algorithms @\py

Article
A Hybrid Grasshopper Optimization Algorithm
Applied to the Open Vehicle Routing Problem

1 t

Valeria Soto-Mendoza ¥
and Jaime Pérez-Terrazas

, Irma Garcia-Calvillo ¥ and Efrain Ruiz-y-Ruiz >*'
2t

1 Centro de Investigacién en Mateméticas Aplicadas, Universidad Auténoma de Coahuila Edificio “S”

Camporredondo, Saltillo, Coahuila 25280, Mexico; vsoto@uadec.edu.mx (V.S5.-M.);
irma.garcia@uadec.edu.mx (I1.G.-C.)

Division de Estudios de Posgrado e Investigacién, Tecnolégico Nacional de México/Instituto Tecnolégico de
Saltillo. Blvd. Venustiano Carranza 2400, Saltillo, Coahuila 25280, Mexico; jenrique@itsaltillo.edu.mx

* Correspondence: eruiz@itsaltillo.edu.mx; Tel.: +52-646-144-0208

1t These authors contributed equally to this work.

check for
Received: 3 March 2020; Accepted: 14 April 2020; Published: 16 April 2020 updates

Abstract: This paper presents a hybrid grasshopper optimization algorithm using a novel decoder and
local search to solve instances of the open vehicle routing problem with capacity and distance constraints.
The algorithm’s decoder first defines the number of vehicles to be used and then it partitions the clients,
assigning them to the available routes. The algorithm performs a local search in three neighborhoods
after decoding. When a new best solution is found, every route is locally optimized by solving a
traveling salesman problem, considering the depot and clients in the route. Three sets containing a
total of 30 benchmark problems from the literature were used to test the algorithm. The experiments
considered two cases of the problem. In the first, the primary objective is to minimize the total number of
vehicles and then the total distance to be traveled. In the second case, the total distance traveled by the
vehicles is minimized. The obtained results showed the algorithm'’s proficient performance. For the first
case, the algorithm was able to improve or match the best-known solutions for 21 of the 30 benchmark
problems. For the second case, the best-known solutions for 18 of the 30 benchmark problems were found
or improved by the algorithm. Finally, a case study from a real-life problem is included.

Keywords: optimization; combinatorial optimization; open vehicle routing problem; grasshopper
optimization algorithm

1. Introduction

In recent years, the development of metaheuristic methodologies for the solution of complex
optimization problems has increased, both in the continuous and discrete space versions. Some of
the most significant metaheuristics are: particle swarm optimization (PSO) [1], ant colony optimization
(ACO) [2], genetic algorithms (GA) [3], artificial bee colony algorithm (ABC) [4], tabu search (TS) [5],
variable neighborhood search (VNA) [6], the bees algorithm (BA) [7], fish school search (FSS) [8], swallow
swarm optimization (SSO) [9], hybrid particle swallow swarm optimization (HPSSO) [10], grasshopper
optimization algorithm (GOA) [11], bat algorithm (BAT) [12], whale optimization algorithm (WOA) [13]
just to mention a few. Within the metaheuristics mentioned above it can be observed that they are
developed using two main ingredients: (1) the basic principles of physics such as velocity, the force of

Algorithms 2020, 13, 96; d0i:10.3390/a13040096 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-8171-8994
https://orcid.org/0000-0003-0609-4223
https://orcid.org/0000-0002-1625-7084
http://dx.doi.org/10.3390/a13040096
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/4/96?type=check_update&version=2

Algorithms 2020, 13, 96 2 of 20

attraction and acceleration and (2) the behavior of certain groups of animals. There are many applications
in which GOA has been used. Among such applications the most recent and relevant are [14-18].

The open vehicle routing problem (OVRP) is a variant of the classic vehicle routing problem (VRP)
first introduced in [19]. Many variants of the VRP have been studied in the literature, and recent research
focuses on modeling very specialized real-world variants of the VRP. Some of these recent specialized
real-world variants can be found in [20-29].

Although new routing problems arise everyday, classic problems such as the OVRP are still studied
thanks to their potential applications. The research presented in this paper was motivated by the case
study presented in Section 5, which required the solution of OVRP instances.

The OVRP was formally introduced in [30], although the first work related to the problem was first
presented in [31] for an air express courier problem. The OVRP is an NP-Hard combinatorial optimization
problem (as mentioned in [32]), which makes it difficult to solve by exact methods. Therefore, many
heuristic approaches have been developed to solve the problem. Among the most important heuristic
algorithms used to solve the OVRP are those in [32-39].

The applications of the OVRP are not limited to the context of vehicle route design. In [31], the OVRP
is used to solve an air express courier problem, and in [40], the train services planning at the Channel
tunnel is made by solving an OVRP.

In this work, a novel hybrid grasshopper optimization algorithm with local search (HGOALS) method
is used to solve instances of the open vehicle routing problem. To our knowledge, GOA has not been
previously used for solving the OVRP. In fact, there is not much literature on GOA in the context of
vehicle routing problems. The proposed solution method is based on the grasshopper optimization
algorithm (GOA) and uses local search to improve solutions and accelerate the optimization process.
The GOA is a swarm optimization algorithm that mimics the behavior of a grasshopper swarm to solve
optimization problems.

The HGOALS combines the GOA framework with a decodification procedure and local search to
obtain solutions for the OVRP instances. The decodification procedure incorporates a feasibility recovery
phase in case the decoded solutions are infeasible. Once the solutions are feasible, the best ones are
selected for improvement using local search. Every time a new best solution is found, it is subjected to an
improvement phase. The algorithm finishes when two given stop criteria are reached.

To demonstrate the efficiency of the proposed methodology, experiments were carried out using
30 benchmark problems taken from the scientific literature and the results were compared against
previous algorithms. The experiments considered two objective functions for the problem. The first
is the hierarchical objective function, which has as a first goal the minimization of the total number of
vehicles to be used, and as a second goal the minimization of the total traveling cost of such vehicles.
In the second objective function, only the total traveling cost is minimized. The results show that the
proposed methodology is competitive. Additionally, the algorithm was utilized to solve a case study from
a security company, obtaining excellent results. The rest of this paper is organized as follows: Section 2
describes the OVRP, while Section 3 describes the proposed algorithm. The computational experiments
are reported in Section 4, where the used benchmark instances, the corresponding numerical results and a
numerical comparison concerning other algorithms are presented. Finally, conclusions and future research
are discussed in Section 6.

2. Problem Description

As mentioned before, two types of objective functions have been taken from the literature for the
problem: (i) the hierarchical one (minimize the number of routes and then minimize the total traveling
cost) and (ii) the minimization of the total traveling cost.

Algorithms 2020, 13, 96 3 of 20

Consider a complete directed graph G = (V, A), with V = {0,1,...,n} the set of vertices and A the
set of arcs. The reason to consider a directed graph is that in real-life applications, cost (distance) matrices
are not symmetric (See Section 5). Notice that vertex 0 (depot) is the departure point of all vehicles. Each
vertex (except the depot) i € V' \ {0}, has an associated demand d;. Also, each arca = (i,j) € A, has an
associated cost ¢;; > 0. Feasible solutions to the OVRP are open routes originated at the depot, that satisfy
capacity and route length constraints.

Before formally defining the OVRP, some notation is introduced. Let R C A denote a given set of
open routes of G originated at the depot (0):

e V' =/{1,...,n}, the set of vertices without the depot.
Costof R, c(R) = ¥ ¢y
a=(i,j)€ER
st, the time required to service any client.
First vertex, a vertex directly connected to 0in R (2 = (0,i) € R).
Subroute (R; C R), an open route in R originated at vertexi € V.
s-route (R; C R:a = (0,i) € R), a subroute originated at i, where i is the first vertex of R;.
V(R;) C V, the set of vertices that are part of subroute R;.
d(R;) = X dj, the sum of the demands of the vertices in R;.
JEV(R))
e I(Rj))= ¥ (cij+st), the total length of R;.
ﬂ:(i,j)ERi

The capacity constraints for the OVRP impose that for a given open route originated at 0 the total
demand of any subroute can not exceed a given value Q > 0. Thatis d(R;) < Q for any subroute R; of R.
Open routes are also subjected to length constraints, which impose that route duration can not exceed a
given value L > 0. Thatis I(R;) < L for any subroute R; of R.

The OVRP can be defined as the problem of finding a set of open routes originated at the depot,
visiting all clients and satisfying the capacity and route length constraints while minimizing one of the
above mentioned objective functions.

Mathematical Formulation

As mentioned before the OVRP is a variant of the VRP and formulations for the VRP can be adapted
to solve the OVRP. Following a formulation for the OVRP is presented. This formulation is useful for
solving symmetric and asymmetric OVRP and considers capacity and route length constraints. It is based
on a classic formulation of the VRP and the Miller-Tucker—Zemlin subtour elimination constraints for the
VRP [41]. Therefore, the OVRP can be formulated using the following variables:

. 1, ifarca = (i,j) is part of the solution, i€ V,je Vt,
" 0, otherwise.

u; = Load on the vehicle after visiting vertex i
y; = Length travelled after visiting vertex i
The hierarchical objective function is defined using the variables mentioned above, as follows:
min 2 MJCO]' + Z 2 cijxi]- (1)
JEVT,i#] iVt jeVT,i#j

where M is a large number. The first term in Equation (1) minimizes the total number of vehicles, while
the second term minimizes the total traveling cost.

Algorithms 2020, 13, 96 4 0f 20

The second objective function only minimizes the total traveling cost and is defined as follows:

min Z 2 cl-]-xij (2)

i€V jeVH i

The following constraints are required to complete the model for the OVRP:

2 Xij = 1, V] cevt 3)

i€V, it
Y, xi<1, Vjevt 4)

i€Vy,i#j
ul—u]—i—Qxl]gQ—d], VIII’ZV,]EVJF,I#],dl"Fd]SQ (5)
yi—y;+Qx;; < Q—st, ViinV,je VT,i#j (6)
di<u;<Q, VieV,jeV?)
st<y; <L, VieV,jeVv" (8)

The constraints in Equation (3) guarantee that all clients are visited, and the constraints in Equation (4)
guarantee that routes leave the client or finish the route at the client. Route capacity is controlled with the
constraints in Equations (5) and (6). The constraints in Equations (7) and (8) control the route length. Note
that the constraints in Equation (5) are the Miller-Tucker-Zemlin subtour elimination constraints for the
VRP [41], and the constraints of Equation (7) are the same constraints adapted to control route length.

3. Hybrid Grasshopper Optimization Algorithm with Local Search

This section describes the proposed hybrid grasshopper optimization algorithm with local search
(HGOALS) for solving OVRP’s instances. The grasshopper optimization algorithm (GOA) has been
proposed initially in [11].

The behavior of a grasshopper’s swarm of size P can be simulated using X; = r3A; + 1G; +11S;,
where X; is the current position of the i — th member of the swarm, A; the effect of the wind on the i — th
grasshoppers movement, G; the gravity force and S; the social interaction between the i-th grasshopper
and the rest of the members of the swarm. The coefficients 71, r, and r3 are random numbers in the
interval [0, 1] used to introduce random behavior among the members of the swarm. As mentioned in [11],
the problem with this model is that grasshoppers tend to stay in a comfort zone, which is not useful when
solving optimization problems. Therefore the authors proposed to use:

ub —1b Xi—X;
5 s(|X]—X1|) dist; +T 9)

P
Xi=c1|), o
j=Tji

In this equation, ub and Ib are vectors containing respectively, the upper and lower bounds for
the variables considered for optimization. T is the target solution, which is the best solution found so
far by the algorithm, dist;; is the distance between grasshoppers i and j. Finally, the social interaction
between grasshoppers is computed using s(|X; — X;|) = fexp(—r/1) — exp(—r), where f is the intensity
of attraction, and I the attractive length scale. Constant c; determines how likely is the grasshopper
to explore around the target T (equivalent to w in the PSO algorithm), balancing the exploration and
exploitation of the area around T. Constant c, defines the attraction, repulsion and comfort zone among the

Algorithms 2020, 13, 96 5 o0f 20

grasshoppers. For a problem of dimension 7, the position of the grasshopper on dimension i (b > 0,h < n)
is given by:
p h h '
ub" —1Ib Xi—X
Yy e (1%} - X) T
j=Lj# "
The movement of the grasshopper can be simulated in a multidimensional space using Equation (10).
For further details about the GOA, the reader is encouraged to read [11].

Since the GOA is a continuous optimization algorithm, it is necessary to implement a decodification
procedure in order to solve non-continuous optimization problems. Therefore, a decodification procedure

Xt = ¢ Y (10)

is required to transform the continuous values from the GOA into solutions of the non-continuous problem.

3.1. HGOALS Description

A mentioned previously, HGOALS combines the GOA framework with a decodification procedure
and local search to solve OVRP instances. Figure 1 shows a flow diagram for the HGOALS. The proposed
algorithm receives as an input graph G = (V, A), the associated cost matrix c, the service time parameter
st, the vehicle capacity parameter Q, the maximum length parameter L, the grasshopper population size
P and the grasshopper dimension n. HGOALS has three essential components: (i) The route decoder
(decodification procedure), (ii) the local search and (iii) the improvement phase. To facilitate comprehension
the above mentioned components are described first, and the complete process of the proposed HGOALS
algorithm is explained after.

Initialize grasshoppers
population with
random numbers

Update
grasshoppers positions

Stop
criteria
reach?

Decode grasshopper X_i

. 4o
Is X_i infeasible? using the route decoder

v

Compute z%i for
grasshopper X_i

Perform feasibility recovery
procedure for every
infeasible solution

\ 4

Perform local search in
neighborhouds N1, N2 and N3
update X_i and z"i

Beta*z"i<=z"T

Perform TSP
improvement phase and
update X_i, z"i and z"T

zhNi<z"T

N

Figure 1. Flow diagram for the hybrid grasshopper optimization algorithm with local search (HGOALS).
3.2. The Route Decoder

As mentioned before, the HGOALS requires the implementation of a decoder. Other decoders for
similar problems have been previously proposed. The objective of proposing a new decoder is to find

Algorithms 2020, 13, 96 6 of 20

better results than those obtained by previous decoders and other metaheuristics. In this section, the new
decoder is described.

The route decoder (RD) requires as input the associated cost to every arc c;;, | a € A, the random-key
vector A’ and the demand vector d. The random-key vector X" contains # + 1 fractional values. &, the first
value in vector X, is used to define the total number of vehicles available in the solution. The other n values
are used to assign vertices to different vehicles. The decoder determines the total number of vehicles,
by first computing the minimum number of vehicles required to deliver all the clients demand using:

- [t

where:

avt)y =Y 4

ievt

Using the random-key vector value &) the number of available vehicles in the solution is given by:
NV = [MV(1+ Xp)]

Then the interval [0, 1] is divided into NV subintervals. Each client is assigned to a vehicle using these
subintervals and the keys associated with each client. Once all clients have been assigned to a vehicle, they
are sorted in ascending order according to their key. The routes are built using the sorted keys. Figure 2
illustrates an example of how the proposed decodification procedure works. In this example, using the
demand vector d, the capacity parameter Q = 20 and the first key-value X'y = 0.28, the minimum and the
available number of vehicles are obtained: MV = 2 and NV = 3 respectively. Therefore, the interval [0, 1]
is divided into three subintervals which are used to assign clients to vehicles. Clients 4, 6 and 8 are assigned
to vehicle number 1; clients 1, 2, 3 and 5 are assigned to vehicle 2; and clients 7, 9 and 10 are assigned to
vehicle number 3. For vehicle 1, the assigned vertices are transformed into the route 0 — 8 — 4 — 6; for
vehicle 2, the resulting route is 0 — 5 — 2 — 1 — 3. Finally, for vehicle 3, the resulting routeis 0 — 7 — 10 — 9.

Client 1 2 3 4 5 6 7 8 9 10
Demand 2 3 1 10 2 4 3 4 5 4

38
Q=20 Mv=|=2|=2 NV=[2(1+0.28)|=3
20
Vertex 0 1 2 3 4 5 6 7 8 9 10
Key 0.28 | 0.52 | 0.47 | 0.63 | 0.23 | 0.36 | 0.28 | 0.81 | 0.17 | 0.93 | 0.88
Route - 2 2 2 1 2 1 3 1 3 3
assigned
Position in - 3 2 4 2 1 3 1 1 3 2
route

d(Ry)=18
d(R,)=12
d(R,)=8

Figure 2. Route decoder example.

Algorithms 2020, 13, 96 7 of 20

It is relevant to notice that this decodification/codification method can lead to infeasible solutions.
In Figure 3, an example of an infeasible solution is presented. The violation is made over the capacity and
maximum distance constraints since for s-route Rg, d(Rg) > Q and /(Rg) > L.

Client 1 2 3 4 5 6 7 8 9 10
Demand 2 3 1 10 2 4 3 4 5 4
|38| — _
Q=20 MV =|—|=2 NV=[2(1+0.28)|=3
20
Vertex 0 1 2 3 4 5 6 7 8 9 10
Key 0.28 | 0.52 | 0.47 | 0.63 | 0.23 | 0.36 | 0.28 | 0.81 | 0.17 | 0.93 | 0.31
Route - 2 2 2 1 2 1 3 1 3 1
assigned
Position in - 3 2 4 2 1 3 1 1 3 4
route

Figure 3. Infeasible solution example.

Whenever a solution is infeasible after decoding, it enters the feasibility recovery procedure.
The feasibility recovery procedure reassigns subroutes or vertices from the infeasible route to other
routes with available capacity and without violating the maximum length constraint. If there are no
suitable routes for reassigning a given subroute or vertex, a new route is created by connecting such
subroute or vertex directly to the depot. The reassignment is made by replacing arcs on the solution, using
the cheapest available that reduces or eliminates the route’s infeasibility. Figure 4 shows how the feasibility
recovery procedure repairs an infeasible solution. In this example, s-route Rg violates the capacity and
maximum distance constraints (d(Rg) > Q and I(Rg) > L). For recovering feasibility, subroute Rs is
removed from Rg. Since annexing Rs to s-route Ry will violate the maximum length constraint, Rs is
directly connected to the depot. At this point, Rg only violates the capacity constraint. Therefore, vertex 10
is removed from Rg and annexed to s-route Ry, leading to a feasible solution.

3.3. Local Search

Once a solution is feasible, it is improved through a local search phase if its objective function value z/,
is close to the objective function value z” of the current best solution T (8 -z <= zT,0.75 <= B <= 0.95).
In the local search, three neighborhoods are explored: (i) N1 vertex exchange, (ii) N2 vertex reassignment
and (iii) N3 route merging. Consider two vertices i and j belonging respectively, to two different s-routes k
and m. In the N1 neighborhood, vertex i is removed from s-route k and connected to s-routes m, while
vertex j is removed from s-route m and connected to s-routes k (Figure 5). The N2 neighborhood is explored
by removing vertex i from s-routes k and connecting i to s-route m (Figure 6). Finally, s-routes k and m

Algorithms 2020, 13, 96 8 of 20

are merged into one s-route (k) in the N3 neighborhood (Figure 7). The three neighborhoods are explored
sequentially (N1 — N2 — N3) until no further improvement is found.

Q=20
L=5

Subroute R, is removed
from R, and connected c,,=0.5
to the depot

Vertex 6 is removed
from R, and connected

tothe R,

Cog=—

Figure 4. Feasibility recovery procedure example of an infeasible solution.

Figure 5. Neighborhood N1, vertex exchange.

3.4. Improvement of Best Solutions

If after the local search, the algorithm finds a new best solution, such a solution is subjected to
an improvement phase. Consider the subset of vertices Sgi = V(R;) U {0} that contains the vertices
assigned to a given s-route R; and the depot. Using Sgi and the associated subset of arcs Agri C A,a =

Algorithms 2020, 13, 96 9 of 20

(i,j) | i € Sri,j € Sgi, the sub-graph Gr = (Sgri, Agi) is built. Associated costs c;; for every arc
a=(i,j) € Ari | i € Sgi,j € Sgi,j # 0 are obtained from the original problem. The cost for the remaining
arcs a = (i,0),1 € Sgi are substituted using c;o = 0, | i € Sgi. Using Gy and its associated costs, a traveling
salesman problem (TSP) can be solved in order to minimize the cost of route R; since every route respects
the capacity and maximum length constraints. Notice that the solution obtained by the TSP using graph
Gr and its associated costs are equivalent to an open route, since the costs for returning to the depot are
equal to zero. Therefore, a TSP problem is solved for every s-route using the formulation in [41], leading
to a locally optimized solution.

Figure 7. Neighborhood N3, route merging.

Since all HGOALS components have been explained, it is appropriate to describe the algorithm
with the aid of the flow diagram presented in Figure 1. The first step is to initialize the P grasshoppers
with 71 + 1 continuous random values, and the target solution T’s objective function is initialized zT = oo.
Then, the algorithm enters a loop to transform grasshoppers into OVRP solutions. As every grasshopper X;
enters the loop, the route decoder (comprehensively explained in Section 3.2) transforms the grasshopper’s
continuous values to obtain OVRP solutions in a non-continuous space. If the obtained solution is
infeasible, then it enters the feasibility recovery procedure. Once the solution is feasible, its objective
function z; is computed. If the solution is among the best solutions (8 - z! <= zT,0.75 <= B <= 0.95) then

Algorithms 2020, 13, 96 10 of 20

it enters local search. In the local search, three neighborhoods N1, N2 and N3 are explored sequentially.
After the local search phase, the solution’s objective function z is computed. If z' < z then T is updated
with X;. The loop finishes once all grasshoppers have been decoded. At this point, the grasshoppers’
positions are updated using Equation (10), and the stop criteria are checked. The algorithm finishes when
one stop criterion is reached.

4. Computational Experiments

In this Section, test instances are described first, and second, the results from the computational
experiments for both of the objective functions previously mentioned are presented.

4.1. Test Instances

For testing the proposed algorithm, three sets of instances were used: group C, group O and group K.
The first two sets of instances have been widely used in previous research, while the third set was only
used in [42,43]. Table 1 shows the characteristics for every group of instances; n specifies the size of the
instances in the group (excluding the depot), Q specifies the vehicle’s capacity and L specifies the range
for the maximum length allowed for the routes.

Table 1. Test instances.

Instance n Q L
C1-C5 50-200 140-200 (9]
C6-C10 50-200 140-200 160-230
C11-C12 100-120 200 1)
C13-C14 100-120 200 720-1040
0O1-08 200-440 550-1000 1)

KO01-K08 200-440 550-1000 650-1800

Table 1 shows that instances C1-C5, C11-C12 and O1-O8 do not consider route length constraints,
while instances C6—C10, C13-C14 and K01-K08 do. For instances C1-C10, O1-O8 and K01-K08 the depot
is located at the center of the customers, while for instances C11-C14 the depot is located on an extreme
side. Additionally, for instances C11-C14, clients are distributed in clusters over the plane. For instances
C1-C10, clients are randomly distributed around the depot. Finally, clients for K and O instances follow a
ring-like distribution over the plane.

4.2. Implementation Details

The proposed algorithm was implemented in Matlab. Two criteria were used to stop the algorithm.
The first was set to a maximum running CPU time of 1000 s, while the second was to reach 25 iterations
without improving the current best solution found. The machine used for the experiments was running
Linux with an Intel Core2 Duo, a CPU clock speed of 3.1 GHz and 4 GB of RAM.

4.3. Results with the Hierarchical Objective Function

Table 2 presents the results obtained by the HGOALS for the benchmark problems using a hierarchical
objective function. In this case, the first goal is to minimize the number of vehicles, and the second, the total
traveling cost. Column n shows the size of the instance, Q shows the vehicles capacity, NV presents the
number of vehicles and BKS the best-known solution value. Column Avg shows the average solution value
after five runs, Best presents the value of the best solution value after five runs, %gap shows the percentage

Algorithms 2020, 13, 96 11 of 20

difference between the best-known solution value and the best solution value obtained by the HGOALS,
and CPU presents the average CPU time per run in seconds, after five runs. Row Avg presents the average
for columns CPU and %gap. Results in bold format show that the algorithm found the best know solution
for the instance. Results in bold and underlined show the algorithm improved the best-known solution for
the benchmark problem. The symbol “**’ is used to indicate that the algorithm found solutions with a new
minimum number of vehicles. When the number of vehicles from the best-known solution is different of
the best solution obtained by the HGOALS, the number of vehicles used by the best-known solution is
shown in column NV. The results show that the algorithm was able to improve the best-known solutions
for seven instances in group C, five on group K and one in group O.

Table 2. Results obtained by the HGOALS for all the test instances (hierarchical objective function).

Instance n Q NV BKS Avg Best CPU %gap
C1 50 160 5 416.06 416.95 416.06 3.96 0.21
C2 75 140 10 567.14 563.40 560.19 20.31 -1.23
c3 100 200 8 639.74 643.65 639.74 23.28 0.00
C4 150 200 12 733.13 734.16 733.64 94.81 0.07
Cc5 199 200 16 893.39 885.25 895.49 158.32 0.24
Co 50 160 5(6) 412.96 417.75 422.25 ** 5.70 2.25
Cc7 75 140 10 583.19 567.96 567.77 9.45 —2.64
C8 100 200 9 644.63 647.74 646.75 24.12 0.33
C9 150 200 13 757.69 743.19 742.35 13598 —2.02

C10 199 200 17 874.71 878.73 873.70 243.11 —-0.12
C11 120 200 7 682.12 695.83 690.194 62.00 1.18
C12 100 200 10 534.24 535.99 534.24 30.37 0.00

C13 120 200 10(11) 899.16 877.21 865.80 ** 122.00 -3.71
Cl4 100 200 10(11) 591.87 557.74 556.32 ** 39.06 —6.01

Avg 69.46 -0.82

o1 200 900 5 6018.52 6035.89 6018.52 519.37 0.00
02 240 550 9 4557.38 4571.43 4560.29 820.07 0.06
O3 280 900 7 7731.00 7735.45 7734.70 825.82 0.05
1
8

O4 320 700 9(10) 7251.74 727423 7367.91** 740.80 1.60
o5 360 900 9193.15 9198.73 9193.15 919.40 0.00
06 400 900 9 9793.72 9807.46 9793.72 1000.00 0.00
o7 440 900 10 10,344.37 10,387.18 10,363.80 1000.00 0.19
(O] 400 1000 10 12,415.36 12,465.65 12,420.81 943.79 0.04

Avg 846.16 0.24
K01 240 550 9 4629.21 4642.75 4622.58 76049 —0.14
K02 320 700 9 7285.98 7303.10 7293.50 1000.00 0.10

K03 400 900 10 9837.79 9879.08 9831.07 1000.00 —0.07
K04 480 1000 10 12,431.50 12,475.34 12,422.20 1000.00 —0.07

K05 200 900 5 6342.66 6052.56 6041.33 59551 —4.75
K06 280 900 7 7731.21 7734.46 7731.21 756.28 0.00

Ko7 360 900 9 9188.11 9172.43 9162.29 1000.00 —0.28
K08 440 900 10 10,488.50 1047246 10,457.60 1000.00 —0.29
Avg 889.04 —0.69

Therefore, the HGOALS is capable of improving the best-known solution for 15 of the 30 benchmark
problems. Notice that 11 of the improved best-known solutions where from instances considering route
length constraints. The algorithm also finds the best-known solutions for the other five instances. Other
relevant results are the new best solutions for instances C6, C13, C14 and O4 that use fewer vehicles

Algorithms 2020, 13, 96 12 of 20

(5, 10, 10 and 9, respectively) than the solutions found in previous research (6, 11, 11 and 10). Finally,
the algorithm struggles with the C11 instance. The average percentage deviation from the best-known
solution (gap) is the worst for all benchmark problems (1.18%). The reason is the cluster distribution of the
clients and the tendency of the feasibility recovery procedure to create more routes than the minimum
required. Note that instance C6 has a higher gap, but it uses fewer vehicles than the best-known solution.

The CPU times increase significantly as the benchmark problem size increases. The algorithm reached
the 1000 s limit for seven of the benchmark instances, two from set O and five from set K. The algorithm
performs the worst in the set O with an average deviation from the best-known solution of 0.24. For group
C, the algorithm performs the best having an average deviation from the best-known solutions of —0.82,
while for group K this metric is —0.69.

Table 3 compares the proposed algorithm with the results from previous research. Considering all
instances in group C, the HGOALS outperforms the other algorithms. The Broad Local Search Algorithm
(BLSA) performs better than the HGOALS in instances without route length constraints in this group.
The HGOALS performs the best in instances with route length constraints, improving the best-known
solutions for six of the seven instances. The HGOALS obtains new best solutions for C2, C6, C7, C9, C10,
C13 and C14. For instances C6, C13 and C14 the algorithm found solutions using one less vehicle. Finally,
it is relevant to mention that the algorithm struggles with C11 instance obtaining the largest gap (1.18).
The latter instance has a cluster like distribution.

Table 3. Comparison between the HGOALS results and previous research for instances in group C
(hierarchical objective function).

Instance n Q BKS NV HGOALS BBMO[37] BLSA[38] HBMO [44] ORTR [35]
C1 50 160 416.06 5 416.06 416.06 416.06 416.06 416.06
C2 75 140 567.14 10 560.19 567.14 567.14 567.14 567.14
C3 100 200 639.74 8 639.74 639.74 639.74 640.25 639.74
C4 150 200 733.13 12 733.64 735.18 733.13 738.49 733.13
C5 199 200 893.39 16 895.49 895.19 893.39 902.17 924.96
Cé6 50 160 412.96 6 422.25 (5) 412.96 - 412.96 412.96
C7 75 140 583.19 10 567.77 583.19 - 583.19 568.49
C8 100 200 644.63 9 646.75 644.63 - 644.63 644.63
9 150 200 757.69 13 742.35 759.35 - 765.95 756.38
C10 199 200 874.71 17 873.70 879.38 - 884.28 876.02
C11 120 200 682.12 7 690.194 682.12 682.12 683.15 682.54
C12 100 200 534.24 10 534.24 535.28 534.24 536.37 534.24
C13 120 200 899.16 11 865.80 (10) 904.04 - 905.18 896.50
Cl4 100 200 591.87 11 556.32 (10) 592.16 - 593.95 591.87

Instance n Q BKS MVNS[34] HES [36] TSB [32] ALNS [45] ACO [46] HPSO [47]
C1 50 160 416.06 5 416.06 416.06 416.06 416.06 416.06
C2 75 140 567.14 10 567.14 567.14 574.05 567.14 567.14
C3 100 200 639.74 8 639.74 639.74 641.60 641.76 639.74
C4 150 200 733.13 12 733.13 733.13 740.80 733.13 733.13
C5 199 200 893.39 16 905.96 894.11 953.40 896.08 977.95
Cé6 50 160 41296 6 412.96 412.96 412.96 412.96 412.96
Cc7 75 140 583.19 10 596.47 584.15 634.54 583.19 568.49
C8 100 200 644.63 9 644.63 644.63 644.63 645.16 644.63
C9 150 200 757.69 13 760.06 764.56 785.20 757.84 758.97
C10 199 200 874.71 17 875.67 888.46 884.63 875.67 886.08
C11 120 200 682.12 7 682.12 682.12 683.40 682.12 683.11
C12 100 200 534.24 10 534.24 534.24 535.10 534.24 534.24
C13 120 200 899.16 11 904.04 910.26 943.66 909.80 904.01

Cl14 100 200 591.87 11 591.87 591.87 597.30 591.87 591.87

Algorithms 2020, 13, 96 13 of 20

The comparison of the results with previous research for instances in group O is made in Table 4.
In this set of instances, the BLSA performs the best obtaining the best-known solutions for six of the eight
benchmark problems. On the other hand, the HGOALS performs better than the other algorithms (except
BLSA), and finds a new best solution for instance O4 using nine vehicles instead of ten. Notice that test
problems in this set do not consider route length constraints.

Table 4. Comparison between route decoder and previous research for instances in group O (hierarchical
objective function).

Instance n Q NV BKS HGOALS ORTR [35] BLSA[38]
01 200 900 5 6018.52 6018.52 6018.52 6018.52
02 240 550 9 4557.38 4560.29 4584.55 4557.38
03 280 900 7 7731.00 7734.70 7732.85 7731.00
04 320 700 10 7251.74 7367.91 **(9) 7291.89 7253.20
05 360 900 8 9193.15 9193.15 9197.61 9193.15
06 400 900 9 9793.72 9793.72 9803.80 9793.72

o7 440 900 10 10,344.37 10,363.80 10,374.97 10347.70
08 400 1000 10 12,415.36 12,420.81 12,429.56 12,415.36

Instance n Q NV BKS HES [36] HBMO [44] BBMO [37]
o1 200 900 5 6018.52 6018.52 6023.48 6021.11
02 240 550 9 4557.38 4583.70 4561.18 4557.38
O3 280 900 7 7731.00 7733.77 7745.16 7735.14
04 320 700 10 7251.74 7271.24 7287.49 7267.18
o5 360 900 8 9193.15 9254.15 9201.25 9198.25
06 400 900 9 9793.72 9821.09 9809.48 9798.19

o7 440 900 10 10,344.37 10,363.40 10,401.24 10,351.18
o8 400 1000 10 12,415.36 12,428.20 12,429.57 12,418.57

Finally, Table 5 compares results for instances in group K. The comparison is made with upper bounds
obtained by the GRASP algorithm proposed in [42] and the BRKGA in [48]. The results show that the
HGOALS outperforms the other two metaheuristics by obtaining six new best solutions for the eight
instances in the set. In this set, all benchmark problems consider route length constraints.

Table 5. Comparison between route decoder results and previous research for instances in group K
(hierarchical objective function).

Instance n Q NV BKS HGOALS GRASP[42] BRKGA [43]

K01 240 550 9 4629.21 4622.58 4790.31 4629.21
K02 320 700 10 7285.98 7293.50 8407.07 7285.98
Ko03 400 900 10 9837.79 9831.07 11,286.40 9837.78
K04 480 1000 10 12,431.50 @ 12,422.20 14,325.87 12,431.50
K05 200 900 5 6342.66 6041.33 6342.66 6004.65 *(12)
Ko6 280 900 7 7731.21 7731.21 8557.82 7731.21
K07 360 900 9 9188.11 9162.29 10,624.48 9188.11
Ko08 440 900 10 10,488.50 10,457.60 12,129.07 10,488.50

4.4. Results with the Traveling Cost Minimization Objective Function

The obtained results by the HGOALS for the benchmark problems with the second objective function
of minimizing the total traveling cost are presented in Table 6. The results show that the algorithm was
able to improve three of the 14 instances of group C, one of group O and five on group K. The HGOALS
also reaches the best-known solutions for five instances in group C and one for group K.

Algorithms 2020, 13, 96 14 of 20

Table 6. Results obtained by the HGOALS for all the test instances (minimizing traveling cost).

Instance n Q BKS Avg Best CPU %gap
C1 50 160 412.96 412.96 412.96 3.12 0.00
C2 75 140 564.06 564.06 564.06 4.97 0.00

C3 100 200 639.26 644.36 639.26 21.84 0.00
C4 150 200 733.13 733.84 733.84 54.50 0.10
C5 199 200 869.00 876.33 875.49 147.48 0.75
Cé 50 160 412.96 412.96 412.96 2.94 0.00
c7 75 140 567.59 567.59 567.59 491 0.00
C8 100 200 644.63 646.35 644.63 20.88 0.00
C9 150 200 743.51 743.22 742.35 71.62 —0.16
C10 199 200 873.89 875.83 873.69 140.66 —0.02
C11 120 200 676.40 679.80 678.70 85.84 0.34
C12 100 200 534.24 536.20 536.20 10.22 0.37
C13 120 200 862.74 849.64 841.92 12242 241
C14 100 200 554.67 554.67 554.67 11.79 0.00

Avg 5023 —0.07

o1 200 900 5988.35 6003.08 6003.08 277.41 0.25
02 240 550 4549.46 4557.38 4550.21 603.40 0.02
o3 280 900 7731.00 773543 7731.00 1000.00 0.00
O4 320 700 7251.30 7254.18 725320 1000.00 0.03
05 360 900 9152.47 9163.25 9132.88 1000.00 —0.21
06 400 900 9793.72 9803.41 9793.72 1000.00 0.00
o7 440 900 10,344.37 10,349.57 10,347.70 1000.00 0.03
08 400 1000 1241226 12,426.58 12,415.36 1000.00 0.02

Avg 860.10 0.02

Ko01 240 550 4629.21 4637.86 4622.58 90195 —0.14
K02 320 700 7285.98 7304.73 7296.15 957.26 0.14
K03 400 900 9837.78 9848.97 9831.07 817.50 —0.07
K04 480 1000 12,431.50 12,449.32 12,422.20 806.17 —0.07
K05 200 900 6004.74 6006.72 6004.74 275.42 0.00
K06 280 900 7731.21 7735.93 7735.16 807.58 0.05
Ko7 360 900 9188.11 9183.54 9162.29 1000.00 —0.28
Ko08 440 900 1048850 10,486.70 10,457.60 873.22 —0.29

Avg 804.89 —0.08

The results show that the proposed algorithm is capable of improving the best-known solution in
nine of the 30 instances used to test the algorithm. Notice that eight of these instances consider route
length constraints. It is also capable of finding the best-known solutions in other nine test instances. In
brief, the HGOALS matches or improves the best-known solutions for 18 of the 30 test instances. On the
other hand, the CPU times required by the algorithm reach 1000 s for six instances in group O. It is also in
this group where the algorithm performs the worst with an average deviation from the best solution of
0.02. For group K, the algorithm performs the best having an average deviation from the best solution of
—0.08, while for group C this metric is of —0.07.

Table 7 compares the proposed algorithm with previous research for benchmark problems in group C.
For instances with no route length constraints, the HGOALS performs worse than the BLSA and BRKGA
but better than the other algorithms. For the benchmark problems including route length constraints,
the HGOALS performs better than the rest of the algorithms obtaining new best solutions for instances C9,
C10 and C13 and reaching the best-known solutions for instances C6, C7 and C14.

Algorithms 2020, 13,

96

15 of 20

Table 7. Comparison between the HGOALS and previous research for instances in group C (minimizing

traveling cost).

Instance n Q BKS HGOALS BRKGA BBMO[37] BLSA[38] HBMO [44]
C1 50 160 41296 412.96 412.96 412.96 412.96 412.96
C2 75 140 564.06 564.06 564.06 564.06 564.06 564.06
C3 100 200 639.26 639.26 639.26 639.26 639.26 640.08
C4 150 200 733.13 733.13 733.13 735.18 733.13 738.49
C5 199 200 869.00 875.49 871.21 872.15 869.00 878.25
Cé6 50 160 41296 412.96 412.96 412.96 - 412.96
Cc7 75 140 567.59 567.59 567.59 568.95 - 568.49
C8 100 200 644.63 646.75 646.75 644.63 - 647.26
9 150 200 743.51 742.35 743.51 757.24 - 761.28
C10 199 200 873.89 873.69 873.89 879.38 - 903.10

Cl11 120 200 676.40 678.70 680.23 678.54 678.54 680.15
C12 100 200 534.24 536.20 536.20 535.28 534.24 536.37
C13 120 200 862.74 841.92 862.74 897.10 - 922.28
C14 100 200 554.67 554.67 554.67 592.16 - 600.66

The comparison of the results with previous research for instances of group O is made in Table 8.
In this set of instances, the BLSA performs the best obtaining the best-known solutions for six of the eight
instances, followed by the HGOALS obtaining the best-known solution for one of the eight instances.

For the benchmark problems in group K, the comparison with results obtained in previous research
is made in Table 9. The results show that the HGOALS outperforms the other two metaheuristics by
obtaining five new best solutions for the eight instances in the group.

Table 8. Comparison between route decoder and previous research for instances in group O (minimizing
traveling cost).

Instance n Q BKS HGOALS %gap BLSA[38] BRKGA [43]
o1 200 900 5988.35 6003.08 0.25 5988.35 6003.08
02 240 550 4549.46 4621.41 1.58 4549.46 4609.25
03 280 900 7731.00 7734.70 0.05 7731.00 7735.16
04 320 700 7251.30 7269.20 0.25 7251.30 7280.98
05 360 900 915247 9132.88 —022 915247 9178.13
06 400 900 9793.72 9833.41 0.41 9793.72 9847.00
o7 440 900 10,344.37 10,463.80 1.16 10347.70 10,444.70
08 400 1000 1241226 12,457.10 0.36 12,412.26 12,449.60

Table 9. Comparison between the HGOALS results and previous research for instances in group K

(minimizing traveling cost).

Instancen Q HGOALS GRASP[42] BRKGA [43]
Ko1 240 550 4622.58 4790.31 4629.21
K02 320 700 7296.15 8407.07 7285.98
K03 400 900 9831.07 11,286.40 9837.78
K04 480 1000 12,422.20 14,325.87 12,431.50
K05 200 900 6004.74 6342.66 6004.65
K06 280 900 7735.16 8557.82 7731.21
Ko7 360 900 9162.29 10,624.48 9188.11
Ko08 440 900 10,457.60 12,129.07 10,488.50

Algorithms 2020, 13, 96 16 of 20

4.5. Comparison of Average CPU Times with Previous Research

Finally, a comparison of the computational effort required by each of the solution methods is presented
in Tables 10 and 11. Rows C, O and K present the mean for the different sets of test instances of the average
CPU time per run reported by the different solutions methods. Row BKS shows the number of best-known
solutions found and the number of tested instances by each algorithm. Finally, row Model presents the
CPU model used by each algorithm and row Factor, the SPECint2000 (https:/ /www.spec.org/cpu2000/
results /) and SPECint2006 (http:/ /www.spec.org/cpu2006/results/cint2006.html) base score, along with
an estimate of the computing times reduction factor.

Table 10. Average CPU times comparison for the different solution approaches (hierarchical
objective function).

Group HGOALS BBMO [37] BLSA[38] HBMO [44] ORTR [35]

C 69.46 69.21 122.29 73.33 112.73
(@) 846.16 210.75 1057.75 217.95 709.95
K 889.04 - - - -
BKS 20/30 5/22 12/15 1/22 7/22
Model Core-2 T9550 T5550 T9550 Athlon 1Ghz

Factor 22.1(1) 18.1(0.82) 14(0.63) 18.1(0.82) 5.75(0.26)
Group HGOALS MVNSI[34] HES [36] TSB [32] ALNS [45]

C 69.46 485.71 581.50 559.41 1255.00
O 846.16 - 1051.50 - -
K 889.04 - - - -
BKS 20/30 6/14 6/22 2/14 4/14
Model Core-2 Pentium M Pentium 4 Pentium 3 Pentium 4

Factor — 22.1(1) 9.040.41) 11.05(0.52) 5.11(0.23) 11.05(0.52)

Table 11. Average CPU times comparison for the different solution approaches (minimizing traveling cost).

Group HGOALS BBMO [37] BLSA[38] HBMO [44] BRKGA [43]

C 50.23 59.77 110.29 61.72 326.70
o) 860.10 1017.50 - 6163.79
K 804.89 - - - 6496.05
BKS 18/30 5/14 11/15 3/14 10/30
Model Core-2 T5550 T9550 T9550
Factor 22.1(1) 18.1(0.82) 14(0.63) 18.1(0.82) 22.1(1)

In terms of CPU times, the HGOALS has slightly higher average CPU times, when compared with
the BBMO, BLSA, HBMO and ORTR, although it obtains better results. It has lower average CPU times
when compared with MVNS, HES, TSB, ALNS and BRKGA.

5. A Case Study

A security and alarm company requires its payment collection routes to be more efficient for two
reasons: the first is to reduce the days required to collect payments, and the second is to reduce the fuel
consumption used by the company representative. The company provides alarm and security services on
a monthly or yearly basis. Customers choose the type of service they require and pay on the same basis.
Therefore, at the beginning of each month, the company requires to collect payment from around 100
customers. Payment collection routes were decided by the company representative based on his experience
and usually took between three to four weeks to be completed (15 to 20 working days). The company

https://www.spec.org/cpu2000/results/
https://www.spec.org/cpu2000/results/
http://www.spec.org/cpu2006/results/cint2006.html

Algorithms 2020, 13, 96 17 of 20

provided the addressees of customer required to pay in the next two months. They also set a maximum
number of customers to be visited per day (15 per day) and a maximum of working hours per day (seven
hours). Finally, they provided the routes planned by the company representative in charge of collecting the
payments for the next two months. A geographic information system (GIS), customers’ addresses, and a
web-based tool were used to build cost(distance) and time matrices to feed the algorithm. Such matrices
were non-symmetric. The capacity parameter was set to Q = 15, the service time was set to 0.25 hours and
the maximum route length to L = 7.0 hours. The algorithm was run five times using this information and
the best solution was chosen. The results are presented in Table 12, where columns Dist CRP, Days CRP,
Dist HGOALS and Days HGOALS show the total distance and required days for the routes planned by
the company representative and the routes obtained by the HGOALS respectively. Columns Dist % red
and Days % red show the percentaje reduction in total distance and working days obtained with the use of
HGOALS proposed routes instead of the planned routes by the company representative. Finally, column
CPU denotes the CPU time in seconds required by the algorithm and column %gap the gap with the best
solution obtained by using a modified version (directed) of the formulation in [49] on CPLEX. This last
column was added to verify the performance of the algorithm on real-life instances. For the exact method,
a maximum CPU time was set to 10,800 s.

Table 12. Case study results.

Month n Dist CRP Days CRP Dist HGOALS Days HGOALS Dist %red Days %red CPU %gap

1 107 293.25 21 158.56 12 45.93 42.85 543 0.00
2 98 272.86 17 123.54 9 54.72 47.05 7.81 0.00

The results show a significant reduction in terms of total distance and working days. The routes
obtained by the HGOALS are more efficient than those planned by the company representative. Moreover,
fuel consumption is also importantly reduced due to the reduction in the total distance to be traveled.
Note that the associated demand for each customer is the same (d; = 1). Considering unitary demands
helps the HGOALS reach the optimal solution with a small computational effort.

6. Concluding Remarks

A new hybrid grasshopper algorithm is presented and used to solve the open vehicle routing problem
with capacity and maximum distance constraints. The OVRP is a variant of the classic VRP and has multiple
applications, especially in transportation and distribution services. It is also a difficult combinatorial
optimization problem of the NP-Hard type. The novel decoder first defines the number of vehicles to
be used in the solution and then assigns clients to them. Such an approach allows the algorithm to
find a balance between transmitting genetic information and allowing diversification of the population.
The combination of the decoder with the local search and improvement phase grants robustness to the
proposed heuristic. The last because the algorithm is capable of solving instances of up to 480 vertices
without changing any parameter. The computational experiments considered two different objective
functions. In the first, the prime objective is to minimize the number of vehicles to be used. In the second
case, the total traveled distance is minimized. The results also show the excellent performance of the
algorithm, especially in benchmark problems considering maximum distance constraints. For the first
objective function, the algorithm improves or finds the best-known solutions for 21 of the 30 benchmark
problems. For the second objective function, 18 of the 30 best-known solutions were found or improved by
the algorithm. For the 30 benchmark problems considering distance constraints (including both objective
functions), the algorithm found or improved the best-known solution for 21 of them. A comparison of the
proposed algorithm with other heuristics in the literature shows its efficiency in terms of solutions quality,

Algorithms 2020, 13, 96 18 of 20

particularly in benchmark problems with maximum distance constraints. Additionally, the algorithm was
used to solve instances in a case study with excellent results. Finally, in future research, the algorithm can
incorporate constraints related to time windows, heterogeneous fleet or hiring costs, among others.

Author Contributions: Conceptualization, E.R.-y.-R. and V.S.-M.; methodology, E.R.-y.-R. and 1.G.-C.; validation,
V.S.-M.,, L.G.-C. and J.P-T.; formal analysis, E.R.-y.-R.,V.5.-M. and 1.G.-C.; investigation, E.R.-y.-R. and V.S.-M.;
resources,].P-T.,; writing—original draft preparation, V.5.-M. and E.R.-y.-R.; writing—review and editing, L.G.-C. and
J.P-T.; visualization, J.P-T.; supervision, E.R.-y.-R.. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank the Tecnolégico Nacional de México/Instituto Tecnoldgico de Saltillo and
Universidad Auténoma de Coahuila for their support during the development of this research project.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kennedy, J.; Eberhat, R. Particle swarm optimization. In Proceedings of the IEEE international conference on
neural networks, Perth, WA, Australia, 27 November-1 December 1995; pp. 1942-1948.

2. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans.
Syst. Man Cybern. Part B (Cybern.) 1996, 26, 29-41.

3. Holland,].H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Ann Arbor, MI, USA, 1975.

4. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization, 2005. Available online: https:
/ /pdfs.semanticscholar.org/015d /f4d97ed1£541752842c49d12e429a785460b.pdf (accessed on 20 March 2020).

5. Glover, E; Laguna, M. Tabu search. In Handbook of Combinatorial Optimization; Springer: New York, NY, 1998;
pp. 2093-2229.

6. Mladenovi¢, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097-1100.

7. Pham, D.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Rahim, S.; Zaidi, M. The Bees Algorithm Technical Note;
Manufacturing Engineering Centre, Cardiff University: Cardiff, UK, 2005; p. 40.

8. Filho, C.J.A.B.; de Lima Neto, FB.; Lins, A.].C.C.; Nascimento, A.LS.; Lima, M.P. A novel search algorithm based
on fish school behavior. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,
SMC 2008, Singapore, 12-15 October 2008; pp. 2646-2651.

9. Neshat, M.; Sepidnam, G.; Sargolzaei, M. Swallow swarm optimization algorithm: A new method to optimization.
Neural Comput. Appl. 2013, 23, 429-454.

10. Kaveh, A.; Bakhshpoori, T.; Afshari, E. An efficient hybrid Particle Swarm and Swallow Swarm Optimization
algorithm. Comput. Struct. 2014, 143, 40-59.

11. Saremi, S.; Mirjailili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng.
Softw. 2017, 105, 30-47.

12. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. Nat. Inspired Coop. Strateg. Optim. 2010, 284, 65-74.

13. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51-67.

14. Cubukcuoglu, C.; Ekici, B.; Tasgetiren, M.F,; Sariyildiz, S. OPTIMUS: Self-Adaptive Differential Evolution with
Ensemble of Mutation Strategies for Grasshopper Algorithmic Modeling. Algorithms 2019, 12, 141.

15. Mafarja, M.; Aljarah, I.; Heidari, A.A.; Hammouri, A.l; Faris, H.; Ala’'M, A.Z.; Mirjalili, S. Evolutionary
population dynamics and grasshopper optimization approaches for feature selection problems. Know!l.-Based
Syst. 2018, 145, 25-45.

16. Wu, J; Wang, H.; Li, N.; Yao, P; Huang, Y.; Su, Z,; Yu, Y. Distributed trajectory optimization for multiple
solar-powered UAVs target tracking in urban environment by Adaptive Grasshopper Optimization Algorithm.
Aerosp. Sci. Technol. 2017, 70, 497-510.

17. Zhang, X.; Miao, Q.; Zhang, H.; Wang, L. A parameter-adaptive VMD method based on grasshopper optimization
algorithm to analyze vibration signals from rotating machinery. Mech. Syst. Signal Process. 2018, 108, 58-72.
[CrossRef]

https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf
https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf
http://dx.doi.org/10.1016/j.ymssp.2017.11.029

Algorithms 2020, 13, 96 19 of 20

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Barman, M.; Choudhury, N.D.; Sutradhar, S. A regional hybrid GOA-SVM model based on similar day approach
for short-term load forecasting in Assam, India. Energy 2018, 145, 710-720. [CrossRef]

Dantzig, G.B.; Ramser,].H. The truck dispatching problem. Manag. Sci. 1959, 6, 80-91. [CrossRef]

Goel, A.; Gruhn, V. A general vehicle routing problem. Eur. J. Oper. Res. 2008, 191, 650—-660. [CrossRef]

Sicilia, J.; Pellicer, E.L.; Agustin, B.R.; Finol, D.E. Siatema inteligente de planificacién de rutas para la distribucién
de mercanciasias basado en las técnicas metaheuristicas, btisqueda de entorno variable y biisqueda tabti. DYNA
2013, 88, 414-423. [CrossRef]

Sicilia, J.A.; Royo-Agustin, B.; Quemada-Mayoral, C.; Olivares-Colay, M.].; Larrodé, E. A decision support system
to long haul freight transportation by means of ant colony optimization. Transp. Syst. Technol. 2015. [CrossRef]
Cassettari, L.; Demartini, M.; Mosca, R.; Revetria, R.; Tonelli, F. A multi-stage algorithm for a capacitated vehicle
routing problem with time constraints. Algorithms 2018, 11, 69. [CrossRef]

Sicilia, J.A.; Quemada, C.; Royo, B.; Escuin, D. An optimization algorithm for solving the rich vehicle routing
problem based on Variable Neighborhood Search and Tabu Search metaheuristics. J. Comput. Appl. Math. 2016,
291, 468-477. [CrossRef]

Nepomuceno, N.; Barboza Saboia, R.; Rogério Pinheiro, P. A Fast Randomized Algorithm for the Heterogeneous
Vehicle Routing Problem with Simultaneous Pickup and Delivery. Algorithms 2019, 12, 158. [CrossRef]

Ait Haddadene, S.R; Labadie, N.; Prodhon, C. Bicriteria Vehicle Routing Problem with Preferences and Timing
Constraints in Home Health Care Services. Algorithms 2019, 12, 152. [CrossRef]

Zhao, M.; Lu, Y. A heuristic approach for a real-world electric vehicle routing problem. Algorithms 2019, 12, 45.
[CrossRef]

Judrez Pérez, M.A.; Pérez Loaiza, R.E.; Flores, Q.; Malaquias, P.; Atriano Ponce, O.; Flores Peralta, C. A Heuristic
Algorithm for the Routing and Scheduling Problem with Time Windows: A Case Study of the Automotive
Industry in Mexico. Algorithms 2019, 12, 111. [CrossRef]

Liang, Y.C.; Minanda, V.; Gunawan, A.; Chen, A.H.L. Harmony search algorithm for time-dependent vehicle
routing problem with time windows. J. Appl. Sci. 2013, 13, 633-638.

Sariklis, D.; Powell, S. A heuristic method for the open vehicle routing problem.]. Oper. Res. Soc. 2000,
51, 564-573. [CrossRef]

Schrage, L. Formulation and structure of more complex/realistic routing and scheduling problems. Networks
1981, 11, 229-232. [CrossRef]

Branddo, J. A tabu search algorithm for the open vehicle routing problem. Eur.]. Oper. Res. 2004, 157, 552-564.
[CrossRef]

Tarantilis, C.D.; Ioannou, G.; Kiranoudis, C.T.; Prastacos, G.P. Solving the open vehicle routeing problem via a
single parameter metaheuristic algorithm. J. Oper. Res. Soc. 2005, 56, 588-596. [CrossRef]

Fleszar, K.; Osman, I.H.; Hindi, K.S. A variable neighbourhood search algorithm for the open vehicle routing
problem. Eur. J. Oper. Res. 2009, 195, 803-809. [CrossRef]

Li, E; Golden, B.; Wasil, E. The open vehicle routing problem: Algorithms, large-scale test problems, and
computational results. Comput. Oper. Res. 2007, 34, 2918-2930. [CrossRef]

Repoussis, P.P; Tarantilis, C.D.; Brdysy, O.; Ioannou, G. A hybrid evolution strategy for the open vehicle routing
problem. Comput. Oper. Res. 2010, 37, 443-455. [CrossRef]

Marinakis, Y.; Marinaki, M. A Bumble Bees Mating Optimization algorithm for the Open Vehicle Routing
Problem. Swarm Evol. Comput. 2014, 15, 80-94. [CrossRef]

Zachariadis, E.E.; Kiranoudis, C.T. An open vehicle routing problem metaheuristic for examining wide solution
neighborhoods. Comput. Oper. Res. 2010, 37, 712-723. [CrossRef]

Salari, M.; Toth, P.; Tramontani, A. An ILP improvement procedure for the open vehicle routing problem. Comput.
Oper. Res. 2010, 37, 2106-2120. [CrossRef]

Fu, Z; Eglese, R.; Li, L.Y. A new tabu search heuristic for the open vehicle routing problem. J. Oper. Res. Soc.
2005, 56, 267-274. [CrossRef]

Miller, C.E.; Tucker, AW.; Zemlin, R.A. Integer programming formulation of traveling salesman problems.
J. ACM (JACM) 1960, 7, 326-329. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2017.12.156
http://dx.doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1016/j.ejor.2006.12.065
http://dx.doi.org/10.6036/5561
http://dx.doi.org/10.6036/7190
http://dx.doi.org/10.3390/a11050069
http://dx.doi.org/10.1016/j.cam.2015.03.050
http://dx.doi.org/10.3390/a12080158
http://dx.doi.org/10.3390/a12080152
http://dx.doi.org/10.3390/a12020045
http://dx.doi.org/10.3390/a12050111
http://dx.doi.org/10.1057/palgrave.jors.2600924
http://dx.doi.org/10.1002/net.3230110212
http://dx.doi.org/10.1016/S0377-2217(03)00238-8
http://dx.doi.org/10.1057/palgrave.jors.2601848
http://dx.doi.org/10.1016/j.ejor.2007.06.064
http://dx.doi.org/10.1016/j.cor.2005.11.018
http://dx.doi.org/10.1016/j.cor.2008.11.003
http://dx.doi.org/10.1016/j.swevo.2013.12.003
http://dx.doi.org/10.1016/j.cor.2009.06.021
http://dx.doi.org/10.1016/j.cor.2010.02.010
http://dx.doi.org/10.1057/palgrave.jors.2601817
http://dx.doi.org/10.1145/321043.321046

Algorithms 2020, 13, 96 20 of 20

42.

43.

44.

45.

46.

47.

48.

49.

Ruiz-y Ruiz, E.; Soto-Mendoza, V. A GRASP Algorithm for the Open Vehicle Routing Problem; Technical Report;
Instituto Tecnolégico de Saltillo: Saltillo, Mexico, 2017.

Ruiz, E.; Soto-Mendoza, V.; Barbosa, A.E.R; Reyes, R. Solving the Open Vehicle Routing Problem with Capacity
and Distance Constraints with a Biased Random Key Genetic Algorithm. Comput. Ind. Eng. 2019, 133, 207-219.
[CrossRef]

Marinakis, Y.; Marinaki, M. A honey bees mating optimization algorithm for the open vehicle routing problem.
In 2011 Genetic and Evolutionary Computation Conference; Taylor and Francis: Abingdon, UK, 2011.

Pisinger, D.; Ropke, S. A general heuristic for vehicle routing problems. Comput. Oper. Res. 2007, 34, 2403-2435.
[CrossRef]

Li, X;; Tian, P; Leung, S.C. An ant colony optimization metaheuristic hybridized with tabu search for open
vehicle routing problems. J. Oper. Res. Soc. 2009, 60, 1012-1025. [CrossRef]

Marinakis, Y.; Marinaki, M. A hybrid particle swarm optimization algorithm for the open vehicle routing
problem. In International Conference on Swarm Intelligence; Springer: Berlin, Germany, 2012; pp. 180-187.

Ruiz-y Ruiz, E.; Ruiz-Barbosa, A. A Cutting Plane Algorithm for the Open Vehicle Routing Problem with Capacity and
Distance Constraints; Technical Report; Instituto Tecnolégico de Saltillo: Saltillo, Mexico, 2019.

Letchford, A.N.; Lysgaard, J.; Eglese, R.W. A branch-and-cut algorithm for the capacitated open vehicle routing
problem. . Oper. Res. Soc. 2007, 58, 1642-1651. [CrossRef]

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cie.2019.05.002
http://dx.doi.org/10.1016/j.cor.2005.09.012
http://dx.doi.org/10.1057/palgrave.jors.2602644
http://dx.doi.org/10.1057/palgrave.jors.2602345
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Description
	Hybrid Grasshopper Optimization Algorithm with Local Search
	 HGOALS Description
	 The Route Decoder
	 Local Search
	 Improvement of Best Solutions

	 Computational Experiments
	Test Instances
	Implementation Details
	Results with the Hierarchical Objective Function
	Results with the Traveling Cost Minimization Objective Function
	Comparison of Average CPU Times with Previous Research

	A Case Study
	 Concluding Remarks
	References

