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Lina Beniušienė 2 and Benas Šilinskas 2

1 Agriculture Academy, Vytautas Magnus University, Universiteto g. 20-214, Akademija, 53361 Kaunas,
Lithuania; edmundas.petrauskas@vdu.lt (E.P.); martynas.narmontas@vdu.lt (M.N.)

2 Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepu str.1, Girionys,
53101 Kaunas distr., Lithuania; marius.aleinikovas@lammc.lt (M.A.); lina.beniusiene@lammc.lt (L.B.);
benas.silinskskas@lammc.lt (B.Š.)

* Correspondence: petras.rupsys@vdu.lt

Received: 9 March 2020; Accepted: 14 April 2020; Published: 15 April 2020
����������
�������

Abstract: This study examines the performance of 11 tree taper models to predict the diameter of
bark at any given height and the total stem volume of eight dominant tree species in the boreal forests
of Lithuania. Here, we develop eight new models using stochastic differential equations (SDEs).
The symmetrical Vasicek model and asymmetrical Gompertz model are used to describe tree taper
evolution, as well as geometric-type diffusion processes. These models are compared with those
traditionally used for four tree taper models by using performance statistics and residual analysis.
The observed dataset consists of longitudinal measurements of 3703 trees, representing the eight
dominant tree species in Lithuania (pine, spruce, oak, ash, birch, black alder, white alder, and aspen).
Overall, the best goodness of fit statistics of diameter predictions produced the SDE taper models.
All results have been implemented in the Maple computer algebra system using the “Statistics” and
“VectorCalculus” packages.

Keywords: stem taper; stochastic differential equation; probability density function; maximum
likelihood procedure

1. Introduction

Stochastic differential equations (SDEs) were developed at the beginning of the 20th century to
quantify aspects of stochastic processes. The pioneering work of Bachelier [1] was primarily motivated
by problems associated with introducing a mathematical model of Brownian motion and its use for
valuing stock options. Although applications of stochastic calculus theory can be highly technical,
fundamental concepts of SDE theory are not difficult to understand. Moreover, they are profound in
the sense that they apply to situations in which commonly used models produce unsatisfactory results.
Fundamental SDE theory is defined on random variables. The universality of random processes
accounts for the wide range of applications of the theory, including human population [2], forestry [3,4],
biology [5], and epidemiology [6]. In biological systems, SDEs are used in place of deterministic
models, obtained by including a noise term in the ordinary differential equation of the respective
deterministic model [7]. The main reason to develop SDE models is the capacity to model highly
nonlinear biological dynamic [8,9]. The fundamental advantage of stochastic dynamic models over
deterministic models is that they combine both the deterministic and stochastic elements of dynamic
systems, where the stochasticity is affected by the outside factors such as weather. This makes stochastic
modeling a powerful tool in the hands of practitioners in fields for which population growth is a
critical determinant of various outcomes. There is a general tendency in the population growth
modeling literature to favor flexible techniques that represent features of multivariate data as well as
possible [10,11]. Therefore, multivariate SDEs describing population growth models contain both the
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main effects and interaction effects involved in models using a variance–covariance matrix, improving
the potential to interpret the data more informatively [12] and inferring the causality in a statistical
sense as a type of dependence of the multivariate random variables [13].

The mathematical link between tree diameters at any specified height where the height is known
is known as a tree (stem) taper equation. The random variables of interest in the present study are
the diameter at any specified height and the relative diameter at any specified relative height. Stem
taper equations are traditionally used to estimate diameters at any specified tree height, conversely,
to estimate a corresponding height at any specified diameter, and to estimate the total tree volume
or the volume of specified products if given the specified dimensions. Stem taper equations are the
ultimate base of computer algorithms for calculating stem volumes of any assortment of structures.
In the forest literature, many papers have already looked into the link between the relative diameter
and relative height of trees. However, the most published models are deterministic regression models.
It is advisable to divide taper equations into five categories, namely, (1) segmented polynomial
taper equations [14], (2) variable exponential equations [15–17], (3) artificial neural network (ANN)
equations [18], (4) fundamental mechanisms of stem profile formation equations [19,20], and (5)
diffusion process equations [21]. The first four categories include deterministic taper models that
describe the variation of the stem form by means of a single equation, where the diameter at any
specified stem height is the dependent variable, while the diameter at breast height and overall height
are the independent variables. Some researchers demonstrated that including a variable of crown size,
stand density, age, and others as a predictor could help explain variation in tree shape [22].

A segmented polynomial taper equation describes the profile of a stem by separating it into
two or more segments. The bottom bole section is modeled as a frustum of a neiloidal solid, the
middle of the bole is assumed to take the shape of a frustum of a paraboloidal solid, and the top
portion is assumed to be conoid [23]. Traditionally, three curves are welded together by incorporating
the joint points between the three segments. A variable exponential equation models developed
by Kozak [24] are known as the best for stem taper estimation. A variable exponential model is
more precise comparing to segmented polynomial model. Both segmented polynomial and variable
exponential regression models urge that confirmed some statistical assumptions such as: independence,
normality, homoscedasticity, and much more. Artificial neural network and stochastic differential
models are capable of handling non-normality and nonlinearity in a stem taper system. Generally, the
segmented polynomial, variable exponential, and artificial neural network models are empirical, based
on large data sets, and static. Mechanistic stem taper models of stem development are derived from
simplified models of mechanisms of tree form development and plant physiology knowledge [25].
From a practical point of view this study focused on the segmented polynomial, variable exponential,
and stochastic differential equations models.

The shape of a tree stem is related to the growth environment of a tree, where different types
of irregularities, such as wounds, coarse bark areas, and branches vary among trees of the same
species [21]. A goodness of fit of a model is related with the number of incorporated independent
variables, such as the planting density, fertilization, thinning, and crown height. Unfortunately,
insignificant improvement has been observed in model performance when including additional
dimensions as covariate variables. Studies from the last few decades have incorporated mixed effect
(fixed and random effect) modeling techniques in the development of taper equations [26]. The
theoretical investigation of this technique accounts for both the within- and between-tree variation
in stem taper forms [17,27,28]. From the practical point of view, a mixed effect modeling technique
needs additional prior information (measurements) for predicting the diameter at any specified height
for a new stem. Random effects can be calibrated and an adjusted response (stem-specific), rather
than a mean response (fixed effect), can be recommended if additional stem diameter measurements
are available.

Diffusion processes based on stem taper models are not affected by the mathematical form, because
we start from the evolution of the probability density function of the relative diameter [21]. Another
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characteristic of newly developed stem taper models is that the derived normal and log-normal
probability density functions of the solutions of the SDEs enable us to define the evolution of any
central moment (mean, variance, and so on), quartile, p-quantile (0 < p < 1), and coefficient of variation
of the diameter at any specified height when both stem diameter and height are given. Such models
can reflect a more complex variation in particular stem tapers due to the initial conditions represented
by measurement of the tree diameter at the tree height, h = 0, or its distribution.

Motivated by the stem taper equations [14,16], this work proposes a few new models based on
diffusion processes. First, the Gompertz-, Vasicek- and geometric-type diffusions are used in stem
taper models to improve the predictions of diameter at any specified height and the total stem volume.
Finally, a comparison mechanism based on data from the eight dominant tree species in Lithuania
(pine, spruce, oak, ash, birch, black alder, white alder, and aspen) is proposed to further enhance the
robustness of newly developed models.

2. Materials and Methods

2.1. SDE Stem Tapers

This study focuses on univariate continuous diffusion processes Yi(x), i = 1, . . . , M, evolving in M
different individuals (tree stems). We suppose that the evolution of the relative diameter Yi = D

di against
the relative height xi = h

hi (xi
∈ [0; 1], in the sequel x) is expressed by the Itô-type stochastic differential

equation [29], where D is the diameter at any specified height h, di is the diameter at breast height of
the i-th tree, and hi is the total stem height of the i-th tree. In the following, we will consider three
different univariate diffusion models given by the SDEs with explicitly known transition distributions.

The Gompertz-type stochastic differential equation of the relative diameter against the relative
height is formulated as follows:

dYi(x) = [α1Yi(x) − β1Yi(x) ln(Yi(x))]dx + σ1Yi(x)dWi
1(x), i = 1, . . . , M, (1)

where α1, β1, and σ1 are fixed effects parameters (identical for all stems from the specified tree species)
and yi

0 is the initial relative diameter. In this study, we focus on two initial distributions, namely, the

deterministic initial value Yi(0) = yi
0, which is a degenerate initial distribution P

(
Yi(0) = yi

0

)
= 1,

and a log-normal distribution, Yi(0) ∼ LN1
(
µ0; σ2

0

)
. Here, Wi

1(x), i = 1, . . . , M represents independent
standard Brownian motions. The diffusion process, Yi(x), conditioned on the initial value yi

0, has a

log-normal distribution where LN1
(
µ1(x|α1,β1, σ1, yi

0); v1(x
∣∣∣β1, σ1 )

)
with the conditional mean, variance,

and density, respectively.

µ1(x|α1,β1, σ1, yi
0) = e−β1x ln(yi

0) +

(
1− e−β1x

β1

)α1 −
σ2

1

2

, (2)

v1(x
∣∣∣β1, σ1 ) =

σ2
1

2β1

(
1− e−2β1x

)
, (3)

pG
(
y, x

∣∣∣α1, β1, σ1, yi
0

)
=

1

y
√

2πv1(x
∣∣∣β1, σ1 )

exp

−
(
ln y− µ1(x|α1,β1, σ1, yi

0)
)2

2v1(x
∣∣∣β1, σ1 )

. (4)

A geometric Brownian motion stochastic differential equation of the relative diameter against the
relative height is formulated as follows:

d Yi(x) = α2Yi(x)dx + σ2Yi(x)dWi
2(x), i = 1, . . . , M, (5)
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where α2, and σ2 are fixed effect parameters (identical for all stems from the specified tree species)
and Wi

2(x) denotes independent standard Brownian motions. This process, Yi(x), conditioned on

the initial value yi
a∗ , thus is P

(
Yi(a∗) = yi

a∗

)
= 1, a∗ ∈ {a0, a1} and has a log-normal distribution

where LN1
(
µ2(x|α2,σ2, yi

a∗ , a∗); v2(x|σ2, a∗ )
)

with the conditional mean, variance, and density defined,
respectively, as follows:

µ2(x|α2,σ2, yi
a∗ , a∗) = ln(yi

a∗) +

α2 −
σ2

2

2

|x− a∗|, (6)

v2(x|σ2, a∗ ) = σ2
2|x− a∗|, (7)

pg
(
y, x

∣∣∣α2, σ2, yi
a∗ , a∗

)
=

1

y
√

2πv2(x|σ2 , a∗)
exp

−
(
ln y− µ2(x|α2,σ2, yi

a∗ , a∗)
)2

2v2(x|σ2, a∗ )

. (8)

The Vasicek-type stochastic differential equation of the relative diameter against the relative height
is formulated as follows:

d Yi(x) = β3
(
α3 −Yi(x)

)
dx + σ3dWi

3(x), i = 1, . . . , M, (9)

where α3, β3, and σ3 are fixed effects parameters (identical for all stems from the specified tree
species) and Wi

3(x) denotes independent standard Brownian motions. This process, Yi(x), conditioned

on the initial value yi
a∗∗ , thus is P

(
Yi(a∗∗) = yi

a∗∗

)
= 1, a∗∗ ∈ {a0, a1, 1} and has a normal distribution

N1
(
µ3(x|α3,β3, yi

a∗∗ , a∗∗); v3(x
∣∣∣β3, σ3, a∗∗ )

)
with the conditional mean, variance, and density, respectively.

µ3(x|α3,β3, yi
a∗∗ , a∗∗) = α3 −

(
yi

a∗∗ − α3
)
·e−β3 |x−a∗∗ |, (10)

v3(x
∣∣∣β3, σ3, a∗∗ ) =

σ2
3

2β3

(
1− e−2β3 |x−a∗∗ |

)
, (11)

pV
(
y, x

∣∣∣α3, β3, σ3, yi
a∗∗ , a∗∗

)
=

1√
2πv3(x

∣∣∣β3, σ3, a∗∗ )
exp

−
(
y− µ3(x|α3,β3, yi

a∗∗ , a∗∗)
)2

2v3(x
∣∣∣β3, σ3 , a∗∗)

. (12)

In this study, newly developed stem tapers are defined (as segmented models) by using one or
two joining points (a0 and a1) to weld three stochastic processes, defined by Equations (1), (5), and
(9). In the sequel, the fixed effects parameters for the bottom part of a stem are listed by index B, the
middle part by index M, and for the top part, they are listed by index T. The stem taper SDE models
with two joining points a0 and a1 are defined in the following forms, respectively:

Model 1 d Yi(x) =


[αBYi(x) − βBYi(x) ln(Yi(x))]dx + σBYi(x)dWi

B(x), P
(
Yi(x0) = yi

0

)
= 1, x < a0

αMYi(x)dx + σMYi(x)dWi
M(x), P

(
Yi(a0) = 1

)
= 1, a0 ≤ x < a1

βT
(
αT −Yi(x)

)
dx + σTdWi

T(x), P
(
Yi(1) = 0

)
= 1, a1 ≤ x ≤ 1

, (13)

Model 2 d Yi(x) =


[αBYi(x) − βBYi(x) ln(Yi(x))]dx + σBYi(x)dWi

B(x), P
(
Yi(x0) = yi

0

)
= 1, x ≤ a0

αMYi(x)dx + σMYi(x)dWi
M(x), P

(
Yi(a1) = yi

a1

)
= 1, a0 < x ≤ a1

βT
(
αT −Yi(x)

)
dx + σTdWi

T(x), P
(
Yi(1) = 0

)
= 1, a1 < x ≤ 1

,

(14)

Model 3 d Yi(x) =


[αBYi(x) − βBYi(x) ln(Yi(x))]dx + σBYi(x)dWi

B(x), P
(
Yi(x0) = γ

)
= 1, x < a0

αMYi(x)dx + σMYi(x)dWi
M(x), P

(
Yi(a0) = 1

)
= 1, a0 ≤ x < a1

βT
(
αT −Yi(x)

)
dx + σTdWi

T(x), P
(
Yi(1) = 0

)
= 1, a1 ≤ x ≤ 1

, (15)
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where γ is a random variable, log-normally distributed, where γ ∼ LN1
(
µ0; σ2

0

)
with the unknown

fixed effect parameters µ0 and σ2
0 to be estimated. On the other side, the stem butt of the i-th tree is

assumed to be free.

Model 4 d Yi(x) =


[αBYi(x) − βBYi(x) ln(Yi(x))]dx + σBYi(x)dWi

B(x), P
(
Yi(x0) = yi

0

)
= 1, x < a0

βM
(
αM −Yi(x)

)
dx + σMdWi

M(x), P
(
Yi(a0) = 1

)
= 1, a0 ≤ x < a1

βT
(
αT −Yi(x)

)
dx + σTdWi

T(x), P
(
Yi(1) = 0

)
= 1, a1 ≤ x ≤ 1

,

(16)

Model 5 d Yi(x) =


[αBYi(x) − βBYi(x) ln(Yi(x))]dx + σBYi(x)dWi

B(x), P
(
Yi(x0) = yi

0

)
= 1, x ≤ a0

βM
(
αM −Yi(x)

)
dx + σMdWi

M(x), P
(
Yi(a1) = yi

a1

)
= 1, a0 < x ≤ a1

βT
(
αT −Yi(x)

)
dx + σTdWi

T(x), P
(
Yi(1) = 0

)
= 1, a1 < x ≤ 1

,

(17)

Model 6 d Yi(x) =


[αBYi(x) − βBYi(x) ln(Yi(x))]dx + σBYi(x)dWi

B(x), P
(
Yi(x0) = γ

)
= 1, x < a0

βM
(
αM −Yi(x)

)
dx + σMdWi

M(x), P
(
Yi(a0) = 1

)
= 1, a0 ≤ x < a1

βT
(
αT −Yi(x)

)
dx + σTdWi

T(x), P
(
Yi(1) = 0

)
= 1, a1 ≤ x ≤ 1

,

(18)
where γ is a random variable, log-normally distributed, where γ ∼ LN1

(
µ0; σ2

0

)
with the unknown

fixed effect parameters µ0 and σ2
0 is to be estimated.

The stem taper SDE models with one joining point a0 are defined in the following forms (fixed
effects parameters for the bottom part of a stem are listed by index B, and, for the top part, these are
listed by index T):

Model 7 d Yi(x) =

 [αBYi(x) − βBYi(x) ln(Yi(x))]dx + σBYi(x)dWi
B(x), P

(
Yi(x0) = yi

0

)
= 1, x ≤ a0

βT
(
αT −Yi(x)

)
dx + σTdWi

T(x), P
(
Yi(1) = 0

)
= 1, a0 < x ≤ 1

,

(19)

Model 8 d Yi(x) =

 [αBYi(x) − βBYi(x) ln(Yi(x))]dx + σBYi(x)dWi
B(x), P

(
Yi(x0) = γ

)
= 1, x ≤ a0

βT
(
αT −Yi(x)

)
dx + σTdWi

T(x), P
(
Yi(1) = 0

)
= 1, a0 < x ≤ 1

,

(20)
where γ is a random variable, log-normally distributed, where γ ∼ LN1

(
µ0; σ2

0

)
with the unknown

fixed effect parameters µ0 and σ2
0 is to be estimated.

2.2. Mean Trends of Stem Tapers

Using the conditional probability density functions, defined by Equations (2)–(4), (6)–(8), and
(10)–(12), we can define the mean trajectories, mk(·) (k = 1, . . . , 8), for Models 1–8 in the following
forms (the estimates of the fixed effect parameters are denoted by adding ‘hat’), respectively:

Model 1 m1(x, di, hi) =


di exp

(
µ1

(
x
hi |α̂B, β̂B, σ̂B,

di
0

di

)
+ 1

2 v1
(

x
hi

∣∣∣β̂B, σ̂B
))

, x
hi <

1.3
hi

di exp
(
µ2

(
x
hi |α̂M, σ̂M, 1.

)
+ 1

2 v2
(

x
hi

∣∣∣σ̂M, 1.3
hi

))
, 1.3

hi ≤
x
hi < a1

diµ3
(

x
hi |α̂T, β̂T, 0

)
, a1 ≤

x
hi ≤ 1

, (21)

Model 2 m2(x, di, hi) =


di exp

(
µ1

(
x
hi |α̂B, β̂B, σ̂B,

di
0

di

)
+ 1

2 v1
(

x
hi

∣∣∣β̂B, σ̂B
))

, x
hi ≤ a0

di exp
(
µ2

(
x
hi |α̂M, σ̂M,µ3

(
a1|α̂T, β̂T, 0

))
+ 1

2 v2
(

x
hi |σ̂M, a1

))
, a0 <

x
hi ≤ a1

diµ3
(

x
hi |α̂T, β̂T, 0

)
, a1 <

x
hi ≤ 1

, (22)
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Model 3 m3(x, di, hi) =


di
· exp

(
µ0

(
µ1

(
x
hi |α̂B, β̂B, σ̂B, γ̂

)
+ 1

2 v1
(

x
hi

∣∣∣β̂B, σ̂B
)))

, x
hi < a0

di
· exp

(
µ2

(
x
hi |α̂M, σ̂M,µ3

(
a1|α̂T, β̂T, 0

))
+ 1

2 v2
(

x
hi |σ̂M, a1

))
, a0 ≤

x
hi < a1

di
· µ3

(
x
hi |α̂T, β̂T, 0

)
, a1 ≤

x
hi ≤ 1

, (23)

Model 4 m4(x, di, hi) =


di
· exp

(
µ1

(
x
hi |α̂B, β̂B, σ̂B,

di
0

di

)
+ 1

2 v1
(

x
hi

∣∣∣β̂B, σ̂B
))

, x
hi <

1.3
hi

di
·µ3

(
x
hi |α̂M, β̂M, 1.

)
, 1.3

hi ≤
x
hi < a1

di
·µ3

(
x
hi |α̂T, β̂T, 0

)
, a1 ≤

x
hi ≤ 1

, (24)

Model 5 m5(x, di, hi) =


di
· exp

(
µ1

(
x
hi |α̂B, β̂B, σ̂B,

di
0

di

)
+ 1

2 v1
(

x
hi

∣∣∣β̂B, σ̂B
))

, x
hi ≤ a0

di
·µ3

(
x
hi |α̂M, β̂M,µ3

(
a1|α̂T, β̂T, 0

))
, a0 <

x
hi ≤ a1

di
·µ3

(
x
hi |α̂T, β̂T, 0

)
, a1 <

x
hi ≤ 1

, (25)

Model 6 m6(x, di, hi) =


di
· exp

(
µ0

(
µ1

(
x
hi |α̂B, β̂B, σ̂B, γ̂

)
+ 1

2 v1
(

x
hi

∣∣∣β̂B, σ̂B
)))

, x
hi < a0

di
·µ3

(
x
hi |α̂M, β̂M, 1.

)
, a0 ≤

x
hi < a1

di
·µ3

(
x
hi |α̂T, β̂T, 0

)
, a1 ≤

x
hi ≤ 1

, (26)

Model 7 m7(x, di, hi) =


di
· exp

(
µ1

(
x
hi |α̂B, β̂B, σ̂B,

di
0

di

)
+ 1

2 v1
(

x
hi

∣∣∣β̂B, σ̂B
))

, x
hi ≤ a0

di
·µ3

(
x
hi |α̂T, β̂T, 0

)
, a0 <

x
hi ≤ 1

, (27)

Model 8 m8(x, di, hi) =

 di
· exp

(
µ0

(
µ1

(
x
hi |α̂B, β̂B, σ̂B, γ̂

)
+ 1

2 v1
(

x
hi

∣∣∣β̂B, σ̂B
)))

, x
hi ≤ a0

di
·µ3

(
x
hi |α̂T, β̂T, 0

)
, a0 <

x
hi ≤ 1

. (28)

2.3. Parameters Estimation

Suppose that we observe the process of relative diameter Yi(x) in a discrete sense. Hence,
the relative diameter yi(xi

j) = yi
j of the i-th tree is measured at ni + 1 discrete relative height

points (xi
0, xi

1 . . . , xi
ni
) i = 1, . . . , M. We let yi be the vector of the relative diameters for the i-th tree,

yi = (yi
0, yi

1, . . . , yi
ni
), and y = (y1, y2, . . . , yM) is the n-dimensional total relative diameter vector,

n =
M∑

i=1
(ni + 1). Therefore, we need to estimate fixed effect parameters µ0, σ0,α1, β1, σ1,α2, σ2,α3, β3, σ3

using all the data in y simultaneously. In this study, we are interested in the maximum likelihood
estimation of all fixed effect parameters.

Models 1 and 2 (Equations (13) and (14), 4 and 5 (Equations (16) and (17))), and 7 (Equation (19))
use a single tree-specific relative diameter yi

0 (this known initial condition adds one more predictor
variable expressed by the tree diameter measured at a height of 0 m). Models 3 (Equation (15)), 6
(Equation (18)), and 8 (Equation (20)) use an additional log-normally distributed random variable,
γ ∼ LN1

(
µ0; σ2

0

)
, which is the same for all stems. Models 1–8 use a fixed relative diameter of 0 and a

relative top height of 1. The probability density functions of the relative diameter Yi(xi
j), xi

j ∈ [0; 1],
i = 1, . . . , M, j = 0, . . . , ni for Models 1–8 are defined, respectively, as follows:

p1(yi
j, xi

j

∣∣∣∣θ1, yi
j−1 , xi

j−1) =


pG

(
yi

j, xi
j

∣∣∣αB, βB, σB, yi
0

)
, 0 < xi

j ≤
1.3
hi

pg

(
yi

j, xi
j

∣∣∣∣αM, σM, yi
j−1, xi

j−1

)
, 1.3

hi ≤ xi
j < a1

pV

(
yi

j, xi
j

∣∣∣αT, βT, σT, 0, 1
)
, a1 ≤ xi

j ≤ 1

,

θ1 =
{
αB, βB, σB,αM, σM,αT, βT, σT

}
(29)
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p2(yi
j, xi

j

∣∣∣∣θ2, yi
j+1 , xi

j+1) =


pG

(
yi

j, xi
j

∣∣∣αB, βB, σB, yi
0

)
, 0 ≤ xi

j ≤ a0

pg

(
yi

j, xi
j

∣∣∣∣αM, σM, yi
j+1, xi

j+1

)
, a0 < xi

j ≤ a1

pV

(
yi

j, xi
j

∣∣∣αT, βT, σT, 0, 1
)
, a1 < xi

j ≤ 1

,

θ2 =
{
αB, βB, σB,αM, σM,αT, βT, σT

}
(30)

p3(yi
j, xi

j

∣∣∣∣θ3, yi
j−1 , xi

j−1) =


pG

(
yi

j, xi
j

∣∣∣αB, βB, σB,γ
)
, 0 ≤ xi

j <
1.3
hi

pg

(
yi

j, xi
j

∣∣∣∣αM, σM, yi
j+1, xi

j+1

)
, 1.3

hi ≤ xi
j < a1

pV

(
yi

j, xi
j

∣∣∣αT, βT, σT, 0, 1
)
, a1 ≤ xi

j ≤ 1

,

θ3 =
{
µ0, σ0,αB, βB, σB,αM, σM,αT, βT, σT,γ

}
(31)

p4(yi
j, xi

j

∣∣∣∣θ4, yi
j−1 , xi

j−1) =


pG

(
yi

j, xi
j

∣∣∣αB, βB, σB, yi
0

)
, 0 ≤ xi

j <
1.3
hi

pV

(
yi

j, xi
j

∣∣∣∣αM, βM, σM, yi
j−1, xi

j−1

)
, 1.3

hi ≤ xi
j < a1

pV

(
yi

j, xi
j

∣∣∣αT, βT, σT, 0, 1
)
, a1 ≤ xi

j ≤ 1

,

θ4 =
{
αB, βB, σB,αM, βM, σM,αT, βT, σT

}
(32)

p5(yi
j, xi

j

∣∣∣∣θ5, yi
j+1 , xi

j+1) =


pG

(
yi

j, xi
j

∣∣∣αB, βB, σB, yi
0

)
, 0 ≤ xi

j ≤ a0

pV

(
yi

j, xi
j

∣∣∣∣αM, βM, σM, yi
j+1, xi

j+1

)
, a0 < xi

j ≤ a1

pV

(
yi

j, xi
j

∣∣∣αT, βT, σT, 0, 1
)
, a1 < xi

j ≤ 1

,

θ5 =
{
αB, βB, σB,αM, βM, σM,αT, βT, σT

}
(33)

p6(yi
j, xi

j

∣∣∣∣θ6, yi
j−1 , xi

j−1) =


pG

(
yi

j, xi
j

∣∣∣αB, βB, σB,γ
)
, 0 ≤ xi

j <
1.3
hi

pV

(
yi

j, xi
j

∣∣∣∣αM, βM, σM, yi
j+1, xi

j+1

)
, 1.3

hi ≤ xi
j < a1

pV

(
yi

j, xi
j

∣∣∣αT, βT, σT, 0, 1
)
, a1 ≤ xi

j ≤ 1

,

θ6 =
{
µ0, σ0,αB, βB, σB,αM, βM, σM,αT, βT, σT,γ

}
(34)

p7(yi
j, xi

j|θ7 ) =

 pG

(
yi

j, xi
j

∣∣∣αB, βB, σB, yi
0

)
, 0 ≤ xi

j ≤ a0

pV

(
yi

j, xi
j

∣∣∣αT, βT, σT, 0, 1
)
, a0 < xi

j ≤ 1
, θ7 =

{
αB, βB, σB,αT, βT, σT

}
, (35)

p8(yi
j, xi

j|θ8 ) =

 pG

(
yi

j, xi
j

∣∣∣αB, βB, σB,γ
)
, 0 ≤ xi

j ≤ a0

pV

(
yi

j, xi
j

∣∣∣αT, βT, σT, 0, 1
)
, a0 < xi

j ≤ 1
, θ8 =

{
µ0, σ0,αB, βB, σB,αT, βT, σT,γ

}
. (36)

In this paper, we apply the theory of a maximum likelihood procedure of the parameter estimates
for stem taper in Models 1–8, as all models have closed form transition probability density functions
defined by Equations (29)–(36). The fixed and mixed parameters estimation for discretely observed
SDE is a complex problem and during the past decades it has attracted an attention of numerous
researchers [30–32]. The log-likelihood functions are given, respectively, as follows:

Lk(θk) =
M∑

i=1

ni∑
j=1

ln(pk(yi
j, xi

j

∣∣∣∣θk, yi
j−1 , xi

j−1)), k = 1, 3, 4, 6, (37)

Lk(θk) =
M∑

i=1

ni∑
j=1

ln(pk(yi
j, xi

j

∣∣∣∣θk, yi
j+1 , xi

j+1)), k = 2, 5, (38)
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Lk(θk) =
M∑

i=1

ni∑
j=1

ln(pk(yi
j, xi

j|θ8 )), k = 7, 8. (39)

As the transition density functions are known, the maximum log-likelihood calculation and its
maximization with respect to θk, where k = 1–8, for a given set of discretely observed datasets is
straightforward. However, if Yi(0) = γ ∼ LN1

(
µ0; σ2

0

)
, then there are two additional parameters that

must be estimated. The estimation of parameters µ0 and σ2
0 depends only on the measurement of each

tree diameter at the height h = 0 and does not influence the other parameters. The maximum likelihood
estimations of µ0 and σ2

0 for the log-normal distribution are given as follows:

µ̂ =
1
M

M∑
i=1

ln
(
yi

0

)
, (40)

σ̂2
0 =

1
M

M∑
i=1

ln
(
yi

0

)
−

1
M

M∑
i=1

ln
(
yi

0

)
2

. (41)

2.4. Statistical Measures

The statistical measures of the stem taper equations for the diameter and the volume predictions

include four statistical indices, namely, the coefficient of determination, R2 = 1−

n∑
i=1

(yi−ŷi)
2

n∑
i=1

(yi−y)2
, the mean

prediction error, B = 1
n

n∑
i=1

(yi − ŷi), (percent prediction error, %B = 1
n

n∑
i=1

(
yi−ŷi

y

)
), the mean absolute

prediction error, AB = 1
n

n∑
i=1

∣∣∣yi − ŷi
∣∣∣, (percent absolute prediction error, %AB = 1

n

n∑
i=1

|yi−ŷi|

y ·100), and

the root-mean-square error, RMSE =

√
1

n−1

n∑
i=1

(yi − ŷi)
2, (percent root-mean-square error, %RMSE =√

1
n−1

n∑
i=1

(
yi−ŷi

y

)2
·100). Here, n is the total number of observations used to fit (validate) the model, and

yi, ŷi, and y are the observed, estimated, and average values, respectively, of the dependent variable
(diameter, d, stem volume, v).

2.5. Data

Measurements for 3703 trees were used for the diameter at any specified height model and
volume model analysis. All data were collected during 1979 to 2016 across the entire Lithuanian
territory, except for Kuršių Nerija National Park (latitude of 53.54–56.27◦ N, longitude of 20.56–26.51◦

E, altitude of 10 to 293 m). The mean temperatures vary from −16.4 ◦C in winter to 22 ◦C in summer.
Precipitation is distributed throughout the year, although predominantly in summer, where the average
is approximately 680 mm a year. Temporary circle test plots were placed in each of former 42 Lithuanian
state forest enterprises in randomly selected clear-cutting areas. The diameter over bark of each stem
in a plot was measured every 2 m, starting from the diameter on the root collar, i.e., 1, 1.3, 3, 5, etc.
All section measurements include of 47,413 data points. Diameters were measured to an accuracy of
1 mm. The complete dataset was randomly divided into estimation and validation datasets. For all
tree species, a random sample of 2617 trees (33,607 measurements) was selected for model estimation,
and the remaining dataset of 1086 trees (13,806 measurements) was utilized for model validation (see
Table 1). Summary statistics for the diameter over bark at breast height (d), total height (h), and volume
(v) of all trees used for the fitting and validation of the models are presented in Table 1. The observed
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volume (m3) of each stem was computed using a truncated cone formula, up to the last section, where
the final apex was calculated as a cone [16]:

Vi =
π

3·40000

ni−2∑
j=1

(
d2

i j + d2
i j+1 + di j·di j+1

)
·Li j + d2

ini−1·Lini−1

, (42)

where dij and Lij are the diameter (cm) and length (m), respectively, of the j-th section j of the i-th tree.

Table 1. Summary statistics of all measured stems. SD: standard deviation.

Species Data Number
of Stems Min. Max. Mean SD Number

of Stems Min. Max. Mean SD

Estimation Validation

Oak
d (cm) 101 7.0 49.6 21.33 8.98 45 6.0 43.0 24.40 8.05

h (m) 101 9.6 29.9 21.60 4.24 45 11.3 29.0 22.68 3.82

v (m3) 101 0.026 2.801 0.490 0.481 45 0.020 2.047 0.591 0.424

Ash
d (cm) 27 8.0 29.0 18.33 4.60 11 10 28 19.21 5.96

h (m) 27 11.2 25.7 19.29 2.98 11 13 25.1 19.17 3.12

v (m3) 27 0.029 0.831 0.273 0.175 11 0.052 0.622 0.295 0.183

Birch
d (cm) 230 7.6 51.2 23.26 9.04 103 8.0 49.3 22.78 8.65

h (m) 230 10.2 31.9 21.39 4.58 103 8.4 31.3 21.37 4.26

v (m3) 230 0.027 2.583 0.504 0.439 103 0.027 2.190 0.470 0.391

Black
alder

d (cm) 136 8.0 39.9 22.74 5.65 61 12.0 33.5 22.02 5.03

h (m) 136 8.5 27.6 20.59 3.57 61 13.2 27.4 20.66 3.42

v (m3) 136 0.019 1.806 0.467 0.282 61 0.077 0.883 0.426 0.215

White
alder

d (cm) 16 7.7 8.0 17.64 5.55 6 12.0 24.2 17.68 4.26

h (m) 16 11.3 23.4 17.26 3.10 6 15.4 20.2 17.22 1.72

v (m3) 16 0.029 0.693 0.240 0.166 6 0.097 0.403 0.221 0.112

Aspen
d (cm) 102 7.0 49.6 21.34 8.94 44 6.0 43.0 24.45 8.13

h (m) 102 9.6 29.9 21.65 4.24 44 11.3 29.0 22.61 3.83

v (m3) 102 0.026 2.801 0.489 0.479 44 0.020 2.049 0.595 0.429

Pine
d (cm) 1344 5.0 58.4 25.25 9.86 567 3.8 58.5 23.95 9.87

h (m) 1344 4.5 35.2 20.85 5.23 567 3.8 33.5 20.14 5.50

v (m3) 1344 0.006 3.129 0.626 0.562 567 0.003 3.398 0.570 0.563

Spruce
d (cm) 661 7.9 52.4 23.14 8.78 249 8.0 49.8 23.34 8.31

h (m) 661 7.0 32.7 20.92 5.54 249 7.5 33.8 21.12 5.23

v (m3) 661 0.021 2.737 0.571 0.486 249 0.018 2.994 0.571 0.423

Number of stems 2617 1086

2.6. Regression Stem Taper Models

Forest statisticians have developed multiple advanced regression models for describing tree stem
tapers using more and more complex nonlinear functions. The newly developed SDE models for stem
tapers will be compared with a well-known and frequently used stem taper model [14–16].

The segmented polynomial model published by Burkhart [14].

Model 9 d2

D2 = β1(z− 1)β1(z− 1) + β2
(
z2
− 1

)
+ β3(β5 − z)I1(β5 − z) + β4(β6 − z)2I2(β6 − z), (43)
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where d is the diameter at any particular height h, D is the diameter at breast height, H is the total tree
height, z is the relative height (z = h

H ), β5 and β6 are the joining points of three segments, and β1–β6 are
the unknown parameters to be estimated. Additionally,

Ii(βi − z) =
{

1, βi − z ≥ 0
0, βi − z < 0

.

A generalized q-exponential model of stem taper published by Rupšys and Petrauskas et al. [16].

Model 10 d = β1 + β2Dβ3
(
1− z8 + 0.0001

)β4

 β5(z− 1) + β6(z2
− 1), i fz ≥ α

[β7 − β8(1− exp((1− β9)z))]
1

1−β9
+

, (44)

where α is the joining point of two segments, β1–β9 are the unknown parameters to be estimated, and

[a]+ =

{
a, i fa ≥ 0,
0, i fa < 0

.

The stem taper model published by Kozak [15].

Model 11 d = β1Dβ2Hβ3

1− 3√z + 0.0001

1− 3
√

1.3
H


β4z4+

β5
exp (D/H)

+β6(
1− 3√z

1− 3√ 1.3
H

)
0.1

+
β7
D +β8H1− 3√z+β9(

1− 3√z

1− 3√ 1.3
H

)

, (45)

where β1–β9 are the unknown parameters to be estimated.

3. Results

Various methods of advanced modeling are used to describe the evolution of stem profiles.
Nowadays, the available computational power has substantially increased, so it becomes feasible
to use more advanced SDE models and to introduce some kind of noise in the stem taper form. In
this study, the developed models are nondeterministic models that consider both the symmetric and
asymmetric diffusions of stem diameter at a particular height [21]. Multiple regression models that
describe stem tapers have been proposed, traditionally incorporating the diameter at breast height
and tree height as the independent variables [14–19] or using additional independent variables such
as the density [18], crown ratio [33], and many more [34,35]. The newly developed SDE models are
affected by the probability density function of the relative diameter, which changes among the relative
heights. Another characteristic of our proposed SDE models is that they take into account a ‘noise’
term, defined by a standard Brownian motion, which in turn leads to a solution that is a diffusion
process. Different from other methods, we explore a variety of characteristics of diffusion processes,
including transition probability density functions, mean trends, and variance trends. SDE models can
be applied to express the variation in individual stem tapers by introducing random effects. However,
the efficiency of the random effects is largely dependent on the amount of additional information,
which involves the measurement of tree diameters at specified heights in standing trees.

This study focuses on two new SDE stem taper modeling techniques, namely, using the diameter
at breast height, total tree height, and diameter at stem butt (at the height of 0.0 cm) as incorporated
independent (predictor) variables. Models 1, 2, 4, 5, and 7 feature this technique. The second technique
is using the diameter at breast height and total tree height as incorporated predictor variables. Models
3, 6, and 8 use this technique. The results of both the SDE tree taper modeling techniques are compared
with the traditionally used regression taper models, shown in Models 9, 10, and 11. The efficiencies of
the statistically estimated stem taper equations for volume predictions are examined. For both purposes,
efficient diameter and volume predictions are not necessary and can be simultaneously determined.
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3.1. Parameter Estimates

The methodology of optimal parameter estimation using SDEs generally considers the fitting
of the parameters that maximize the log-likelihood of the observed discrete dataset, as an exact
form expression for the log-likelihood function is available (see Equations (37)–(39)). The fixed effect
parameters of the SDE stem tapers in Models 1–8 were estimated utilizing the maximum likelihood
methodology developed in Section 2.3. The parameters of nonlinear regression in Models 9–11 were
estimated by the least-square methodology. The lower joint point, a0, for the SDEs models is determined
by the initial condition that the relative tree diameter is equal to 1 at a relative height 1.3/h. In order
to examine upper joint point, a1, the maximum likelihood procedure was simulated by fixing the
lower joint point at 1.3/h and varying the upper joint point. For the regression model 10, the joint
point, a0, was examined by generating taper equation and assigning value according to interval [0.11;
0.75]. Parameters estimates were computed using the estimation dataset. For all of fitted models, the
parameters estimates were obtained using the “Statistics” and “VectorCalculus” packages in the Maple
symbolic algebra system [36].

3.2. Stem Taper and Volume Models

A comparison of all fitted models was undertaken using the validation dataset. In order to be an
applicable taper model, a model needs to predict diameter measurements at a particular height in a
stem highly accurately. Diameter predictions at any specified height were computed for all fitted stem
taper models, and the stem volume predictions were computed by integration-derived stem taper
curves using the validation dataset for each species group. To compare all fitted taper and volume
models, we used statistical measures (i.e., the coefficient of determination, mean prediction error
(percent prediction error, %), mean absolute prediction error (percent absolute prediction error, %), and
root-mean-square error (percent root-mean-square error, %), including analysis of the visual tests of
the residuals and the simplicity. Quantitative assessment of models performance will rely on statistical
measures including four basic features: the bias, which indicates that the predictions are systematically
too high or too low (underperformance or overperformance); the absolute bias, which describes
the typical magnitude of the residuals (does not indicate underperformance or overperformance);
the root mean squared error of differences between observed and predicted values, which indicates
standard deviation of the unexplained variance; and the coefficient of determination, which informs
on the proportion of the total variability explained by the model. The root-mean-square error, in a
statistical sense, normally takes precedence over the other errors, where it is known as the standard
error of the regression in regression analysis or as the estimated white noise standard deviation in
stochastic processes.

The main problem of the comparison of the stem taper models is measuring the predictive ability
to accurately predict the diameter and volume of new tree stems. Statistical measures calculated for
the estimation dataset evaluate how well the stem taper model fits the estimation dataset for which it
was developed, and, for the validation dataset, confirm how valid the stem taper model is in predicting
diameters at any specified height and tree volumes for new dataset [37]. The decrease of statistical
measures for the validation dataset in this study was small, so we can conclude that the used stem
taper models can be used to predict stem diameters at any specified height, as well as stem volumes.

Statistical measures for the prediction of the diameter and volume using stem diameter
measurements from the validation dataset for all species group are presented in Tables 2 and 3,
respectively. In most cases (models and species groups), the stem diameters and volumes have been
slightly overpredicted. The black alder species group models produced the best root-mean-square error
percent values, namely, 6.62% to 8.93% and 7.40% to 8.06% for the diameter and volume predictions,
respectively. The birch species group models produced the worst root-mean-square error percent values,
namely, 10.42% to 13.04% and 17.70% to 27.34% for the diameter and volume predictions, respectively.
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Table 2. Statistical measures for all of the validated stem diameter models *.

Model
B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

Oak Ash Birch

1 −0.217
(−1.31)

0.832
(5.01)

1.269
(7.65) 0.986 −0.059

(−0.45)
0.706
(5.36)

1.057
(8.03) 0.985 −0.382

(−2.39)
1.047
(6.56)

1.747
(10.95) 0.970

2 −0.262
(−1.58)

0.833
(5.02)

1.259
(7.59) 0.986 0.033

(0.25)
0.712
(5.41)

1.101
(8.36) 0.984 0.095

(0.60)
1.120
(7.02)

1.676
(10.50) 0.972

3 −0.280
(−1.69)

1.010
(6.09)

1.524
(9.19) 0.979 0.032

(0.25)
0.936
(7.11)

1.469
(11.16) 0.962 −0.422

(−2.64)
1.263
(7.92)

2.006
(12.57) 0.960

4 −0.610
(−3.68)

0.952
(5.74)

1.320
(7.96) 0.984 0.015

(0.12)
0.728
(5.53)

1.077
(8.18) 0.985 −0.437

(−2.74)
1.167
(7.31)

1.924
(12.06) 0.963

5 −0.442
(−2.66)

0.855
(5.15)

1.236
(7.45) 0.986 −0.156

(−1.19)
0.717
(5.44)

1.054
(8.01) 0.985 −0.143

(−0.89)
1.025
(6.42)

1.663
(10.42) 0.972

6 −0.394
(−2.38)

1.021
(6.16)

1.496
(9.02) 0.980 0.137

(1.04)
0.907
(6.69)

1.427
(10.84) 0.973 −0.112

(−0.70)
1.232
(7.72)

1.918
(12.02) 0.963

7 −0.388
(−2.34)

0.846
(5.10)

1.242
(7.49) 0.986 −0.181

(−1.38)
0.732
(5.56)

1.064
(8.08) 0.985 −0.266

(−1.67)
1.026
(6.43)

1.690
(10.59) 0.971

8 −0.396
(−2.39)

1.037
(6.25)

1.520
(9.16) 0.979 0.079

(0.60)
1.032
(7.84)

1.700
(12.92) 0.961 −0.286

(1.79)
1.236
(7.75)

1.948
(12.21) 0.962

9 −0.503
(3.02)

1.071
(6.46)

1.548
(9.33) 0.978 −0.166

(−1.26)
0.987
(7.50)

1.491
(11.33) 0.970 −0.391

(−2.45)
1.364
(8.55)

2.081
(13.04) 0.957

10 −0.249
(−1.50)

1.012
(6.10)

1.485
(8.95) 0.980 −0.112

(−0.85)
1.025
(7.78)

1.511
(11.48) 0.970 −0.107

(−0.67)
1.196
(7.49)

1.752
(10.98) 0.969

11 −0.253
(−1.53)

1.006
(6.07)

1.519
(9.16) 0.979 0.080

(0.61)
1.031
(7.83)

1.637
(12.44) 0.964 −0.139

(−0.87)
1.151
(7.21)

1.734
(10.86) 0.970

Black alder White alder Aspen

1 −0.005
(−0.03)

0.673
(4.33)

1.043
(6.71) 0.985 −0.150

(−1.24)
0.688
(5.68)

0.990
(8.18) 0.983 −0.344

(−2.08)
0.846
(5.11)

1.247
(7.54) 0.986

2 0.147
(0.94)

0.720
(4.63)

1.092
(7.02) 0.984 −0.164

(−1.36)
0.704
(5.82)

1.020
(8.42) 0.982 −0.241

(−1.46)
0.833
(5.04)

1.258
(7.60) 0.986

3 −0.051
(−0.33)

0.799
(5.14)

1.256
(8.08) 0.978 −0.102

(−0.84)
0.808
(6.68)

1.176
(9.71) 0.976 −0.343

(−2.07)
1.026
(6.20)

1.536
(9.28) 0.979

4 0.064
(0.41)

0.714
(4.59)

1.098
(7.06) 0.983 0.099

(0.82)
0.648
(5.35)

1.005
(8.30) 0.983 −0.095

(−0.57)
0.803
(4.86)

1.228
(7.42) 0.986

5 −0.060
(−0.38)

0.663
(4.27)

1.030
(6.62) 0.985 −0.192

(−1.59)
0.724
(5.99)

1.008
(8.33) 0.983 −0.405

(−2.45)
0.848
(5.13)

1.230
(7.44) 0.986
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Table 2. Cont.

Model
B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

6 −0.085
(−0.55)

0.827
(5.32)

1.254
(8.07) 0.978 −0.054

(−0.49)
0.837
(6.91)

1.182
(9.76) 0.976 −0.100

(−0.60)
0.957
(5.78)

1.476
(8.92) 0.980

7 −0.079
(−0.51)

0.679
(4.37)

1.047
(6.74) 0.985 −0.150

(−1.24)
0.705
(5.82)

1.012
(8.36) 0.983 −0.377

(−2.28)
0.849
(5.13)

1.246
(7.53) 0.986

8 −0.085
(−0.55)

0.834
(5.36)

1.273
(8.18) 0.978 −0.115

(−0.95)
0.837
(6.92)

1.193
(9.86) 0.976 −0.376

(−2.28)
1.041
(6.29)

1.535
(9.28) 0.979

9 −0.171
(−1.10)

0.850
(5.47)

1.290
(8.30) 0.977 −0.184

(−1.52)
0.844
(6.97)

1.207
(9.97) 0.975 −0.485

(−2.93)
1.077
(6.51)

1.558
(9.41) 0.978

10 −0.010
(−0.64)

0.830
(5.34)

1.253
(8.06) 0.978 −0.068

(−0.56)
0.847
(7.00)

1.199
(9.91) 0.975 −0.231

(−1.40)
1.019
(6.16)

1.490
(9.01) 0.980

11 −0.101
(−0.65)

0.810
(5.21)

1.243
(8.00) 0.979 −0.018

(−0.15)
0.874
(7.22)

1.233
(10.18) 0.974 −0.208

(−1.26)
1.012
(6.12)

1.509
(9.12) 0.980

Pine Spruce

1 0.021
(0.12)

0.825
(4.78)

1.274
(7.38) 0.987 0.059

(0.35)
0.885
(5.25)

1.318
(7.82) 0.985

2 0.210
(1.22)

0.856
(4.96)

1.276
(7.39) 0.987 0.308

(1.83)
1.002
(5.95)

1.399
(8.30) 0.983

3 0.040
(0.23)

0.957
(5.54)

1.434
(8.31) 0.983 0.065

(0.39)
1.073
(6.37)

1.628
(9.66) 0.976

4 −0.013
(−0.07)

0.872
(5.06)

1.324
(7.67) 0.986 0.232

(1.37)
0.933
(5.53)

1.351
(8.02) 0.984

5 −0.021
(−0.12)

0.796
(4.61)

1.232
(7.14) 0.987 0.174

(1.03)
0.874
(5.20)

1.273
(7.57) 0.986

6 0.022
(0.13)

0.948
(5.49)

1.401
(8.12) 0.984 0.057

(0.34)
1.071
(6.36)

1.613
(9.57) 0.977

7 −0.054
(−0.31)

0.824
(4.78)

1.275
(7.39) 0.987 −0.111

(−0.66)
0.870
(5.16)

1.324
(7.86) 0.984

8 −0.065
(−0.37)

0.987
(6.71)

1.449
(8.40) 0.983 −0.137

(−0.82)
1.078
(6.40)

1.639
(9.73) 0.976

9 −0.171
(−0.99)

1.080
(6.26)

1.566
(9.07) 0.980 −0.224

(−1.33)
1.090
(6.47)

1.640
(9.73) 0.976

10 0.009
(0.05)

0.939
(5.44)

1.342
(7.78) 0.985 −0.012

(−0.07)
1.048
(6.22)

1.568
(9.30) 0.978

11 0.018
(0.10)

0.923
(5.35)

1.332
(7.72) 0.985 −0.016

(−0.10)
0.997
(5.92)

1.520
(9.02) 0.979

* The best model is denoted in bold.
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Table 3. Statistical measures for all of the validated volume models *.

Model
B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

Oak Ash Birch

1 −0.002
(−0.43)

0.040
(6.79)

0.064
(10.94) 0.977 −0.002

(−0.72)
0.023
(7.76)

0.030
(10.25) 0.975 −0.035

(−7.46)
0.060

(12.89)
0.111

(23.67) 0.920

2 −0.006
(−1.10)

0.039
(6.67)

0.061
(10.34) 0.980 0.002

(0.74)
0.021
(7.26)

0.052
(17.63) 0.926 0.006

(1.29)
0.058

(12.24)
0.090

(19.07) 0.948

3 −0.009
(1.49)

0.042
(7.04)

0.060
(10.08) 0.981 −0.000

(−0.10)
0.020
(6.93)

0.026
(8.65) 0.982 −0.039

(−8.29)
0.064

(13.71)
0.120

(25.57) 0.906

4 −0.041
(−6.99)

0.052
(8.80)

0.065
(10.97) 0.977 0.0001

(0.02)
0.022
(7.73)

0.030
(10.18) 0.975 −0.045

(−9.56)
0.069

(14.73)
0.129

(27.34) 0.893

5 −0.025
(−4.23)

0.043
(7.29)

0.061
(10.39) 0.980 −0.008

(−2.69)
0.023
(7.87)

0.030
(10.44) 0.974 −0.015

(−3.22)
0.058

(12.46)
0.101

(21.60) 0.933

6 −0.021
(−3.51)

0.043
(7.35)

0.058
(9.78) 0.982 0.003

(1.18)
0.020
(6.73)

0.025
(8.30) 0.984 −0.014

(−2.99)
0.061

(12.92)
0.107

(22.66) 0.926

7 −0.018
(−3.08)

0.041
(6.98)

0.059
(10.06) 0.981 −0.009

(−2.90)
0.023
(7.86)

0.031
(10.50) 0.974 −0.025

(−5.31)
0.059

(12.66)
0.107

(22.74) 0.923

8 −0.019
(−3.23)

0.043
(7.24)

0.057
(9.24) 0.982 −0.003

(−1.08)
0.020
(6.88)

0.026
(8.92) 0.981 −0.028

(−5.89)
0.062

(13.25)
0.114

(24.33) 0.915

9 −0.027
(−4.70)

0.045
(7.66)

0.062
(10.46) 0.979 −0.012

(−4.15)
0.023
(7.93)

0.030
(10.03) 0.976 −0.037

(−7.88)
0.066

(14.05)
0.124

(26.41) 0.900

10 −0.008
(−1.36)

0.043
(7.27)

0.066
(11.24) 0.976 −0.010

(−3.54)
0.024
(8.10)

0.031
(10.56) 0.973 −0.005

(−1.05)
0.049

(10.51)
0.085

(18.12) 0.953

11 −0.010
(−1.62)

0.046
(7.80)

0.068
(11.61) 0.974 −0.001

(−0.37)
0.025
(8.41)

0.036
(12.04) 0.965 −0.009

(−1.88)
0.048

(10.11)
0.083

(17.70) 0.955

Black alder White alder Aspen

1 0.003
(0.71)

0.023
(5.50)

0.032
(7.40) 0.979 −0.004

(−1.98)
0.022
(9.79)

0.032
(14.63) 0.930 −0.016

(−2.66)
0.041
(6.89)

0.057
(9.51) 0.983

2 0.014
(3.28)

0.026
(6.16)

0.032
(7.43) 0.979 −0.006

(−2.91)
0.024

(10.72)
0.035

(15.60) 0.916 −0.004
(−0.75)

0.040
(6.67)

0.058
(9.68) 0.982

3 −0.001
(−0.15)

0.025
(5.86)

0.033
(7.78) 0.977 −0.003

(−1.33)
0.023

(10.45)
0.033

(15.12) 0.925 −0.015
(−2.50)

0.043
(7.18)

0.059
(9.96) 0.981

4 0.006
(1.52)

0.025
(5.97)

0.034
(7.90) 0.976 0.007

(3.13)
0.020
(9.25)

0.029
(13.27) 0.942 −0.004

(−0.69)
0.042
(7.09)

0.062
(10.48) 0.979

5 −0.001
(−0.25)

0.024
(5.58)

0.032
(7.47) 0.979 −0.007

(3.18)
0.023

(10.47)
0.035

(15.70) 0.919 −0.022
(−3.73)

0.042
(7.10)

0.056
(9.40) 0.983
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Table 3. Cont.

Model
B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

6 −0.003
(−0.80)

0.026
(6.06)

0.034
(7.91) 0.976 −0.001

(−0.51)
0.023

(10.39)
0.034

(15.45) 0.922 −0.003
(−0.58)

0.041
.(6.87)

0.059
(9.94) 0.981

7 −0.003
(−0.67)

0.024
(5.60)

0.032
(7.50) 0.978 −0.004

(−1.89)
0.024

(10.63)
0.34

(15.47) 0.922 −0.017
(−2.92)

0.041
(6.94)

0.057
(9.51) 0.983

8 −0.003
(−0.76)

0.025
(5.98)

0.033
(7.85) 0.976 −0.003

(−1.44)
0.024

(10.80)
0.035

(15.88) 0.918 −0.018
(−3.02)

0.043
(7.17)

0.057
(9.64) 0.983

9 −0.008
(−1.82)

0.026
(6.19)

0.034
(8.06) 0.975 −0.006

(−2.87)
0.025

(11.41)
0.037

(16.54) 0.911 −0.027
(−4.51)

0.045
(7.56)

0.059
(9.86) 0.982

10 −0.003
(−0.72)

0.025
(5.83)

0.033
(7.75) 0.977 −0.003

(−1.53)
0.022

(10.08)
0.035

(15.64) 0.920 −0.007
(−1.18)

0.043
(7.25)

0.061
(10.20) 0.980

11 −0.003
(0.68)

0.025
(5.90)

0.033
(7.79) 0.977 −0.001

(−0.67)
0.024

(10.83)
0.036

(16.20) 0.914 −0.010
(−1.61)

0.047
(7.87)

0.063
(10.58) 0.979

Pine Spruce

1 −0.001
(−0.14)

0.040
(6.97)

0.071
(12.42) 0.984 0.004

(0.72)
0.044
(7.69)

0.064
(11.21) 0.982

2 0.017
(3.04)

0.042
(7.42)

0.068
(12.00) 0.985 0.026

(4.55)
0.049
(8.57)

0.061
(10.67) 0.983

3 0.000
(−0.08)

0.042
(7.29)

0.073
(12.89) 0.983 0.005

(0.89)
0.046
(8.01)

0.066
(11.61) 0.980

4 −0.009
(−1.61)

0.042
(7.38)

0.077
(13.45) 0.981 0.017

(2.98)
0.045
(7.95)

0.063
(10.96) 0.983

5 −0.005
(−0.79)

0.041
(7.19)

0.075
(13.15) 0.982 0.014

(2.44)
0.043
(7.45)

0.065
(11.35) 0.982

6 −0.001
(−0.14)

0.043
(7.48)

0.076
(13.38) 0.982 0.002

(0.27)
0.046
(8.14)

0.068
(11.94) 0.979

7 −0.008
(−1.37)

0.041
(7.18)

0.075
(13.25) 0.982 −0.012

(−2.13)
0.045
(7.92)

0.071
(12.48) 0.977

8 −0.012
(−2.11)

0.044
(7.64)

0.081
(14.21) 0.979 −0.015

(−2.69)
0.048
(8.47)

0.075
(13.22) 0.975

9 −0.020
(−3.48)

0.046
(8.11)

0.089
(15.65) 0.975 −0.021

(−3.65)
0.050
(8.74)

0.079
(13.79) 0.972

10 0.002
(0.42)

0.039
(6.86)

0.068
(11.91) 0.985 0.003

(0.45)
0.041
(7.20)

0.061
(10.70) 0.983

11 0.004
(0.71)

0.039
(6.88)

0.068
(11.98) 0.985 0.002

(0.39)
0.039
(6.92)

0.058
(10.18) 0.985

* The best model is denoted in bold.
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In Tables 2 and 3, when the validation dataset was used, the values of R2 and the RMSE were
obtained with all three modeling techniques (1. Models 1, 2, 4, 5, 7; 2. Models 3, 6, 8; 3. Models 9–11),
show model fitness that is very similar for the both diameter and volume predictions. With the division
of the models into three groups, overall, the values of the statistical measures were similar among the
SDE models (M3, M6, and M8) and the regression models (M9 to M11), while the SDE models (M1,
M2, M4, M5, M7) led to larger R2 and smaller RMSE values (Tables 2 and 3). With the division into
three model groups, the optimal models, M1, M3, and M10 (optimal within each group), were selected
based on all statistical measures, the visualization of residuals, and the model simplicity. The volume
predictions by the stem taper models had very similar statistical measures (see Table 3). However, the
diameter predictions by the SDE taper models that use the additional measurement of the fixed tree
diameter at stem height h = 0 were superior to the others.

4. Discussion

4.1. Final Fitting

Stem taper models fitted on a more complete dataset than the estimation dataset will naturally
produce better estimates for all model parameters. In this study, any recruitment is no longer possible;
thus, the next best solution is to extend the range of the estimation dataset by adding the validation
dataset and renewing the parameter estimation procedures. Table 4 contains the estimated parameters
of the best taper models, Models 1, 3 and 10, for each species group. All parameter estimates are
significant (p < 0.05).

Statistical measures the goodness of fit for the diameter and volume using the stem diameter
measurements from the complete dataset for all species group are presented in Tables 5 and 6,
respectively. For all species groups, the best stem taper models, Models 1, 3 and 10, are not biased for
the diameter predictions. For volume prediction with SDEs, Models 1 and 3 (spruce tree species group)
and the regression model, Model 10 (oak tree species group), feature a slight bias. All tree species
models produced percent root-mean-square error values of 6.71% to 10.75% and 7.91% to 18.02% for the
diameter and volume predictions, respectively. SDE Model 1 produced superior statistical measures
for all tree species groups.
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Table 4. Estimates of the fixed effect parameters for all fitted stem taper models.

Species Model
Parameters of Fitted Models

αB~β1 * βB~β2 * σB~β3 * αM~β4 * βM~β5 * σM~β6 * αT~β7 * βT~β8 * σT~β9 * a0, a1

Oak
1 0.1813 77.788 0.1977 −0.8322 - 0.1420 1.3975 1.3740 0.1661 1.3/h; 0.48

3 0.1750 78.035 0.2000 −0.8459 - 0.1433 1.4723 1.2892 0.1696 1.3/h; 0.53

10 0.3396 0.9568 0.9927 0.3694 0.0122 −0.974 0.1144 −1.5853 9.0317 0.15

Ash
1 −0.1913 54.172 0.2090 −0.8921 - 0.1440 1.4213 1.2293 0.1757 1.3/h; 0.44

3 −0.7740 41.592 0.1643 −0.8887 - 0.1422 1.3468 1.3074 0.1818 1.3/h; 0.47

10 0.2545 0.6893 1.0029 0.4249 −0.356 −1.000 0.0043 −0.1250 9.2630 0.13

Birch
1 0.1057 116.88 0.1122 −1.1217 - 0.2426 0.5635 4.8869 0.2920 1.3/h; 0.71

3 0.1384 123.99 0.1161 −1.1217 - 0.2426 0.5635 4.8869 0.2920 1.3/h; 0.71

10 0.3393 0.9509 0.9908 0.3502 −0.018 −0.9653 0.0869 −1.3239 9.6494 0.13

Black alder
1 −0.0274 51.275 0.2177 −0.8009 - 0.1381 0.9267 2.7227 0.1784 1.3/h; 0.52

3 0.0406 53.403 0.2303 −0.7958 - 0.1385 0.9362 2.6848 0.1768 1.3/h; 0.51

10 −0.0023 0.9430 0.9688 −0.2615 0.4868 −1.434 0.1021 −0.9516 6.9532 0.25

White alder
1 −0.0910 46.120 0.2233 −0.8821 - 0.1511 1.8751 0.9261 0.1402 1.3/h; 0.58

3 −0.1245 45.548 0.2252 −1.8821 - 0.1511 1.8751 0.9261 0.1402 1.3/h; 0.57

10 0.0586 1.1558 0.9636 0.3859 0.0784 −0.9266 0.2623 −2.9388 6.6790 0.25

Aspen
1 0.2800 84.246 0.2826 −0.8373 - 0.1403 1.3975 1.3740 0.1661 1.3/h; 0.48

3 0.4664 98.204 0.3066 −0.8373 - 0.1403 1.3975 1.3740 0.1661 1.3/h; 0.48

10 0.3286 0.9348 0.9907 0.4456 0.1650 −1.1073 0.1462 −1.5230 7.4188 0.26

Pine
1 0.2453 68.813 0.2748 −1.0220 - 0.1752 0.7136 3.8005 0.2259 1.3/h; 0.71

3 0.6334 91.042 0.3203 −1.0220 - 0.1752 0.7136 3.8005 0.2259 1.3/h; 0.71

10 0.0734 1.1571 0.9282 −0.2450 0.5821 −1.3718 0.3076 −1.9119 5.0282 0.3

Spruce
1 0.2389 80.429 0.2498 −0.8388 - 0.1377 0.7944 3.3469 0.2261 1.3/h; 0.59

3 0.2106 78.123 0.2481 −0.8297 - 0.1360 0.8081 3.2693 0.2243 1.3/h; 0.58

10 0.3376 0.9468 0.9578 −0.2098 0.1220 −1.1860 0.0339 −0.8099 7.9206 0.25

* Parameters βi only for Model 10.
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Table 5. Statistical measures for all fitted stem diameter models.

Model
B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

Oak Ash Birch

1 −0.030
(−0.19)

0.800
(5.13)

1.275
(8.18) 0.985 −0.055

(−0.43)
0.641
(5.00)

0.966
(7.53) 0.986 −0.048

(−0.30)
1.021
(6.29)

1.641
(10.11) 0.974

3 0.000
(0.00)

0.958
(6.15)

1.498
(9.61) 0.979 −0.040

(−0.31)
0.860
(6.71)

1.379
(10.75) 0.971 −0.053

(−0.33)
1.201
(7.39)

1.855
(11.42) 0.967

10 0.000
(0.00)

0.971
(6.23)

1.468
(9.43) 0.980 0.000

(0.00)
0.864
(6.74)

1.358
(10.59) 0.972 0.000

(0.00)
1.164
(7.17)

1.674
(10.31) 0.973

Black alder White alder Aspen

1 −0.005
(−0.03)

0.673
(4.33)

1.043
(6.71) 0.985 −0.007

(−0.06)
0.563
(4.54)

0.860
(6.94) 0.988 −0.023

(−0.15)
0.807
(5.21)

1.285
(8.30) 0.985

3 0.003
(0.02)

0.831
(5.17)

1.271
(7.91) 0.979 −0.006

(−0.05)
0.719
(5.80)

1.150
(9.28) 0.978 −0.014

(−0.09)
0.966
(6.23)

1.508
(9.74) 0.979

10 0.000
(0.00)

0.864
(5.38)

1.275
(7.94) 0.979 0.000

(0.00)
0.735
(5.93)

1.124
(9.06) 0.979 0.000

(0.00)
0.979
(6.32)

1.480
(9.55) 0.980

Pine Spruce

1 0.005
(0.03)

0.855
(4.83)

1.316
(7.44) 0.986 0.009

(0.05)
0.830
(4.94)

1.253
(7.45) 0.986

3 0.002
(0.01)

0.991
(5.60)

1.495
(8.46) 0.982 0.026

(0.16)
1.011
(6.01)

1.578
(9.38) 0.978

10 0.000
(0.00)

0.947
(5.35)

1.371
(7.75) 0.985 0.000

(0.00)
0.993
(5.90)

1.508
(8.96) 0.980
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Table 6. Statistical measures for all fitted volume models.

Model
B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2 B

(%)
AB
(%)

RMSE
(%) R2

Oak Ash Birch

1 0.007
(1.39)

0.040
(7.76)

0.060
(11.59) 0.983 0.005

(1.75)
0.020
(7.01)

0.025
(8.92) 0.981 0.000

(0.06)
0.051

(10.39)
0.088

(16.93) 0.958

3 0.009
(1.74)

0.041
(7.81)

0.060
(11.57) 0.984 0.004

(1.46)
0.020
(7.24)

0.026
(9.19) 0.980 0.000

(0.06)
0.052

(10.48)
0.089

(18.02) 0.956

10 0.011 *
(2.17)

0.040
(7.68)

0.059
(11.42) 0.984 0.006

(2.06)
0.020
(7.18)

0.025
(8.99) 0.981 0.003

(0.54)
0.045
(9.12)

0.075
(15.27) 0.969

Black alder White alder Aspen

1 0.005
(1.08)

0.027
(5.91)

0.036
(7.91) 0.982 0.005

(2.25)
0.017
(7.27)

0.028
(12.06) 0.967 0.009

(1.66)
0.041
(7.83)

0.061
(11.63) 0.983

3 0.004
(0.96)

0.027
(6.01)

0.037
(8.04) 0.981 0.005

(2.15)
0.017
(7.25)

0.028
(11.87) 0.968 0.009

(1.77)
0.041
(7.85)

0.061
(11.61) 0.983

10 0.002
(0.36)

0.027
(5.89)

0.037
(8.06) 0.981 −0.003

(−1.53)
0.016
(6.97)

0.030
(12.60) 0.964 0.008

(1.60)
0.040
(7.65)

0.059
(11.84) 0.984

Pine Spruce

1 0.004
(0.71)

0.043
(7.01)

0.073
(12.06) 0.983 0.011 *

(1.95)
0.044
(7.64)

0.065
(11.48) 0.982

3 0.005
(0.80)

0.044
(7.21)

0.075
(12.37) 0.982 0.010 *

(1.74)
0.044
(7.26)

0.067
(11.80) 0.981

10 −0.007
(−1.10)

0.040
(6.61)

0.069
(11.29) 0.985 −0.001

(−0.17)
0.040
(6.93)

0.062
(10.89) 0.983

* The bias of residuals is significant (t-test, p = 0.05).
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4.2. Mean and Quantile Trajectories

Foresters utilize information about the diameter at fixed distances from the base of the tree to
predict the products of different diameter and length dimensions when the tree diameter at breast
height and tree height measurements are known in advance. Stem taper equations can predict the
diameter at any specified height, total stem volume, merchantable volume, and height at any specified
stem diameter. In this section, the three best models for determining the tree diameter at any specified
tree height are illustrated, showing SDE Models 1 and 3 and the regression generalized q-exponential
equation in Model 10. The three finalized stem taper models are visualized in Figure 1. For the
illustration plan, three stems from the complete dataset, corresponding to large, medium, and small
trees were selected.
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solid line, Model 3 by the dotted line, and Model 10 by the dashed line.

Quantile regression is a method used to estimate the full conditional distribution of dependent
variables [35,38]. Information about the distribution of diameters at any specified height is useful, for
example, in understanding tree diameter dynamics against the tree height for the prediction of stem
abnormality and for production management. The SDE stem taper models enables one to define any
moment of stem diameter evolution. The main characteristics of the stem taper process focus on the



Algorithms 2020, 13, 94 21 of 24

mean function, defined by Equations (21)–(28), and the p-quantile (0 < p < 1) functions, which, for
Models 1 and 3, can be formulated in the following forms, respectively:

Model 1

qu1(x, di, hi, p) =


di exp

(
µ1

(
x
hi |α̂B, β̂B, σ̂B,

di
0

di

)
+

√
v1

(
x
hi

∣∣∣β̂B, σ̂B
)
Φ−1

p (0; 1)
)
, 0 ≤ x

hi <
1.3
hi

di exp
(
µ2

(
x
hi |α̂M, σ̂M, 1.

)
+

√
v2

(
x
hi |σ̂M

)
Φ−1

p (0; 1)
)
, 1.3

hi ≤
x
hi < a1

diΦ−1
p (µ3

(
x
hi |α̂T, β̂T, 0

)
; v3(

x
hi

∣∣∣β̂T, σ̂T, 0 )), a1 ≤
x
hi ≤ 1

, (46)

Model 3

qu1(x, di, hi, p) =


di exp

(
LΦ−1

p

(
µ̂0; σ̂2

0

)(
µ1

(
x
hi |α̂B, β̂B, σ̂B, Qp

)
+

√
v1

(
x
hi

∣∣∣β̂B, σ̂B
)
Φ−1

p (0; 1)
))

, x
hi <

1.3
hi

di exp
(
µ2

(
x
hi |α̂M, σ̂M, 1.

)
+

√
v2

(
x
hi |σ̂M

)
Φ−1

p (0; 1)
)
, 1.3

hi ≤
x
hi < a1

diΦ−1
p (µ3

(
x
hi |α̂T, β̂T, 0

)
; v3(

x
hi

∣∣∣β̂T, σ̂T, 0 )), a1 ≤
x
hi ≤ 1

.

(47)
Figure 2 shows the mean stem taper dynamic, as well as its 0.025 and 0.975 quantile dynamics, for

three randomly selected stems from the complete dataset.Algorithms 2020, 13, 94 22 of 25
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5. Conclusions

This study was conducted to develop a stem taper models of the eight dominant tree species in
Lithuania (pine, spruce, oak, ash, birch, black alder, white alder, and aspen), by using SDEs. Classic
stem taper equations are generally described as segmented polynomial and variable exponential
models, which can be studied as a part of more sophisticated models. This work considers eight SDEs
models that can be applied to practical situations. Two strategies have been proposed for managing the
original SDE and producing eight different stochastic models. One of them is the symmetric Vasicek
type stochastic process while the others are the asymmetric Gompertz and gamma type stochastic
processes. The form of the SDE taper models was also designed to be consistent with common
forest inventory practices, to give them practical as well as scientific value for tree profile evaluation.
Quantiles equations of SDEs stem taper models, defined by Equations (46) and (47), enable us to some
degree censor a sample population of trees by excluding trees which diverge from some idealized
stem form. The proposed eight SDE stem taper models were compared to three regression stem taper
equations based on data from the eight dominant tree species in Lithuania (pine, spruce, oak, ash,
birch, black alder, white alder, and aspen). The results of this study indicated that the SDE stem taper
Models 1 and 3 can be used to accurately predict the tree diameter at a specified height of the eight
dominant tree species in Lithuania.
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