as in Table 5).

Gamma case: Since Li ∼ Gamma(a, b), again using Wald’s identity and the property of the
Gamma distribution, the overall loss X is also Gamma distribution with mean mG = a

b λT and variance

σ2
G = a(1+a)

b2 λT. If we assume that λTa� b, the loss X can be approximated by a normal distribution
with the same mean and variance, so that X ∼ N(mG, σ2

G). We can then estimate the Value-at-Risk
as follows

P(X > xθ) = 1− θ =⇒ P(X < xθ) = θ

G

(
xθ −mG√

2σG

)
= θ

VaRθ = xθ = G−1(θ)

√
2a(a + 1)λT

b
+

a
b

λT

(52)

As can be seen in Figure 9, the extreme loss grows with the number of claims, but is lower for the
fourth-order approximation.
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Figure 9. Insurer’s extreme loss in the Gamma case (distribution parameters as in Table 5).

5. Conclusions

In this work, we have focused our attention on the comparison of insurance premium when they
are computed under the expected utility principle based on two approximation levels for the loss
statistics: second-order (mean-variance) vs fourth-order (mean-variance-skewness-kurtosis).

We have shown that for the major cases of interest, computing the premium based on the
second-order approximation is riskier for the insurer, since the premium is lower.

However, if we take into account the possibility of incorrectly estimating the higher-order statistics
involved in the fourth-order approximation, the comparison outcome may be reversed. In fact, the
dispersion in the fourth-order premium may be so high as to have too high a premium. A higher
premium would probably divert prospective customers away from subscribing an insurance policy.

A tentative conclusion is then to use the fourth-order approximation to compute the insurance
premium as long as the estimate of the fourth-order statistics is sufficiently accurate.
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The following abbreviations are used in this manuscript:

ARA Absolute Risk Aversion
CARA Constant Absolute Risk Aversion
CV Coefficient of Variation between premiums
DP Difference in Percentage between premiums
GEV Generalized Extreme Value
GPD Generalized Pareto Distribution
R Ratio between premiums
VaR Value-at-Risk
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