
algorithms

Article

Investigation of the iCC Framework Performance for
Solving Constrained LSGO Problems †

Alexey Vakhnin 1 and Evgenii Sopov 1,2,*
1 Department of System Analysis and Operations Research, Reshetnev Siberian State University of Science

and Technology, Krasnoyarsky Rabochy Av. 31, 660037 Krasnoyarsk, Russia; alexeyvah@gmail.com
2 Department of Information Systems, Siberian Federal University, Svobodny Av. 79,

660041 Krasnoyarsk, Russia
* Correspondence: evgenysopov@gmail.com
† This paper is an extended version of our paper published in IOP Conference Series: Materials Science and

Engineering, II International Scientific Conference—MIST: Aerospace—2019: Advanced Technologies in
Aerospace, Mechanical and Automation Engineering, 18–21 November 2019, Krasnoyarsk, Russia.

Received: 17 March 2020; Accepted: 24 April 2020; Published: 26 April 2020
����������
�������

Abstract: Many modern real-valued optimization tasks use “black-box” (BB) models for evaluating
objective functions and they are high-dimensional and constrained. Using common classifications,
we can identify them as constrained large-scale global optimization (cLSGO) tasks. Today, the IEEE
Congress of Evolutionary Computation provides a special session and several benchmarks for
LSGO. At the same time, cLSGO problems are not well studied yet. The majority of modern
optimization techniques demonstrate insufficient performance when confronted with cLSGO tasks.
The effectiveness of evolution algorithms (EAs) in solving constrained low-dimensional optimization
problems has been proven in many scientific papers and studies. Moreover, the cooperative
coevolution (CC) framework has been successfully applied for EA used to solve LSGO problems.
In this paper, a new approach for solving cLSGO has been proposed. This approach is based on CC
and a method that increases the size of groups of variables at the decomposition stage (iCC) when
solving cLSGO tasks. A new algorithm has been proposed, which combined the success-history
based parameter adaptation for differential evolution (SHADE) optimizer, iCC, and the ε-constrained
method (namely ε-iCC-SHADE). We investigated the performance of the ε-iCC-SHADE and compared
it with the previously proposed ε-CC-SHADE algorithm on scalable problems from the IEEE CEC
2017 Competition on constrained real-parameter optimization.

Keywords: large-scale global optimization; evolution algorithms; differential evolution; cooperative
coevolution; constrained optimization

1. Introduction

The progress of human activity in different areas does not stand still and optimization problems
are no an exception as they have become more complex. For today, the general optimization task
is a “black-box” optimization problem (there is no knowledge in an explicit form about functional
dependence of variables) and it is high dimensional (uses more than hundreds/thousands of variables).
Such problems are referred to as large-scale global optimization (LSGO) problems [1]. In the scientific
publication [2], the current state of LSGO was discussed. In fact, tasks with a large number of objective
variables are a challenging task for a wide range of optimization techniques and algorithms. A typical
LSGO is single-objective and boxed constrained (variables are constrained only by lower and upper
boundaries). In addition, many real-world optimization tasks exist which are constrained by functions
(equalities and inequalities) [3,4]. The constrained optimization problems (COPs) have additional

Algorithms 2020, 13, 108; doi:10.3390/a13050108 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-4176-1506
https://orcid.org/0000-0003-4410-7996
http://dx.doi.org/10.3390/a13050108
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/5/108?type=check_update&version=2


Algorithms 2020, 13, 108 2 of 18

requirements, as opposed to unconstrained optimization problems that separate the search space into
feasible and infeasible domains. The majority of modern COPs are dealing with BB objective functions
and BB constraints. In other words, we can only evaluate objective functions and constraints in
candidate solutions. Constrained LSGO (cLSGO) problems have not been well studied yet. The cLSGO
problem can be formulated in the following way:

f (x)→ min
x

(1)

xL
k ≤ xk ≤ xU

k , k = 1, N (2)

gi(x) ≤ 0, i = 1, t (3)

h j(x) = 0, j = 1, p (4)

where x is a vector of objective variables; f (x) : RN
→ R, g(x) and h(x) are the objective (fitness)

function with N objective variables, inequality constraints, and equality constraints, respectively; t
and p are the numbers of inequality and equality constraints; and xL

k and xU
k are the lower and upper

bounds for the k-th variable.
In concordance with the LSGO survey [2], there are two popular and effective ways of solving LSGO

problems. The first group of methods are called non-decomposition methods. The second group of
methods are cooperative coevolution (CC) methods. On the one hand, methods without decomposition
use EA principles, which are especially developed for optimizing the whole high-dimensional
vector [5,6]. On the other hand, CC methods [7,8] decompose the optimization vector into several
pieces and evaluate them one by one using some Eas. The CC framework, together with EA as an
optimizer, demonstrate a better performance in solving LSGO problems than many standard Eas and
other optimization techniques. The main advantage of CC is that it is able to decrease the search space
for applying an optimization algorithm, and thus it helps in dealing with the “curse of dimension”
(CoD) [9].

In this study, an original improvement of CC for solving cLSGO tasks has been proposed and
investigated. The main idea of the new approach is that it is permanently increasing the number of
variables in subcomponents during an EA run. We have titled it “iCC”. The SHADE (success-history
based parameter adaptation for differential evolution) [10] was used as the main meta-heuristic
(so-called “optimization core”) in CC. The SHADE algorithm self-adapts some inner control parameters.
These parameters are called “scale factor” (F) and “crossover rate” (CR).

In the last years, many extended EA techniques for handling constraints have been proposed,
for example [11–14]. Additional details about constrained-handling approaches can be found in
the following survey [15]. In this study, we have chosen the ε-DE technique [16], because it is
well studied and popular. The whole proposed algorithm (ε-iCC-SHADE) combines the SHADE
(optimizer), iCC (framework for solving large optimization problems), and ε-DE for the constraint
handlings. In this paper, the performance of the ε-iCC-SHADE has been compared with the previously
proposed ε-CC-SHADE with the different numbers of the population sizes and different numbers of
subcomponents. The numerical experiments have demonstrated that the proposed ε-iCC-SHADE
performs better than the ε-CC-SHADE.

In addition to our previous study [17], this paper was extended by new numerical experiments.
The performance of the ε-iCC-SHADE algorithm has been investigated with different mutation
strategies and different population sizes on the scaled problems from the IEEE CEC 2017 Competition
on constrained real-parameter optimization. It is well-known that the EA performance strongly depends
on fine-tuning its parameters. SHADE can only self-adapt two parameters (F and CR). We have
chosen twelve well-known DE mutation strategies and have applied them to the ε-iCC-SHADE
algorithm. All numerical experiments in this article are confirmed using Mann–Whitney U and Holm
post-hoc tests.



Algorithms 2020, 13, 108 3 of 18

The rest of the article has the following structure: In Section 2, we describe the research approaches;
in Section 3, ε-iCC-SHADE is described; in Section 4, the experimental setup and results of numerical
experiments are discussed; and in the Conclusion, the results and further research are discussed.

2. Related Work

2.1. Success-History Based Adaptive Differential Evolution (SHADE) Algorithm

Differential evolution (DE), first introduced by Storn and Price [18,19], is a powerful and efficient
approach for solving BB optimization problems. Many DE-based algorithms have also proven their
efficiency [20,21]. There are three main control parameters in the classic DE approach, they are pop_size
(population size), F (scale factor), and CR (crossover rate). As we apply Eas for solving BB optimization
problems, a random choice of parameter values is inappropriate. SHADE, proposed by Tanabe and
Fukunaga [10], is one of the DE variants with self-adaptive mechanisms of F and CR parameters.
The SHADE algorithm records the successful parameter values which improve fitness values during
the run, and uses this knowledge to generate new values of F and CR. In addition, SHADE transfers
replaced individuals into an external archive that maintains the previous experience and applies them
at the mutation stage.

2.2. Cooperative Coevolution

To date, cooperative coevolution is one of the most effective frameworks for solving optimization
problems with a large number of variables. CC was proposed by Potter and De Jong in [22,23].
Its basic idea was to divide a vector of the optimization task sequentially into pieces and apply some
(meta)heuristic for solving these subproblems (this study used the SHADE algorithm as a core optimizer
in CC). As a result of applying CC, the dimensionality and complexity of the LSGO problems decrease.
The total number of subcomponents strongly influences the CC performance. It was noted earlier that
LSGO tasks were viewed as BB problems. The functional relationship between variables is unknown.
In this paper, CC performs with an equal size of subcomponents. It uses the following rule: s · m = N,
where s is the number of variables in a subcomponent, m is the total number of subcomponents, and N
is the total number of objective variables.

2.3. εDE Constrained Handlings

Many constrained-handlings techniques have been proposed [15]. In this study, we used the εDE
approach [16] which transforms the selection operator in DE using Formula (5).

( f (X1), v(X1)) <ε ( f (X2), v(X2))↔


f (X1) < f (X2) i f v(X1), v(X2) ≤ ε
f (X1) < f (X2) i f v(X1) = v(X2)

v(X1) < v(X2), otherwise
(5)

where f (X) is a fitness value of X solution and v(X) is a value of constraints violation Formula (6):

v(X) =

∑p
i=1 Gi(X) +

∑k
j=1 H j(X)

p + k
(6)

Gi(X) =

{
gi(X), i f gi(X) > 0
0, otherwise

(7)

Hi(X) =

{ ∣∣∣h j(X)
∣∣∣, i f

∣∣∣h j(X)
∣∣∣− ε > 0

0, otherwise
(8)

In Formula (8), ε is the tolerance threshold, and it is equal to 0.0001 for all equality constraints.
Analyzing Formula (5), we can conclude that the violation values have higher priority than the fitness



Algorithms 2020, 13, 108 4 of 18

function values as comparing with the two-candidate solutions. To control the ε parameter in Formula
(5), we use the following modified Formula (9), inspired by [24].

ε =

{
E, i f FEV ≤ 0.8·MaxFEV
0, otherwise

E =
((

1− FEV
MaxFEV

)cp
·v
(
X[θ·pop_size]

)) (9)

where FEV and MaxFEV are the current number of fitness evaluations and a maximum budget of
fitness evaluations for the current run, respectively; v

(
X[θ·pop_size]

)
is a violation value for solution X

with index [θ·pop_size] after sorting population (from best to worse); cp is a parameter for controlling
the speed of constraints; cp is equal to 3. Pop_size is the population size; and θ is equal to 0.8.

Different values for cp and θ parameters have been tested. The following set of parameters has
shown better performance: in Formula (9), E is equal to 0 after evaluation of 80% of the total budget of
FEV. After 80% of fitness evaluation in the last generations, EA should concentrate search in a local area.

3. Proposed Approach

EA demonstrates quite good performance in solving hard tasks of optimization, provided by the
following heuristic rule. In the first generations, EA should use principles of exploration, i.e., perform
a global search. Towards the end of the optimization process, EA should use methods of exploitation,
i.e., perform a local search in some domain of the best-found solutions [25].

For decreasing the number of subcomponents in CC, we have used the following Scheme (10).
Where m is the number of subcomponents in CC. For BB problems, we do not know exactly how to
allocate computational resources (the fitness budget). Thus, the proposed approach (iCC) has an equal
amount of the objective function evaluations at each stage. We have also tried an alternative strategy
for reducing the number of variables in each group, but this strategy has demonstrated low efficiency
in solving cLSGO problems.

m =



10, i f FEVε[0, t1]

8, i f FEVε[t1 + 1, t2]

4, i f FEVε[t2 + 1, t3]

2, i f FEVε[t3 + 1, t4]

1, i f FEVε[t4 + 1, MaxFEV]

∀ i : ti+1 − ti = 0.2·MaxFEV

(10)

At the stage of dividing, the LSGO problem into subproblems, an EA groups the variables into
subcomponents of some predefined size. In the case of small groups, an EA usually demonstrates
much faster improvement of the average fitness. At the same time, an EA performs a kind of local,
coordinate-wise-like search when optimizing small groups and performs well only for appropriate
combinations of variables in groups for separable and partially separable problems. For improving
the performance of the LSGO EA, we proposed the following approach for tuning the grouping
size: initialize CC with groups of small sizes and permanently increase sizes during the run of
EA. Finally, in the last generations, we optimize the only component, which contains all variables.
We distribute our fitness evaluation budget in an equal portion for all stages with different sizes
in groups.

Table 1 demonstrates the pseudocode of the ε-iCC-SHADE. The termination criterion is the FEV
budget exhaustion. It is also necessary to set two algorithm’s parameters. These parameters are
MaxFEV and pop_size. MaxFEV is the maximum number of fitness evaluations during an independent
run and pop_size is the number of individuals in one CC subcomponent.



Algorithms 2020, 13, 108 5 of 18

Table 1. ε-iCC-SHADE pseudocode.

Line Pseudocode

1: Set MaxFEV, pop_size
2: while (termination criterion is not satisfied) do
3: Calculate m = Equation (10);
4: while (i < m +1) do
5: Divide optimization vector into m subcomponents ();
6: i = 1;
7: Evaluate the i-th subcomponent with ε-SHADEi algorithm ();
8: i = i + 1;
9: end while

10: end while
11: Return best-found value and finish optimization procedure ();

4. Numerical Experiments and Results

4.1. Benchmark Set for Constrained Large-Scale Global Optimization Problems

Today, there is no special cLSGO benchmark set to evaluate optimization algorithms. A new
benchmark has been proposed based on scalable problems from the IEEE CEC 2017 Competition on
constrained single objective real-parameter optimization (CSORPO) [26]. We selected and modified
those problems from the IEEE CEC 2017 benchmark which did not use high-dimensional transformation
matrixes (these matrixes have been manually designed for the specific number of variables only).
The selected problems were scaled up to one thousand variables and were included in the proposed set
of cLSGO problems. Table 2 contains information about the enumeration of functions that are included
in the cLSGO benchmark and about types of objective functions. Here, N and S define non-separable
and separable problems, respectively.

Table 2. Scaled optimization problems for the constrained large-scale global optimization (cLSGO)
benchmark set.

cLSGO Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

CEC’2017 CSORPO 1 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Objective Type N N S S S S S S S S N N S S N S S N

4.2. Software Implementation and Setups, Benchmark Set for Constrained Large-Scale Global Optimization
Problems

To evaluate our algorithms, we used the following computational system. The operating system
was Ubuntu Linux 18.04 LTS. To decrease computation time, we used two CPUs with 32 threads (Ryzen
7 1700x (8C/16T) and Ryzen 2700 (8C/16T)). The software was developed using the C++ language
(g++(gcc) compiler) and Code:Blocks 17.12.

To investigate the performance of each algorithm correctly, it is necessary to ensure equal
experimental conditions. The dimension for all benchmark problems is D = 1000. The number of
independent runs is 25 per benchmark problem. MaxFEV is equal to 3E+6 for an independent run for
each algorithm and for each problem.

4.3. Investigation of the Performance of iCC Framework versus Classic Cooperative Coevolution with the Fixed
Number of Subcomponents

We use the following notation “ε-CC-SHADE (m)”, where m is the total fixed number of
subcomponents that the algorithm uses in the optimization procedure. We investigate ε-CC-SHADE
(m) with different numbers of subcomponents (1, 2, 4, 8, and 10) and different numbers of population
sizes (25, 50, 75, and 100). In addition, if m is equal to 1, then the algorithm optimizes a problem without
the CC framework, because it uses only one subcomponent, which has a size equal to the optimization



Algorithms 2020, 13, 108 6 of 18

vector. The ε-iCC-SHADE was investigated with the different numbers of the population size (25, 50,
75, and 100). The rule of increasing the total number of variables in groups is described in Equation (10).
It is worth mentioning that, to evaluate some generation with m subcomponents and pop_size number
of individuals, it is required to calculate m·pop_size solutions. Hence, on the one hand, if we reduce
the number of subcomponents, the algorithm needs to evaluate fewer solutions in each generation.
Thus, the total number of generations increase, provided that MaxFEV is fixed. With regards to the iCC
framework, at the end of the optimization process, the algorithm can calculate many generations, as a
consequence, it finds better local solutions. As a result, the performance increases. On the other hand,
the strategy of increasing the total number of subcomponents has demonstrated bad performance.

Figure 1 demonstrates the average ranking results for the Eas performance with population size equal
to 25, 50, 75, and 100, respectively, using boxplot diagrams. On the x-axis, there are labels of optimization
algorithms. On the y-axis, the average ranks for each algorithm are presented. The best EA has the smallest
average rank (median value). The ranking is based on the median best-found values averaged over all
cLSGO benchmark problems. Figures 2 and 3 demonstrate the average ranking results for non-separable
and separable problems, respectively. Figures 2 and 3 have the same structure as Figure 1. As we can see
from Figure 1, the proposed ε-iCC-SHADE performs better on average than ε-CC-SHADE (m) with different
fixed numbers of subcomponents. Figure 2 shows that ε-iCC-SHADE does not demonstrate a better
average performance on non-separable problems. At the same time, Figure 3 shows that ε-iCC-SHADE
outperforms ε-CC-SHADE (m) by the average rank on separable problems.

Algorithms 2020, 13, x FOR PEER REVIEW 6 of 18 

described in Equation (10). It is worth mentioning that, to evaluate some generation with m 
subcomponents and pop_size number of individuals, it is required to calculate m pop_size solutions. 
Hence, on the one hand, if we reduce the number of subcomponents, the algorithm needs to evaluate 
fewer solutions in each generation. Thus, the total number of generations increase, provided that 
MaxFEV is fixed. With regards to the iCC framework, at the end of the optimization process, the 
algorithm can calculate many generations, as a consequence, it finds better local solutions. As a result, 
the performance increases. On the other hand, the strategy of increasing the total number of 
subcomponents has demonstrated bad performance. 

Figure 1 demonstrates the average ranking results for the EAs performance with population size 
equal to 25, 50, 75, and 100, respectively, using boxplot diagrams. On the x-axis, there are labels of 
optimization algorithms. On the y-axis, the average ranks for each algorithm are presented. The best 
EA has the smallest average rank (median value). The ranking is based on the median best-found 
values averaged over all cLSGO benchmark problems. Figures 2 and 3 demonstrate the average 
ranking results for non-separable and separable problems, respectively. Figures 2 and 3 have the 
same structure as Figure 1. As we can see from Figure 1, the proposed -iCC-SHADE performs better 
on average than -CC-SHADE (m) with different fixed numbers of subcomponents. Figure 2 shows 
that -iCC-SHADE does not demonstrate a better average performance on non-separable problems. 
At the same time, Figure 3 shows that -iCC-SHADE outperforms -CC-SHADE (m) by the average 
rank on separable problems. 

  

Figure 1. The ranking of -CC-SHADE (m) and -iCC-SHADE on all problems. 

 

Figure 2. The ranking of -CC-SHADE (m) and -iCC-SHADE on non-separable problems. 

Figure 1. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE on all problems.

Algorithms 2020, 13, x FOR PEER REVIEW 6 of 18 

described in Equation (10). It is worth mentioning that, to evaluate some generation with m 
subcomponents and pop_size number of individuals, it is required to calculate m pop_size solutions. 
Hence, on the one hand, if we reduce the number of subcomponents, the algorithm needs to evaluate 
fewer solutions in each generation. Thus, the total number of generations increase, provided that 
MaxFEV is fixed. With regards to the iCC framework, at the end of the optimization process, the 
algorithm can calculate many generations, as a consequence, it finds better local solutions. As a result, 
the performance increases. On the other hand, the strategy of increasing the total number of 
subcomponents has demonstrated bad performance. 

Figure 1 demonstrates the average ranking results for the EAs performance with population size 
equal to 25, 50, 75, and 100, respectively, using boxplot diagrams. On the x-axis, there are labels of 
optimization algorithms. On the y-axis, the average ranks for each algorithm are presented. The best 
EA has the smallest average rank (median value). The ranking is based on the median best-found 
values averaged over all cLSGO benchmark problems. Figures 2 and 3 demonstrate the average 
ranking results for non-separable and separable problems, respectively. Figures 2 and 3 have the 
same structure as Figure 1. As we can see from Figure 1, the proposed -iCC-SHADE performs better 
on average than -CC-SHADE (m) with different fixed numbers of subcomponents. Figure 2 shows 
that -iCC-SHADE does not demonstrate a better average performance on non-separable problems. 
At the same time, Figure 3 shows that -iCC-SHADE outperforms -CC-SHADE (m) by the average 
rank on separable problems. 

  

Figure 1. The ranking of -CC-SHADE (m) and -iCC-SHADE on all problems. 

 

Figure 2. The ranking of -CC-SHADE (m) and -iCC-SHADE on non-separable problems. Figure 2. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE on non-separable problems.



Algorithms 2020, 13, 108 7 of 18
Algorithms 2020, 13, x FOR PEER REVIEW 7 of 18 

 

Figure 3. The ranking of -CC-SHADE (m) and -iCC-SHADE on separable problems. 

We have applied the following sorting method for solutions in populations, in accordance with 
the benchmark rules [26]: feasible solutions are always better than an infeasible solution and all 
feasible solutions are sorted based on fitness function values. The results of algorithms which rank 
the results for each cLSGO problem are presented in Figures 4–11 (the lowest rank corresponds to the 
best algorithm) using parallel diagram plots. On the x-axis, there are labels for the problem number; 
on the y-axis, there are ranks for each algorithm. 

 
Figure 4. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. 

Figure 3. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE on separable problems.

We have applied the following sorting method for solutions in populations, in accordance with
the benchmark rules [26]: feasible solutions are always better than an infeasible solution and all
feasible solutions are sorted based on fitness function values. The results of algorithms which rank the
results for each cLSGO problem are presented in Figures 4–11 (the lowest rank corresponds to the best
algorithm) using parallel diagram plots. On the x-axis, there are labels for the problem number; on the
y-axis, there are ranks for each algorithm.

Algorithms 2020, 13, x FOR PEER REVIEW 7 of 18 

 

Figure 3. The ranking of -CC-SHADE (m) and -iCC-SHADE on separable problems. 

We have applied the following sorting method for solutions in populations, in accordance with 
the benchmark rules [26]: feasible solutions are always better than an infeasible solution and all 
feasible solutions are sorted based on fitness function values. The results of algorithms which rank 
the results for each cLSGO problem are presented in Figures 4–11 (the lowest rank corresponds to the 
best algorithm) using parallel diagram plots. On the x-axis, there are labels for the problem number; 
on the y-axis, there are ranks for each algorithm. 

 
Figure 4. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. Figure 4. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE for non-separable problems.



Algorithms 2020, 13, 108 8 of 18
Algorithms 2020, 13, x FOR PEER REVIEW 8 of 18 

 
Figure 5. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. 

 
Figure 6. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. 

 
Figure 7. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. 

Figure 5. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE for separable problems.

Algorithms 2020, 13, x FOR PEER REVIEW 8 of 18 

 
Figure 5. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. 

 
Figure 6. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. 

 
Figure 7. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. 

Figure 6. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE for non-separable problems.

Algorithms 2020, 13, x FOR PEER REVIEW 8 of 18 

 
Figure 5. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. 

 
Figure 6. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. 

 
Figure 7. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. Figure 7. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE for separable problems.



Algorithms 2020, 13, 108 9 of 18
Algorithms 2020, 13, x FOR PEER REVIEW 9 of 18 

 
Figure 8. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. 

 
Figure 9. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. 

 
Figure 10. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. 

Figure 8. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE for non-separable problems.

Algorithms 2020, 13, x FOR PEER REVIEW 9 of 18 

 
Figure 8. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. 

 
Figure 9. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. 

 
Figure 10. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. 

Figure 9. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE for separable problems.

Algorithms 2020, 13, x FOR PEER REVIEW 9 of 18 

 
Figure 8. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. 

 
Figure 9. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. 

 
Figure 10. The ranking of -CC-SHADE (m) and -iCC-SHADE for non-separable problems. Figure 10. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE for non-separable problems.



Algorithms 2020, 13, 108 10 of 18

Algorithms 2020, 13, x FOR PEER REVIEW 10 of 18 

 
Figure 11. The ranking of -CC-SHADE (m) and -iCC-SHADE for separable problems. 

Tables 3–6 prove the statistical difference in the results of estimating the performance of -iCC-
SHADE (iCC) and -CC-SHADE (m) (CC (m)) using the Mann–Whitney U test with normal 
approximation and tie correction with p-value equal to 0.01. The first column contains the names of 
the algorithms, the second, third, and fourth columns contain the numbers of benchmark problems, 
and the EA in the head of the table shows better (+), worse (–), and equal performance ( ). The 
performance of the proposed -iCC-SHADE versus -CC-SHADE (m) algorithms has been 
investigated. Tables 3-6 demonstrate that -iCC-SHADE is statistically better than -CC-SHADE (m). 

Table 3. Mann–Whitney U test, pop_size is 25. 

iCC vs. + -  
CC (1) 11 3 4 
CC (2) 14 2 2 
CC (4) 13 2 3 
CC (8) 7 3 8 

CC (10) 5 2 11 
Total amount 50 12 28 

Table 4. Mann–Whitney U test, pop_size is 50. 

iCC vs. + -  
CC (1) 13 4 1 
CC (2) 14 2 2 
CC (4) 13 2 3 
CC (8) 5 2 11 

CC (10) 6 2 10 
Total amount 51 12 27 

Table 5. Mann–Whitney U test, pop_size is 75. 

iCC vs. + -  
CC (1) 12 5 1 
CC (2) 14 3 1 
CC (4) 11 2 5 
CC (8) 6 3 9 

CC (10) 7 2 9 
Total amount 50 15 25 

Figure 11. The ranking of ε-CC-SHADE (m) and ε-iCC-SHADE for separable problems.

Tables 3–6 prove the statistical difference in the results of estimating the performance of
ε-iCC-SHADE (iCC) and ε-CC-SHADE (m) (CC (m)) using the Mann–Whitney U test with normal
approximation and tie correction with p-value equal to 0.01. The first column contains the names of the
algorithms, the second, third, and fourth columns contain the numbers of benchmark problems, and the
EA in the head of the table shows better (+), worse (−), and equal performance (≈). The performance
of the proposed ε-iCC-SHADE versus ε-CC-SHADE (m) algorithms has been investigated. Tables 3–6
demonstrate that ε-iCC-SHADE is statistically better than ε-CC-SHADE (m).

Table 3. Mann–Whitney U test, pop_size is 25.

iCC vs. + − ≈

CC (1) 11 3 4
CC (2) 14 2 2
CC (4) 13 2 3
CC (8) 7 3 8
CC (10) 5 2 11

Total amount 50 12 28

Table 4. Mann–Whitney U test, pop_size is 50.

iCC vs. + − ≈

CC (1) 13 4 1
CC (2) 14 2 2
CC (4) 13 2 3
CC (8) 5 2 11
CC (10) 6 2 10

Total amount 51 12 27

Table 5. Mann–Whitney U test, pop_size is 75.

iCC vs. + − ≈

CC (1) 12 5 1
CC (2) 14 3 1
CC (4) 11 2 5
CC (8) 6 3 9
CC (10) 7 2 9

Total amount 50 15 25



Algorithms 2020, 13, 108 11 of 18

Table 6. Mann–Whitney U test, pop_size is 100.

iCC vs. + − ≈

CC (1) 12 4 2
CC (2) 15 2 1
CC (4) 11 2 5
CC (8) 9 3 6
CC (10) 7 3 8

Total amount 54 14 22

In addition to the Mann–Whitney U test, we used post-hoc Dunn and Kruskal–Wallis multiple
comparison p-values adjusted with the Holm post-hoc test; p-value equals 0.05. The comparison
results are presented in Table 7. The values, in Table 7, are based on the number of cases when the
performance estimates were significantly different. Each value indicates the sum of performance
differences for all cLSGO problems. The table rows indicate the number of individuals. The last
row shows the total difference sum. As we can see from Table 7, ε-CC-SHADE (4) and ε-CC-SHADE
(8) demonstrate the minimum value for the sum of differences. At the same time, ε-CC-SHADE (1)
demonstrates the biggest performance differences versus other algorithms. Both ε-CC-SHADE (10)
and the proposed ε-iCC-SHADE demonstrate medium values of differences.

Table 7. The Holm test, ε-CC-SHADE (m) vs. ε-iCC-SHADE p-value = 0.05.

Population Size CC (1) CC (2) CC (4) CC (8) CC (10) iCC

25 65 53 52 49 51 52
50 72 55 48 46 54 53
75 74 56 55 52 56 55

100 69 55 48 48 54 54
Total amount 280 219 203 195 215 214

4.4. Effect of Mutation Strategy on the iCC Framework Performance

It is well known that there are many different mutation strategies for DE algorithms. In this
subsection, we investigate the iCC performance with various mutation operators. Many operators
have been taken from [27]. The detailed description of each mutation strategy can be found in Table 8.
The first column of Table 8 contains the original names of mutation schemes, the second column
contains the formula for evaluating mutant vectors, and the third column contains the short notations.
We have modified the traditional mutation operators (mut-1, mut-2, mut-3, mut-4, mut-5, and mut-6)
by applying the tournament selection for choosing indexes. The tournament size has been set to 2.

Table 8. Mutation strategies.

Mutation Strategy Formula Reassignment

DE/rand/1 xr1 + F·(xr2 − xr3 ) mut-1
DE/rand/2 xr1 + F·(xr2 − xr3 ) + F·(xr4 − xr5 ) mut-2
DE/best/1 xbest + F·(xr2 − xr3 ) mut-3
DE/best/2 xbest + F·(xr2 − xr3 ) + F·(xr4 − xr5 ) mut-4

DE/cut-to-best/1 xi + F·(xbest − xi) + F·(xr2 − xr3 ) mut-5
DE/cur-to-pbest/1 xi + F·

(
xrpbest − xi

)
+ F·(xr2 − xr3 ) mut-6

DE/tour/1 xt1 + F·(xt2 − xt3 ) mut-7
DE/tour/2 xt1 + F·(xt2 − xt3 ) + F·(xt4 − xt5 ) mut-8

DE/best/1(tour) xbest + F·(xt2 − xt3 ) mut-9
DE/best/2(tour) xbest + F·(xt2 − xt3 ) + F·(xt4 − xt5 ) mut-10

DE/cut-to-best/1(tour) xi + F·(xbest − xi) + F·(xt2 − xt3 ) mut-11
DE/cur-to-pbest/1(tour) xi + F·

(
xtpbest − xi

)
+ F·(xt2 − xt3 ) mut-12



Algorithms 2020, 13, 108 12 of 18

Figures 12 and 13 show boxplot diagrams for the results of ranking algorithms with different
mutations for the population size 50 and 100, respectively. Figure 12 shows the average ranking results
for the EAs performance with population size equal to 50 for all non-separable and separable cLSGO
problems using boxplot diagrams. As we can see from Figure 12, on the one hand, mut-6, mut-7,
and mut-12 perform better on all cLSGO benchmark problems, including separable problems. On the
other hand, mut-6, mut-11, and mut-12 show better performance in solving non-separable problems.

Algorithms 2020, 13, x FOR PEER REVIEW 12 of 18 

DE/cur-to-pbest/1(tour)  mut-12 

Figures 12 and 13 show boxplot diagrams for the results of ranking algorithms with different 
mutations for the population size 50 and 100, respectively. Figure 12 shows the average ranking 
results for the EAs performance with population size equal to 50 for all non-separable and separable 
cLSGO problems using boxplot diagrams. As we can see from Figure 12, on the one hand, mut-6, 
mut-7, and mut-12 perform better on all cLSGO benchmark problems, including separable problems. 
On the other hand, mut-6, mut-11, and mut-12 show better performance in solving non-separable 
problems. 

 
Figure 12. The ranking of different mutation strategies on the cLSGO benchmark problems. Figure 12. The ranking of different mutation strategies on the cLSGO benchmark problems.



Algorithms 2020, 13, 108 13 of 18

Algorithms 2020, 13, x FOR PEER REVIEW 13 of 18 

 
Figure 13. The ranking of different mutation strategies on the cLSGO benchmark problems. 

As we can see from Figure 13, mut-1, mut-6, mut-7, and mut-12 perform better on all cLSGO 
benchmark problems, including separable problems, and mut-6, mut-9, and mut-12 show better 
performance on the non-separable cLSGO benchmark problems. 

The mutation ranking results for each cLSGO problem are presented in Figures 14–17 (the lowest 
rank corresponds to the best algorithm) using parallel diagram plots. On the x-axis, we have problem 
numbers; on the y-axis, we have the rank for each mutation. 

Figure 13. The ranking of different mutation strategies on the cLSGO benchmark problems.

As we can see from Figure 13, mut-1, mut-6, mut-7, and mut-12 perform better on all cLSGO
benchmark problems, including separable problems, and mut-6, mut-9, and mut-12 show better
performance on the non-separable cLSGO benchmark problems.

The mutation ranking results for each cLSGO problem are presented in Figures 14–17 (the lowest
rank corresponds to the best algorithm) using parallel diagram plots. On the x-axis, we have problem
numbers; on the y-axis, we have the rank for each mutation.



Algorithms 2020, 13, 108 14 of 18

Algorithms 2020, 13, x FOR PEER REVIEW 14 of 18 

 
Figure 14. The ranking of -iCC-SHADE with some mutation strategies for non-separable problems. 

 
Figure 15. The ranking of -iCC-SHADE with some mutation strategies for separable problems. 

 
Figure 16. The ranking of -iCC-SHADE with some mutation strategies for non-separable problems. 

Figure 14. The ranking of ε-iCC-SHADE with some mutation strategies for non-separable problems.

Algorithms 2020, 13, x FOR PEER REVIEW 14 of 18 

 
Figure 14. The ranking of -iCC-SHADE with some mutation strategies for non-separable problems. 

 
Figure 15. The ranking of -iCC-SHADE with some mutation strategies for separable problems. 

 
Figure 16. The ranking of -iCC-SHADE with some mutation strategies for non-separable problems. 

Figure 15. The ranking of ε-iCC-SHADE with some mutation strategies for separable problems.

Algorithms 2020, 13, x FOR PEER REVIEW 14 of 18 

 
Figure 14. The ranking of -iCC-SHADE with some mutation strategies for non-separable problems. 

 
Figure 15. The ranking of -iCC-SHADE with some mutation strategies for separable problems. 

 
Figure 16. The ranking of -iCC-SHADE with some mutation strategies for non-separable problems. Figure 16. The ranking of ε-iCC-SHADE with some mutation strategies for non-separable problems.



Algorithms 2020, 13, 108 15 of 18
Algorithms 2020, 13, x FOR PEER REVIEW 15 of 18 

 
Figure 17. The ranking of -iCC-SHADE with some mutation strategies for separable problems. 

Tables 9 and 10 show the results of the Mann–Whitney U test with normal approximation and 
tie correction with p = 0.01 for the pop_size equal to 50 and 100, respectively. In the tables, each cell 
contains the value, which has been calculated using the following algorithm. For each benchmark 
problem, if the mutation scheme from the corresponding column outperforms the mutation from the 
corresponding row, we add +1 to the score in the cell at the column-row crossing; otherwise, we add 
-1, and we add 0 for equal performances. The last column contains summary scores for all mutation 
schemes. The highest summary score corresponds to the best scheme. 

Table 9. Results of the Mann–Whitney U test, the population size is 50. 

 1 2 3 4 5 6 7 8 9 10 11 12 Total Sum 
1 0 6 11 14 9 -1 2 8 8 11 6 2 76 
2 -6 0 8 9 4 -4 -4 -1 6 9 2 -3 20 
3 -11 -8 0 -5 -13 -13 -12 -10 -8 -5 -12 -11 -108 
4 -14 -9 5 0 -12 -13 -13 -11 -8 -6 -12 -11 -104 
5 -9 -4 13 12 0 -11 -9 -6 8 10 -8 -10 -14 
6 1 4 13 13 11 0 1 4 11 13 11 0 82 
7 -2 4 12 13 9 -1 0 5 9 12 9 2 72 
8 -8 1 10 11 6 -4 -5 0 8 11 2 0 32 
9 -8 -6 8 8 -8 -11 -9 -8 0 4 -11 -10 -51 

10 -11 -9 5 6 -10 -13 -12 -11 -4 0 -11 -10 -80 
11 -6 -2 12 12 8 -11 -9 -2 11 11 0 -10 14 
12 -2 3 11 11 10 0 -2 0 10 10 10 0 61 

Table 10. Results of the Mann–Whitney U test, the population size is 100. 

 1 2 3 4 5 6 7 8 9 10 11 12 Total Sum 
1 0 7 8 9 6 -4 0 6 6 9 6 -2 51 
2 -7 0 7 8 3 -3 -5 -1 6 9 2 -3 16 
3 -8 -7 0 5 -10 -10 -9 -8 -7 -4 -9 -9 -76 
4 -9 -8 -5 0 -8 -10 -11 -9 -9 -6 -11 -9 -95 
5 -6 -3 10 8 0 -14 -7 -5 7 10 -7 -13 -20 
6 4 3 10 10 14 0 3 3 9 12 15 -1 82 
7 0 5 9 11 7 -3 0 6 8 12 8 -2 61 
8 -6 1 8 9 5 -3 -6 0 7 9 6 -3 27 
9 -6 -6 7 9 -7 -9 -8 -7 0 7 -9 -9 -38 

10 -9 -9 4 6 -10 -12 -12 -9 -7 0 -11 -10 -79 

Figure 17. The ranking of ε-iCC-SHADE with some mutation strategies for separable problems.

Tables 9 and 10 show the results of the Mann–Whitney U test with normal approximation and
tie correction with p = 0.01 for the pop_size equal to 50 and 100, respectively. In the tables, each cell
contains the value, which has been calculated using the following algorithm. For each benchmark
problem, if the mutation scheme from the corresponding column outperforms the mutation from the
corresponding row, we add +1 to the score in the cell at the column-row crossing; otherwise, we add
-1, and we add 0 for equal performances. The last column contains summary scores for all mutation
schemes. The highest summary score corresponds to the best scheme.

Table 9. Results of the Mann–Whitney U test, the population size is 50.

1 2 3 4 5 6 7 8 9 10 11 12 Total Sum

1 0 6 11 14 9 −1 2 8 8 11 6 2 76
2 −6 0 8 9 4 −4 −4 −1 6 9 2 −3 20
3 −11 −8 0 −5 −13 −13 −12 −10 −8 −5 −12 −11 −108
4 −14 −9 5 0 −12 −13 −13 −11 −8 −6 −12 −11 −104
5 −9 −4 13 12 0 −11 −9 −6 8 10 −8 −10 −14
6 1 4 13 13 11 0 1 4 11 13 11 0 82
7 −2 4 12 13 9 −1 0 5 9 12 9 2 72
8 −8 1 10 11 6 −4 −5 0 8 11 2 0 32
9 −8 −6 8 8 −8 −11 −9 −8 0 4 −11 −10 −51
10 −11 −9 5 6 −10 −13 −12 −11 −4 0 −11 −10 −80
11 −6 −2 12 12 8 −11 −9 −2 11 11 0 −10 14
12 −2 3 11 11 10 0 −2 0 10 10 10 0 61

Table 10. Results of the Mann–Whitney U test, the population size is 100.

1 2 3 4 5 6 7 8 9 10 11 12 Total Sum

1 0 7 8 9 6 −4 0 6 6 9 6 −2 51
2 −7 0 7 8 3 −3 −5 −1 6 9 2 −3 16
3 −8 −7 0 5 −10 −10 −9 −8 −7 −4 −9 −9 −76
4 −9 −8 −5 0 −8 −10 −11 −9 −9 −6 −11 −9 −95
5 −6 −3 10 8 0 −14 −7 −5 7 10 −7 −13 −20
6 4 3 10 10 14 0 3 3 9 12 15 −1 82
7 0 5 9 11 7 −3 0 6 8 12 8 −2 61
8 −6 1 8 9 5 −3 −6 0 7 9 6 −3 27
9 −6 −6 7 9 −7 −9 −8 −7 0 7 −9 −9 −38
10 −9 −9 4 6 −10 −12 −12 −9 −7 0 −11 −10 −79
11 −6 −2 9 11 7 −15 −8 −6 9 11 0 −13 −3
12 2 3 9 9 13 1 2 3 9 10 13 0 74



Algorithms 2020, 13, 108 16 of 18

Table 11 shows the results of the Holm post-hoc test (as Table 7). The first row of Table 11 presents
the type of mutation schemes from 1 to 12. The second and the third rows present the total difference
sum for 50 and 100 individuals, respectively. From the results of applying the Holm test, we can
conclude that mutations under numbers 2, 4, 6, and 12 have the smallest performance difference.
However, mutation under the numbers 5, 8, and 10, have the largest performance difference.

Table 11. Holm test, p-value = 0.05.

Population Size 1 2 3 4 5 6 7 8 9 10 11 12

50 58 55 64 50 68 54 54 65 61 63 59 53
100 58 53 62 53 63 49 67 61 64 65 58 51

Total sum 116 108 126 103 131 103 121 126 125 128 117 104

Convergence plots for the average fitness value and the average violation value for benchmark
Problem 6 and pop_size is 50 are presented in Figure 18. As we can see, violation values are always
decreasing or remain at the same level. At the same time, the ε constrained handling (Equation (5)) can
lead to increasing fitness values. We can see the same behavior of algorithms in Figure 19.

Algorithms 2020, 13, x FOR PEER REVIEW 16 of 18 

11 -6 -2 9 11 7 -15 -8 -6 9 11 0 -13 -3 
12 2 3 9 9 13 1 2 3 9 10 13 0 74 

Table 11 shows the results of the Holm post-hoc test (as Table 7). The first row of Table 11 
presents the type of mutation schemes from 1 to 12. The second and the third rows present the total 
difference sum for 50 and 100 individuals, respectively. From the results of applying the Holm test, 
we can conclude that mutations under numbers 2, 4, 6, and 12 have the smallest performance 
difference. However, mutation under the numbers 5, 8, and 10, have the largest performance 
difference. 

Table 11. Holm test, p-value = 0.05. 

Population Size 1 2 3 4 5 6 7 8 9 10 11 12 
50 58 55 64 50 68 54 54 65 61 63 59 53 
100 58 53 62 53 63 49 67 61 64 65 58 51 

Total sum 116 108 126 103 131 103 121 126 125 128 117 104 

Convergence plots for the average fitness value and the average violation value for benchmark 
Problem 6 and pop_size is 50 are presented in Figure 18. As we can see, violation values are always 
decreasing or remain at the same level. At the same time, the  constrained handling (Equation (5)) 
can lead to increasing fitness values. We can see the same behavior of algorithms in Figure 19. 

 
Figure 18. The performance of iCC framework on cLSGO benchmark Problem 6. 

 
Figure 19. The performance of iCC framework on cLSGO benchmark Problem 8. 

Figure 18. The performance of iCC framework on cLSGO benchmark Problem 6.

Algorithms 2020, 13, x FOR PEER REVIEW 16 of 18 

11 -6 -2 9 11 7 -15 -8 -6 9 11 0 -13 -3 
12 2 3 9 9 13 1 2 3 9 10 13 0 74 

Table 11 shows the results of the Holm post-hoc test (as Table 7). The first row of Table 11 
presents the type of mutation schemes from 1 to 12. The second and the third rows present the total 
difference sum for 50 and 100 individuals, respectively. From the results of applying the Holm test, 
we can conclude that mutations under numbers 2, 4, 6, and 12 have the smallest performance 
difference. However, mutation under the numbers 5, 8, and 10, have the largest performance 
difference. 

Table 11. Holm test, p-value = 0.05. 

Population Size 1 2 3 4 5 6 7 8 9 10 11 12 
50 58 55 64 50 68 54 54 65 61 63 59 53 
100 58 53 62 53 63 49 67 61 64 65 58 51 

Total sum 116 108 126 103 131 103 121 126 125 128 117 104 

Convergence plots for the average fitness value and the average violation value for benchmark 
Problem 6 and pop_size is 50 are presented in Figure 18. As we can see, violation values are always 
decreasing or remain at the same level. At the same time, the  constrained handling (Equation (5)) 
can lead to increasing fitness values. We can see the same behavior of algorithms in Figure 19. 

 
Figure 18. The performance of iCC framework on cLSGO benchmark Problem 6. 

 
Figure 19. The performance of iCC framework on cLSGO benchmark Problem 8. Figure 19. The performance of iCC framework on cLSGO benchmark Problem 8.

As we can see in Figures 18 and 19, the convergence lines of violations are increasing the
convergence speed every 20% of FEVs, when iCC changes the number of variables in subcomponents.



Algorithms 2020, 13, 108 17 of 18

5. Conclusions

In this paper, a novel ε-iCC-SHADE was proposed for solving constrained large-scale global
optimization problems. The ε-iCC-SHADE is based on iCC. The iCC method uses the strategy
of increasing the number of variables in subcomponents. The performance of ε-iCC-SHADE
was investigated with different population sizes. The ε-iCC-SHADE performance was compared
with the early proposed ε-CC-SHADE. The numerical experiments showed that the improved iCC
method demonstrated better results than the classic CC with a constant number of subcomponents.
The ε-iCC-SHADE outperformed, on average, all ε-CC-SHADE variants when ranking using all cLSGO
benchmark problems and only separable problems. The ε-iCC-SHADE had a lower number of control
parameters and we did not need to tune the number of subcomponents. Hence, we only needed to set
the population size to run ε-iCC-SHADE. Additionally, we investigated the iCC performance with
twelve mutation strategies and compared their performances. On the basis of the results of numerical
experiments, we conclude that DE/rand/1, DE/cur-to-pbest/1, DE/tour/1, and DE/cur-to-pbest/1(tour)
mutation strategies outperform all others. These mutation strategies perform better, on average, for all
cLSGO benchmark problems. As we can see from the results, iCC has a high potential for enhancement.
In further studies, we would try to design an adaptive scheme for changing group sizes.

Author Contributions: Conceptualization, A.V. and E.S.; methodology, A.V. and E.S; software, A.V.; validation,
A.V. and E.S.; formal analysis, A.V. and E.S.; investigation, A.V. and E.S.; resources, A.V. and E.S.; data curation,
A.V. and E.S.; writing—original draft preparation, A.V. and E.S.; writing—review and editing, A.V. and E.S.;
visualization, A.V. and E.S.; supervision, E.A.; project administration, A.V. and E.S; funding acquisition, A.V. and
E.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xiao, M.; Zhang, J.; Cai, K.; Cao, X.; Tang, K. Cooperative co-evolution with weighted random grouping for
large-scale crossing waypoints locating in air route network. In Proceedings of the 23rd IEEE International
Conference on Tools with Artificial Intelligence, Boca Raton, FL, USA, 7–9 November 2011; pp. 215–222.
[CrossRef]

2. Mahdavi, S.; Shiri, M.E.; Rahnamayan, S. Metaheuristics in large-scale global continues optimization: A
survey. Inf. Sci. 2014, 295, 407–428. [CrossRef]

3. Worasucheep, C. Solving constrained engineering optimization problems by the constrained PSO-DD.
In Proceedings of the 2008 5th International Conference on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology, Krabi, Thailand, 14–17 May 2008; Volume 1, pp. 5–8.
[CrossRef]

4. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic
optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012,
110–111, 151–166. [CrossRef]

5. LaTorre, A.; Muelas, S.; Peña, J.-M. A MOS-based dynamic memetic differential evolution algorithm for
continuous optimization: A scalability test. Soft Comput. 2011, 15, 2187–2199. [CrossRef]

6. Wang, H.; Wu, Z.; Rahnamayan, S.; Liu, Y.; Ventresca, M. Enhancing particle swarm optimization using
generalized opposition-based learning. Inf. Sci. 2011, 181, 4699–4714. [CrossRef]

7. Omidvar, M.N.; Li, X.; Mei, Y.; Yao, X. Cooperative Co-Evolution With Differential Grouping for Large Scale
Optimization. IEEE Trans. Evol. Comput. 2014, 18, 378–393. [CrossRef]

8. Yang, Z.; Tang, K.; Yao, X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci.
2008, 178, 2985–2999. [CrossRef]

9. Marimont, R.B.; Shapiro, M.B. Nearest Neighbour Searches and the Curse of Dimensionality. IMA J.
Appl. Math. 1979, 24, 59–70. [CrossRef]

10. Tanabe, R.; Fukunaga, A. Success-history based parameter adaptation for Differential Evolution.
In Proceedings of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013.
[CrossRef]

http://dx.doi.org/10.1109/ictai.2011.40
http://dx.doi.org/10.1016/j.ins.2014.10.042
http://dx.doi.org/10.1109/ECTICON.2008.4600359
http://dx.doi.org/10.1016/j.compstruc.2012.07.010
http://dx.doi.org/10.1007/s00500-010-0646-3
http://dx.doi.org/10.1016/j.ins.2011.03.016
http://dx.doi.org/10.1109/TEVC.2013.2281543
http://dx.doi.org/10.1016/j.ins.2008.02.017
http://dx.doi.org/10.1093/imamat/24.1.59
http://dx.doi.org/10.1109/cec.2013.6557555


Algorithms 2020, 13, 108 18 of 18

11. Yeniay, Ö. Penalty Function Methods for Constrained Optimization with Genetic Algorithms.
Math. Comput. Appl. 2005, 10, 45–56. [CrossRef]

12. Homaifar, A.; Qi, C.X.; Lai, S.H. Constrained Optimization Via Genetic Algorithms. Simulation 1994, 62,
242–253. [CrossRef]

13. Richardson, J.T.; Palmer, M.R.; Liepins, G.; Hilliard, M. Some guidelines for genetic algorithms with penalty
functions. In Proceedings of the Third International Conference on Genetic Algorithms, Fairfax County, VA,
USA, 4–7 June 1989; pp. 191–197.

14. Adeli, H.; Cheng, N. Augmented Lagrangian Genetic Algorithm for Structural Optimization. J. Aerosp. Eng.
1994, 7, 104–118. [CrossRef]

15. Coello Coello, C.A. Theoretical and numerical constraint-handling techniques used with evolutionary
algorithms: A survey of the state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287.
[CrossRef]

16. Takahama, T.; Sakai, S.; Iwane, N. Solving Nonlinear Constrained Optimization Problems by the εConstrained
Differential Evolution. In Proceedings of the 2006 IEEE International Conference on Systems, Man and
Cybernetics, Taipei, Taiwan, 8–11 October 2006. [CrossRef]

17. Vakhnin, A.; Sopov, E. Improving DE-based cooperative coevolution for constrained large-scale global
optimization problems using an increasing grouping strategy. IOP Conf. Ser. Mater. Sci. Eng. 2020, 734,
012099. [CrossRef]

18. Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North
American Fuzzy Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523. [CrossRef]

19. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

20. Vesterstrom, J.; Thomsen, R. A comparative study of differential evolution, particle swarm optimization,
and evolutionary algorithms on numerical benchmark problems. In Proceedings of the 2004 Congress
on Evolutionary Computation (IEEE Cat. No.04TH8753), Portland, OR, USA, 19–23 June 2004; Volume 2,
pp. 1980–1987. [CrossRef]

21. Alam, M.N.; Das, B.; Pant, V. A comparative study of metaheuristic optimization approaches for directional
overcurrent relays coordination. Electr. Power Syst. Res. 2015, 128, 39–52. [CrossRef]

22. Potter, M.A.; Jong, K.A. A cooperative coevolutionary approach to function optimization. Lect. Notes Comput.
Sci. 1994, 249–257. [CrossRef]

23. Potter, M.A.; Jong, K.A. Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents.
Evol. Comput. 2000, 8, 1–29. [CrossRef] [PubMed]

24. Brest, J. Constrained Real-Parameter Optimization with ε-Self-Adaptive Differential Evolution.
In Constraint-Handling in Evolutionary Optimization; Mezura-Montes, E., Ed.; Springer: Berlin, Germany, 2009;
Volume 198, pp. 73–93. [CrossRef]

25. Črepinšek, M.; Liu, S.-H.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey.
ACM Comput. Surv. 2013, 45, 1–33. [CrossRef]

26. Wu, G.; Mallipeddi, R.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition
and Special Session on Constrained Single Objective Real-Parameter Optimization; Technical report; Nanyang
Technological University: Singapore, September 2016.

27. Opara, K.; Arabas, J. Comparison of mutation strategies in Differential Evolution—A probabilistic perspective.
Swarm Evol. Comput. 2018, 39, 53–69. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/mca10010045
http://dx.doi.org/10.1177/003754979406200405
http://dx.doi.org/10.1061/(ASCE)0893-1321(1994)7:1(104)
http://dx.doi.org/10.1016/S0045-7825(01)00323-1
http://dx.doi.org/10.1109/icsmc.2006.385209
http://dx.doi.org/10.1088/1757-899X/734/1/012099
http://dx.doi.org/10.1109/nafips.1996.534789
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/cec.2004.1331139
http://dx.doi.org/10.1016/j.epsr.2015.06.018
http://dx.doi.org/10.1007/3-540-58484-6_269
http://dx.doi.org/10.1162/106365600568086
http://www.ncbi.nlm.nih.gov/pubmed/10753229
http://dx.doi.org/10.1007/978-3-642-00619-7_4
http://dx.doi.org/10.1145/2480741.2480752
http://dx.doi.org/10.1016/j.swevo.2017.12.007
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Success-History Based Adaptive Differential Evolution (SHADE) Algorithm 
	Cooperative Coevolution 
	DE Constrained Handlings 

	Proposed Approach 
	Numerical Experiments and Results 
	Benchmark Set for Constrained Large-Scale Global Optimization Problems 
	Software Implementation and Setups, Benchmark Set for Constrained Large-Scale Global Optimization Problems 
	Investigation of the Performance of iCC Framework versus Classic Cooperative Coevolution with the Fixed Number of Subcomponents 
	Effect of Mutation Strategy on the iCC Framework Performance 

	Conclusions 
	References

