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Abstract: In this work, we present a novel strategy for the numerical solution of a coupled system
of partial differential equations that describe reaction–diffusion processes of a mixture of metals and
ligands that can be absorbed by a sensor or a microorganism, in an aqueous medium. The novelty
introduced in this work consisted of an adequate database management in conjunction with a direct
iterative schema, which allowed the construction of simple, fast and efficient algorithms. Except in really
adverse conditions, the calculation is converging and satisfactory solutions were reached. Computing
times showed to be better than those obtained with some commercial programs. Although we concentrate
on the solution for a particular system (Diffusive Gradients in Thin Films [DGT] sensors), the proposed
algorithm does not require major modifications to consider new theoretical or experimental configurations.
Since the quality of numerical simulations of reaction–diffusion problems often faces some drawbacks
as the values of reaction rate constants increase, some additional effort has been invested in obtaining
proper solutions in those cases.

Keywords: reaction; diffusion; DGT; numerical simulation; PDE

1. Introduction

The high risk of contamination due to the presence of heavy metals in aqueous systems requires
the development of reliable analytical techniques, capable of measuring the metal flux that reaches
microorganisms, algae, plants or other live organisms present in the media [1].

Generally, in aquatic ecosystems, the metal flux toward an interface where it is consumed (for instance,
by an organism or an analytical sensor), is the result of diffusion and kinetics of interconversion between
metal and the various species present in the system (see scheme outlined in Figure 1).

A quantitative assessment of the metal flux that reaches a consuming interface requires the rigorous
solution of the resulting system of transport and reaction equations, taking into account the geometry and
the temporal and spatial scales. The mathematical models that describe these reaction–diffusion processes
consist of systems of partial differential equations (PDE) with polynomial reaction terms [2].
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Figure 1. Schematic representation of coupled reaction–diffusion processes of MLi complexes, when the
metal is adsorbed at an interface. Here, Dj = is the diffusion coefficient of the species j (j = M, L, ML,
ML2, . . . ), and Ki, ka,i, kd,i represent the equilibrium, the association and dissociation constants of MLi,
respectively.

For instance, if the ML species schematized in Figure 1 reacts as follows:

M + L
ka,1−⇀↽−
kd,1

ML (1)

and

ML + L
ka,2−⇀↽−
kd,2

ML2, (2)

the change of ML concentration (cML) with time will be given by [3]

∂cML

∂t
= DML

∂2cML

∂x2 − ka,1cMLcM + kd,1cML − ka,2cMLcL + kd,2cML2 , (3)

where ci is the concentration of specie i, t stands for the time, x represents the spatial dimension, DML is the
diffusion coefficient of the ML species, and ka,i, kd,i (i = 1, 2) represent the association and the dissociation
rate constants given in reactions (1) and (2).

In general, for any species i in the media (i = M, L, ML, ML2, . . . ), the variation of the concentration
with time will depend on the diffusive term plus the reaction terms, as follows:

∂ci
∂t

= Di
∂2ci
∂x2 + «reaction terms». (4)

Thus, the system will contain as many equations as species, coupled by the reaction terms. However,
in most practical cases, the resulting system of PDE cannot be analytically solved. In these cases, numerical
approximations will be the only way to reach solutions for these systems.

The most common form of solving these systems consists of, as a first step, the discretization of
equations, which transforms the differential system in an algebraic system different for each increase of
time. Next, when the resulting system is non-linear, it could be solved by Newton-type techniques [4].

In this second step, two difficulties can be mentioned. The lower one is the lack of robustness of
the method, which requires the introduction of Armijo or norm minimization strategies [5], to improve
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the convergence of the iterative process. However, the greatest obstacle appears as a consequence of the
dimension of the linear system (n). In these problems, the number of unknown variables, n, is equal to
the product of the number of species by the number of nodes in the spatial discretization. Considering
that n may be large and that resolution time of a linear equations system is of the order of n3/3 s [5],
the computational cost can be unaffordable in a general-purpose computer.

In this work, a set of algorithms that allow simulating systems with a large number of chemical
species, and with a computational cost that supports the simulation of processes of some complexity in
a reasonably short time, are presented. For this, Section 2 introduces the theoretical framework and the
mathematical model. Section 3 discusses the iterative resolution of the system. Section 4 shows the results
and analysis. The Appendix A contains the general resolution algorithm.

2. The Model

The proposed algorithm was developed to solve the reaction-diffusion equations that model the
operation of a Diffusive Gradients in Thin Films (DGT) sensor [6], submerged in an aqueous solution
containing different metal species. Nevertheless, the algorithm does not require major modifications to
consider new theoretical or experimental configurations.

2.1. Diffusive Gradients in Thin Films (DGT)

The analytical technique known as DGT consists of simple devices developed for the in-situ
measurement of bioavailability of heavy metals in soils and aquatic environments [6,7].

The DGT sensors are made up of three layers (see Figure 2): a hydrogel layer impregnated with a
complexing material (resin layer), a hydrogel used as a diffusion layer, and a membrane filter. These three
layers are placed in a plastic holder device [7].

Piston

Resin layer

Diffusive gel

Menbrane filter

Outer sleeve
with window

Figure 2. Representative scheme of a Diffusive Gradients in Thin Films (DGT) sensor. The diagram on the
left represents a 3-D view and on the right a cross-section view, when the device is assembled.

DGT sensors were designed to emulate the metal absorption process in aqueous media. When a DGT
is deployed in a sampling solution, where all species are in equilibrium, the metal species diffuse through
the diffusive gel (where they might associate or dissociate), toward the resin layer where they accumulate
as metal resin complexes.
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As long as the resin does not get saturated, a concentration gradient is maintained in the diffusion
layer. Very soon, (quasi) steady-state conditions are reached, so the initial transient can be neglected to
obtain easy approximate analytical expressions. Fick’s first law of diffusion describes the flux (Ji) for each
species i,

Ji = Di
dci
dx

, (5)

where Di is the diffusion coefficient, ci is the concentration and dci/dx is the gradient of spatial
concentration of the i species.

After the DGT has been exposed to the solution, it must be opened and the analytes eluted from the
resin to be quantified.

When only metal is present in the solution, the accumulated mass in DGT is related to the solution
concentration through a simple equation that neglects the effects of dynamic speciation [6]:

n = D
c∗M
g

At , (6)

where n stands for the accumulated moles, D represents an average diffusion coefficient, c∗M is the metal
concentration at the solution, A is the DGT area, t is the deployment time, and g is the diffusion layer
thickness.

In the presence of metal complexes, c∗M is replaced with c∗DGT, which indicates the effective or apparent
metal concentration leading to this accumulation. c∗DGT is usually called the labile metal concentration of
the solution.

The rigorous interpretation of c∗DGT in terms of the real species in solutions requires taking into
account all reaction–diffusion processes involved in the system, which can only be achieved via numerical
simulation.

2.2. Mathematical Model

Consider the complexation of different metals and ligands in solution, that react according to the
elementary schema represented in the Equation (7):

A + B
ka−⇀↽−
kd

AB , (7)

where A and B can represent a metal, a ligand, or any combination of them, and ka and kd represent the
kinetic constants of association and dissociation, respectively. The equilibrium conditions for this reaction
are expressed in the form

K =
ka

kd
=

c∗AB

c∗Ac∗B
, (8)

where K is the equilibrium constant, and c∗i indicates the concentration of species i in the solution (bulk
concentration).

When a DGT sensor is deployed in solution, the species diffuse to the resin (located between
0 < x < r), through the gel layer between r < x < r + g (see Figure 3).
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Figure 3. Schematic diagram of a DGT device in a solution. The blue line shows an example of the
concentration profile for the metal.

Inside the DGT, the concentration c(x, t) of each species is modified by diffusion, reaction with other
species present in the solution, and by the possible reaction with the resin.

Before presenting the mathematical formulation, we will make some assumptions.

• Since the resin discs are made of complexing material embedded in the same type of gel that composes
the diffusive layer, it is reasonable to consider that species that diffuse through the gel can penetrate
the resin [8].

• Species that diffuse through the gel can bind the resin after. They do it by the described schema in
Equation (9):

A + R
ka,R−⇀↽−
kd,R

AR , (9)

where R denotes the free-sites in the interior of the resin, and ka,R, kd,R and KR = ka,R/kd,R represent
the corresponding kinetic and stability constants.

• When the material used for the resin is Chelex, the grains of resin are located mainly in the layer
adjacent to the diffusion gel [9]. In a first approach, we consider that binding sites in the resin are
uniformly distributed.

• Because diffusion coefficients in the gel, the filter and diffusive boundary layer (DBL) are similar [10],
the diffusive layer width g in Figure 3 includes the size of all these layers.

• Migration forces or any electrostatic effects due to the charge of resin are not considered,
i.e., the background salt is enough to screen these interactions.

Under these conditions, diffusion is the most relevant transport mechanism in the system and, therefore,
the transport equations for each species i can be written as

∂ci
∂t

= DR
i

∂2ci
∂x2 + «reaction terms» for 0 < x < r ; and

∂ci
∂t

= Di
∂2ci
∂x2 + «reaction terms» for r < x < r + g ,

(10)
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where DR
i and Di are diffusion coefficients of the species i in the resin and gel, respectively, and the

so-called «terms of reaction» refer to the kinetic terms corresponding to the reaction of the specie i with
other substances of the solution.

Technically, the expressions shown in Equation (10) are second-order parabolic partial differential
equations that can be analytically solved only under very specific conditions.

In general, in the cases of practical interest, these equations do not have analytical solutions. Thus,
numerical solutions may be the best way to get the concentration values for each point of space in every
instant of time.

As described in the introduction, the most widely used approach to numerically solve these systems
consists of discretizing the equations and, subsequently, iteratively solve the resulting system of algebraic
equations. The following sections describe a novel strategy to numerically solve the systems of equations
of the form (10).

2.3. The Problem

Let us consider a set of elementary reactions, in a number equal to numreac, of the form

XL11 + XL12

ka,1−⇀↽−
kd,1

XL13 Reaction 1 ,

XL21 + XL22

ka,2−⇀↽−
kd,2

XL23 Reaction 2 ,

...
...

XLj1 + XLj2

ka,j−⇀↽−
kd,j

XLj3 Reaction j ,

...
...

(11)

where ka,j, kd,j and Kj = ka,j/kd,j, for j = 1, 2, . . . , numreac, represent the kinetic and stability constants,
respectively. It is worth mentioning that in the set of reactions (11) some species could be repeated, e.g., XL11

might be equal to XL21

The system is encoded according to the indexing used in Equation (11), without any restrictions
on the number of metals or ligands. As it has already been said, the only restriction is that all chemical
reactions should be written in the form A + B ⇀↽ C.

Given that starting data are the total concentrations of the pure substances (i.e., those that are not the
result of a reaction), it is first necessary to solve the equilibrium problem, that is to say, it is needed to find
the concentration value in solution (or bulk concentration) for each of the species in the system.

To do this we build mreac and kreac, arrays that allow introducing the information related to the
chemical reactions that must be considered in x = r + g. The first of these arrays, mreac, is the index array
that contains three columns and a number of rows equal to the number of numreac reactions,

mreac =



L11 L12 L13

L21 L22 L23
...

...
...

Lj1 Lj2 Lj3
...

...
...


. (12)
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The mreac array is constructed in such a way that, if in the j-th reaction the substance 5 is combined
with the 7 to produce 8, the indices of the row j will be 5 7 8; that is, the first two columns contain the
components and the third indicates the formed compound.

The kreac matrix contains the same number of rows as the mreac matrix, but only two columns.
The first column indicates the value of the association constant (ka,j), and the second one the value of the
dissociation constant (kd,j) of each j reaction, with j = 1, 2, . . . , numreac,

kreac =



ka1 kd1
ka2 kd2

...
...

kaj kdj
...

...


. (13)

The strategy to solve the problem is to express the non-pure of species (i.e., species that are listed
in the third column of mreac, because they are the result of a reaction), as a combination of the total
concentrations of the pure substances, which are known for the system. The result is a system of nonlinear
equations, which is solved using a variation of the Newton–Raphson method.

Once the equilibrium problem is solved, that is to say, once the bulk concentration values are obtained
for each species at t = 0 and x = r + g, it is necessary to pose the problem of transport for an arbitrary
number of chemical species.

Let numeq be the number of species of the problem, which, of course, coincides with the number of
equations. In the first place two vectors of coefficients are considered, one for the region (0; r), hereinafter
referred to as: ~DR = (DR

1 , DR
2 , . . . , DR

numeq), which contains the diffusion coefficient for each species inside
the resin phase, and the other denoted by ~D = (D1, D2, . . . , Dnumeq), which corresponds to diffusion
coefficients inside the gel (r < x < r + g). Diffusion coefficients of the resin and its complexes are zero
since they are considered to be fixed in the gel matrix of the resin disc.

The mreac and kreac matrices, that were used for solving the equilibrium problem, must be extended
incorporating the reactions corresponding to the resin and its complexes.

These two new matrices contain the information to express the general problem. For each species i,
where i = 1, . . . , numeq, the corresponding reaction–diffusion equation will be as:

∂ci
∂t

=

{
DR

i
Di

}
∂2ci
∂x2 +

numreac

∑
j=1

(Ai,jcmreac(j,1)cmreac(j,2) + Bi,jcmreac(j,3)) , (14)

where DR
i and Di act as a diffusion coefficients in (0, r) and (r, r + g), respectively.

In Equation (14), for a given value of index i (which runs across chemical species), the coefficients Ai,j
and Bi,j can be calculated using the following algorithm: if in the reaction j does not participate the species
i, Ai,j = Bi,j = 0. Otherwise, the absolute value of Ai,j is equal to ka,j and the absolute value of Bi,j is equal
to kd,j. Finally, it must be taken into account that the coefficient (Ai,j or Bi,j) of the term that contains the
substance i-th must be negative.

2.4. Initial and Boundary Conditions

When the DGT is deployed in the solution, at time t = 0 the concentration of each of the species i
inside the spatial domain (0, r + g) is zero, that is ci(x, 0) = 0, except for the free places inside the resin,
whose initial concentration is cR(x, 0) = cTR (the total concentration of resin sites).
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Resin sites are considered immobile, but for species with Di 6= 0, it must be considered one boundary
condition at x = r + g, i.e., at the interface between the diffusive gel and the solution:

ci(r + g, t) = c∗i ,

where c∗i stands for the bulk concentration of species i.
At the DGT bottom, i.e., at x = 0, there should be no flow of any species,

∂ci
∂x

∣∣∣∣
x=0

= 0 .

Finally, at the resin–gel interface (x = r), there must be continuity in the concentration profiles and
flows of each species,

ci(r−, t) = ci(r+, t) ; DR
i

∂ci
∂x

∣∣∣∣
x=r−

= Di
∂ci
∂x

∣∣∣∣
x=r+

.

2.5. Dimensionless Formulation

To adapt scales to the order of magnitude of data, the variable changes that lead to the nondimensional
problem, are described.

• For all species in solution, that is, for all the species that have a bulk solution concentration, obtained
from the solution of the equilibrium problem, we define standard concentrations,

qi =
ci
c∗i

.

• For the rest, that is to say, the resin and its complexes,

qj =
cj

cTR
.

• For the spatial coordinate, instead of nondimensionalisation, a change of scale is used,

z =
x√

Dmax
,

where Dmax is the highest diffusion coefficient. It makes it necessary to define r∗ = r/
√

Dmax;
g∗ = g/

√
Dmax; di = Di/Dmax; and dR

i = DR
i /Dmax.

• Given that the aim is to simulate experiments involving different time scales, the time axis is not
changed.

With these new variables, the reaction–diffusion equations described in Equation (14) are rewritten as
follows:

∂qi
∂t

=

{
dR

i
di

}
∂2qi
∂z2 +

numreac

∑
j=1

(Âi,jqmreac(j,1)qmreac(j,2) + B̂i,jqmreac(j,3)) , (15)

where dR
i acts as a diffusion coefficient in(0, r∗) and di in (r∗, r∗ + g∗), and where the new coefficients Âi,j

and B̂i,j are calculated as

Âi,j = Ai,j

c∗mreac(j,1)c
∗
mreac(j,2)

c∗i
; B̂i,j = Bi,j

c∗mreac(j,3)

c∗i
. (16)
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For the concentrations of the resin and its complexes, c∗i must be replaced by cTR.
The initial and boundary conditions for all substances that do not contain resin, that is to say, for all

those whose diffusion coefficient is different from zero, are now

qi(z, 0) = 0; qi(r∗ + g∗, t) = 1 , (17)

and

∂qi
∂z

∣∣∣∣
z=0

= 0 ,

qi(r∗−, t) = qi(r∗+, t) ,

∂qi
∂z

∣∣∣∣
z=r∗−

=
di

dR
i

∂qi
∂z

∣∣∣∣
z=r∗+

.

(18)

The remaining substances only need an initial condition: for the resin

qR(z, 0) =

{
1 si 0 < z < r∗

0 si r∗ < z < r∗ + g∗

For complexes of the resin qi(x, 0) = 0 in (0, r∗ + g∗).

2.6. Discretization

The spatial discretization of a PDE model can be performed using different techniques. The most
frequently used are those of finite differences, finite element (with all its variants) or finite volumes [4,11].
Each of these techniques has its advantages and disadvantages. For instance, discretizing by the finite
difference method leads to simple computer programming, as long as fixed spatial steps are used. However,
this latter could imply the use of a large number of points and, therefore, longer calculation times.

On the other hand, the finite element method allows working with arbitrary point distributions, using
smaller spatial steps in regions where it is assumed that function could rapidly changes, so error in the
iteration could be large, and larger widths where it is known that the error will be smaller [12]. Although
this flexibility results in a computational cost lower than in the case of the finite differences, it involves an
algorithmic and programming effort that can be significantly high.

In this work, the finite differences method was used, taking fixed spatial steps of length ∆z,
and temporal intervals equal to ∆t (see Figure 4).

0
z

t

t∆

2 t∆

j t∆

⋮

z∆ 2 z∆ ⋯ i z∆⋯ ⋯

⋮

Figure 4. Scheme of space and time discretization.
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Let F(z, t) be a function that can contain spatial derivatives (of different orders) of the function f (z, t). If

∂ f (z, t)
∂t

= F(z, t) , (19)

Equation (19) can be discretized as a linear combination of the form

f (zi, t + ∆t)− f (zi, t)
∆t

' λF(zi, t + ∆t) + (1− λ)F(zi, t) , (20)

where, 0 ≤ λ ≤ 1.
In general, for the PDE of parabolic type, the backward Euler method for discretization (i.e., taking

λ = 1 in Equation (20)), allows choosing arbitrary increases in z and t, without risking its stability or
introducing spurious oscillations in the iterative process [4].

Next, for every substance i, the differential Equation (15) will by discretized using the backward Euler
scheme to obtain a system of algebraic equations.

For species with diffusion coefficient different from zero, the Equation (15) is transformed into

qi(z, t + ∆t)− qi(z, t)
∆t

=

{
dR

i
di

}
qi(z + ∆z, t + ∆t)− 2qi(z, t + ∆t) + qi(z− ∆z, t + ∆t)

∆z2

+
numreac

∑
j=1

Âi,jqmreac(j,1)(z, t + ∆t)qmreac(j,2)(z, t + ∆t) + B̂i,jqmreac(j,3)(z, t + ∆t) .
(21)

In this case, the described boundary conditions in Equations (17) and (18) will be

qi(∆z, t + ∆t)− qi(0, t + ∆t) = 0 ,

qi(r∗ + g∗, t + ∆t) = 1 ,
(22)

and
qi(r, t + ∆t)− qi(r− ∆z, t + ∆t) =

di

dR
i
[qi(r + ∆z, t + ∆t)− qi(r, t + ∆t)] . (23)

There is no need for any expression for the solution continuity at z = r∗. Simply, from now on, it will
be considered for such a position, that each substance has a unique concentration value (a simple way to
state that it is continuous, due to the absence of electrostatic effects).

Due to the fact that the resin and its components are considered motionless, the differential equations
for these substances do not contain spatial derivatives. In this way, the equations described in (15) for
species with zero coefficient diffusion are re-written as follows:

qi(z, t + ∆t)− qi(z, t)
∆t

=
numreac

∑
j=1

ÂR
i,jqmreac(j,1)(z, t + ∆t)qmreac(j,2)(z, t + ∆t)

+ B̂R
i,jqmreac(j,3)(z, t + ∆t) ,

(24)

for (0, r∗), and

qi(z, t + ∆t) = 0, ∀ z ∈ (r∗, r∗ + g∗) . (25)
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3. Iterative Resolution of the Resulting System of Equations

In Equations (21) and (24), the terms derived from reactions couple the resulting algebraic
equation system, by involving second-order terms as products of concentrations from different species.
As mentioned in the introduction, these types of non-linear systems are generally solved by using
iterative-type Newton techniques. The novelty introduced in this work consisted in convenient database
management operated in conjunction with a direct iterative schema, which allowed us the construction of
simple, fast and efficient algorithms for solving reaction–diffusion problems.

The basic idea of these algorithms consists on the assumption that the solution for all species is known
at time t; then, the solution at time t + ∆t is obtained according to the following scheme:

1. Initialize all concentrations at t + ∆t with the solution at time t.
2. for i = 1, numeq

To solve discrete i-th equation (for the species i-th) considering all other j-th species (i 6= j) constant in
this stage and whose value at t + ∆t being the corresponding to its most recent calculation.
endfor

3. Repeat step 2 until the difference between concentrations in two consecutive iterations be less than a
small fixed value.

The described iterative structure has the advantage that resolution, for each substance i with diffusion
coefficient different from zero, is reduced to a tridiagonal system in which the diagonal is strongly
dominant, due to the negative sign of the terms that contain ci. Even better, for the resin and its complexes,
species for which the diffusion coefficient is zero, the system is diagonal.

All this results in a great increase on calculating speed, since it is better to solve a dozen or hundred
times these systems (each one of them solved in a time proportional to n) than to solve the complete
non-linear system in Equations (21) and (24). In the latter case, even if the system is solved with a small
number of iterations, each iteration involves a calculation time of n3 order. Bearing in mind that n equals
to the number of species times the number of intervals in the spatial domain, any attempt to directly solve
the system can be prohibitive.

Implicitly, when describing the discretizations, it has been considered that the complete domain
(0, r∗ + g∗) is discretized in intervals of equal length ∆z in both subdomains. Then, for each species,
different vectors that represent the solution at each position of the mesh, at each time, and for a given k
state of the iterative process, will be used.

If the concentrations vector for a species is represented by

~q k
i (t) =

(
qk

i (0, t), qk
i (∆z, t), . . . , qk

i (nint× ∆z, t)
)

, (26)

where nint indicates the number of intervals in which the domain is divided (see Figure 5), the vectors
used in the algorithms will result from the juxtaposition of vectors for each species at different times and
iterative levels. Essentially, these will be used:

~qpre ≡(~q1(t),~q2(t), . . . ,~qnumeq(t))

~qaux ≡(~q k
1 (t + ∆t),~q k

2 (t + ∆t), . . . ,~q k
numeq(t + ∆t))

~qnex ≡(~q k+1
1 (t + ∆t),~q k+1

2 (t + ∆t), . . . ,~q k+1
numeq(t + ∆t)) .

(27)

Given that solution at z = r∗ + g∗ is known, its value is not included within the resolution. Then,
the index point l is on the left end from the subinterval l, that is to say, it corresponds to z = (l − 1)∆z
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position. With index nr the corresponding last interval of the resin subdomain is indicated, so z = r∗

corresponds to the nr + 1 index.

1 2 3 nr +1 nint m

0z =
zD zD

*z r= * *z r g= +

( 1)z nint z= - D

Figure 5. Scheme of space discretization.

The length of the vectors~qpre,~qaux and~qnex is equal to ntot = numeq× nint. All this implies that to
have access to the j-th spatial position of a vector corresponding to the i-th substance, it must be calculated
l = (i − 1) ∗ nint + j. This relationship is used several times within the general resolution algorithm
detailed in the Appendix A.

It is worth noting that although the complete domain (0, r∗ + g∗) has been divided into equal-length
intervals ∆z in every subdomain, this discretization is not essential. In fact, if required, the problem can be
easily split into several subdomains, each with its own length.

This provides two major advantages: on the one hand, it allows choosing small intervals where
functions quickly vary (usually near the interface) and large intervals in the rest of the domain, increasing
calculation speed even more. On the other hand, it allows solving configurations different from those
of the conventional DGT sensor (as the case of the voltammetry detectors (r → 0) [13], or DGT sensors
with several resins [14,15]). That is to say, with the condition that the reactions may be expressed in the
basic form A + B ⇀↽ C, the proposed algorithm can be adapted to solve different arrangements, simply by
modifying the initial and boundary conditions.

Generally, the quality of numerical simulations of reaction–diffusion problems often faces some
drawbacks as the values of reactions rate constants increase. Nevertheless, if the kinetics rate constants
increase, while keeping their quotient constant (i.e., K = ka/kd =const), the concentration profiles tend to
be those that would result in the fully labile case, i.e., the case in which the rate constants are infinite but
the stability constant, K, remains fixed. Thus, the use of the solution of the fully labile case could provide
good initialization values for the problem with large kinetic rate constants. Unfortunately, it is not possible
to obtain always the fully labile solution in the general case. For this reason, specific techniques have been
developed to initialize in these cases.

The general strategy is to solve the system, at each time, for a set of kinetic constants lower than
desired but that provide a solution. With this result, the problem is initialized for a larger value of the
constants of reaction (keeping the same K value). The procedure is repeated until the values of the
require constants are reached. The described algorithm ceases to operate when the constants are enormous,
but even so, it allows to explore a range of sufficiently large values to obtain conclusions about the behavior
of the systems of experimental interest.

4. Results and Analysis

Initially, the algorithm was implemented in FORTRAN and used to calculate the concentration
profiles in a DGT, when it was introduced into a solution containing a metal (M) and a ligand (L) that react
according to the scheme

M + L
ka−⇀↽−
kd

ML. (28)

Figure 6 shows the normalized concentration profiles for metal (qM) and complex (qML) in the DGT
numerically computed after 4-h of deployment.
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Figure 6. Normalized concentration profiles of M (qM, blue line) and ML (qML, red line). Profiles were
obtained by numerical simulation at 4-h. Parameters: total ligand concentration cT,L = 1× 10−1 mol m−3;
total metal concentration cT,M = 1 × 10−2 mol m−3; ka = 2 × 100 m3 mol−1 s−1; kd = 2 × 10−3 s−1;
r = 4× 10−4 m, g = 0.8× 10−3 m; DM = 6.09× 10−10 m2 s−1 and DL = DML = 4.2× 10−10 m2 s−1.

Numerical results are in good agreement with the experimental accumulation of Cd by DGT sensors
in Cd-NTA systems [3]. Also, our results are in full agreement with the data obtained by simulating
the same physicochemical system using commercial COMSOL Multiphysics R© software (COMSOL, Inc.,
Los Altos, CA, USA).

Besides, systems containing a mixture of metal and various ligands were successfully simulated [16],
showing a higher computer speed than commercial software. Table 1 shows a comparison in computing
times between our program and the commercial COMSOL Multiphysics R© software, for the case of a DGT
that was submerged during 4-h in solution containing a metal (M) and one or more ligands (L).

Table 1. Computing time for simulation of the diffusion–reaction processes for a DGT deployed 4 h in
solutions containing one metal (M) and one or more ligands (L).

1 M + 1 L 1 M + 2 L 1 M + 14 L

Program 3’ 35” 5’ 01” 45’ 31”
COMSOL 10’ 11” 14’ 25” 1 h 6’ 34”

Although the finite differences method was used, the method adopted for spatial discretization is
not essential in terms of the work shown. As it was already explained, the suggested algorithmic novelty
consists of proper database management, parallel to the iterative resolution of the non-linear system,
solving species one by one for every time. Thus, for a standard simulation involving the resolution of
hundreds of tri-diagonal systems, the computational cost is proportional to the number of points n. Instead,
trying to solve a few systems of complete linear equations, whose dimension equals to n times the number
of species (numeq), the computational cost will be proportional to the cube, not of n, but of n× numeq.
The gain in runtime is clear; it is enough to consider n = 1000, whatever the number of involved chemical
species, to realize that. Certainly, the finite elements method would increase a little more the speed of the
simulations, so the possibility of its use should not be rejected. However, the proposed iterative scheme
has proved to be efficient even in the worst possible scenarios, as is the use of finite difference method.
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Using this algorithm, analysis of rigorous digital simulation of the diffusion–reaction processes in
experimental accumulation by DGT sensors in several systems led to important theoretical developments
related to DGT functioning [3,17–19].

5. Conclusions

To be realistic, and bearing in mind the more physicochemical than mathematician feature of this work,
it should be noted that a rigorous study of the convergence of the iterative method was not performed.
Despite this, it was ensured that, except in really adverse conditions, the calculation is converging and,
in fact, satisfactory solutions were reached. In general, these adverse conditions tend to be the result of
poor initializations and, as it was as described above, some additional effort has been invested in obtaining
proper initializations.

Finally, our algorithm proved to be fast and effective in solving reaction–diffusion problems. Although
the market offers some commercial alternatives (e.g., COMSOL Multiphysics R©, Matlab, etc.) to solve this
type of equations, these packages present two great disadvantages. The first is its high price, and second,
and more importantly, within the calculation process, relevant information to understand the physical
phenomena involved in the process can be lost.
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Appendix A. General Resolution Algorithm

Initialization of ~qpre

for t = ∆t, t f in, ∆t (time loop)
test = 100000
~qaux = ~qpre

~qnex = ~qaux

while (test > ...)
for i = 1, numeq

solve for especies i
ii = (i− 1) ∗ nint
if (di 6= 0)

BLOCK 1
else

BLOCK 2
endif

endfor
test = ||~qnex −~qaux||
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~qaux = ~qnex

endwhile
~qpre = ~qnex

endfor

Block 1: Resolution for species with diffusion coefficient different from zero

ddR = dR
i ∆t/∆z2

dd = di∆t/∆z2

subd(1) = 0
supd(1) = 1
subd(nr + 1) = −1
supd(nr + 1) = −di/dR

i

for l = 2, nr
subd(l) = −ddR
supd(l) = −ddR

endfor

for l = nr + 2, nint
subd(l) = −dd
supd(l) = −dd

endfor

diag(1) = −1
diag(nr + 1) = 1 + di/dR

i
ti(1) = 0
ti(nr + 1) = 0
for l = 2, nr

diag(l) = 1 + 2 ∗ ddR
ti(l) = qpre(ii + l)
for j = 1, numreac

if (Ai,j 6= 0) then
i1 = (mreac(j, 1)− 1) ∗ nint
i2 = (mreac(j, 2)− 1) ∗ nint
i3 = (mreac(j, 3)− 1) ∗ nint
if (Ai,j < 0)

σ = −Ai,j∆t
if (i1 6= ii)

σ = σ ∗ qnex(i1 + l)
endif
if (i2 6= ii)

σ = σ ∗ qnex(i2 + l)
endif
µ = Bi,jqnex(i3 + l)∆t
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diag(l) = diag(l) + σ

ti(l) = ti(l) + µ

else
σ = Ai,jqnex(i1 + l)qnex(i2 + l)∆t
µ = −Bi,j∆t
diag(l) = diag(l) + µ

ti(l) = ti(l) + σ

endif
endif

endfor
endfor
for l = nr + 2, nint

diag(l) = 1 + 2 ∗ dd
ti(l) = qpre(ii + l)
for j = 1, numreac

if (Ai,j 6= 0) then
i1 = (mreac(j, 1)− 1) ∗ nint
i2 = (mreac(j, 2)− 1) ∗ nint
i3 = (mreac(j, 3)− 1) ∗ nint
if (Ai,j < 0)

σ = −Ai,j∆t
if (i1 6= ii)

σ = σ ∗ qnex(i1 + l)
endif
if (i2 6= ii)

σ = σ ∗ qnex(i2 + l)
endif
µ = Bi,jqnex(i3 + l)∆t
diag(l) = diag(l) + σ

ti(l) = ti(l) + µ

else
σ = Ai,jqnex(i1 + l)qnex(i2 + l)∆t
µ = −Bi,j∆t
diag(l) = diag(l) + µ

ti(l) = ti(l) + σ

endif
endif

endfor
endfor
call tridag(subd, diag, supd, ti, res, nint)
for l = 1, nint

qnex(ii + l) = res(l)
endfor
Block 2: Resolution for species with diffusion coefficient equal to zero

for l = 1, nr + 1
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α = 1/∆t
β = qpre(ii + l)
for j = 1, numreac

if (Ai,j 6= 0)
i1 = (mreac(j, 1)− 1) ∗ nint
i2 = (mreac(j, 2)− 1) ∗ nint
i3 = (mreac(j, 3)− 1) ∗ nint
if (Ai,j < 0)

σ = −Ai,j∆t
if (i1 6= ii)

σ = σ ∗ qnex(i1 + l)
endif
if (i2 6= ii)

σ = σ ∗ qnex(i2 + l)
endif
µ = Bi,jqnex(i3 + l)∆t
α = α + σ

β = β + µ

else
σ = Ai,jqnex(i1 + l)qnex(i2 + l)∆t
µ = −Bi,j∆t
α = α + σ

β = β + µ

endif
endif

endfor
qnex(ii + l) = β/α

endfor

for l = nr + 2, nint
qnex(ii + l) = 0

endfor
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