
algorithms

Article

Feasibility Pump Algorithm for Sparse
Representation under Gaussian Noise

Florin Ilarion Miertoiu and Bogdan Dumitrescu *

Department of Automatic Control and Computers, University Politehnica of Bucharest, 313 Spl. Independenţei,
060042 Bucharest, Romania; miertoiu.florin21@gmail.com
* Correspondence: bogdan.dumitrescu@acse.pub.ro

Received: 12 February 2020; Accepted: 6 April 2020; Published: 9 April 2020
����������
�������

Abstract: In this paper, the Feasibility Pump is adapted for the problem of sparse representations of
signals affected by Gaussian noise. This adaptation is tested and then compared to Orthogonal
Matching Pursuit (OMP) and the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).
The feasibility pump recovers the true support much better than the other two algorithms and,
as the SNR decreases and the support size increases, it has a smaller recovery and representation error
when compared with its competitors. It is observed that, in order for the algorithm to be efficient, a
regularization parameter and a weight term for the error are needed.

Keywords: sparse representations; mixed integer programming; feasibility pump; Gaussian noise;
regularization; weight term

1. Problem Formulation

The sparse representation of a signal y ∈ Rm is the solution x ∈ Rn with the smallest number
of nonzero elements to the under-determined system y = Dx, where D ∈ Rm×n, m < n, is a
given matrix named dictionary. Since in most cases noise is involved, the data misfit measure is
minimized. Also, rather than attempting to find the sparsest solution, it is easier to bound the number
of nonzero elements by a given threshold K and so the sparse representation can be found by solving
the optimization problem

minimize
x∈Rn

‖y− Dx‖2

subject to ‖x‖0 ≤ K.
(1)

Since the 2-norm is involved, the assumption is that the noise is Gaussian. This is still an
NP-hard problem.

A common way to treat (1) is to replace the l0 norm with the l1 norm, thus relaxing the problem
to a convex one. Transferring also the constraint into the objective, the result is a lasso style problem:

minimize
x∈Rn

‖y− Dx‖2
2 + λ‖x‖1. (2)

A less used approach takes into account the fact that the number of non-zero coefficients in (1) is
bounded using the l0 norm, hence Mixed Integer Programming (MIP) algorithms can be considered to
solve the problem as it is posed, using either an integer variable for the number of coefficients or the
binary decision whether a coefficient is used for the representation or not.

The Feasibility Pump (FP), proposed in References [1,2], is an MIP algorithm that alternates
between solving the problem with relaxed integer constraints and the one satisfying the integer
requirements. This is done until a point is reached that satisfies all the constraints, even though it
might be not optimal, or for a prescribed number of iterations. The Feasibility Pump begins at an initial

Algorithms 2020, 13, 88; doi:10.3390/a13040088 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-6136-5543
https://orcid.org/0000-0003-4555-1714
http://www.mdpi.com/1999-4893/13/4/88?type=check_update&version=1
http://dx.doi.org/10.3390/a13040088
http://www.mdpi.com/journal/algorithms

Algorithms 2020, 13, 88 2 of 9

solution and then proceeds through several iterations to minimize the difference between the solutions
of the alternating problems. Several modifications and improvements [3–10] have been proposed for
this algorithm. See the bibliography in Reference [11] for a more extensive image. The case in which
the l1 norm is used for the representation error was analyzed and a modification of the Feasibility
Pump algorithm for this problem was presented in Reference [12].

We propose to combine the MIP approach with the lasso problem (2). The binary variable
b ∈ {0, 1}n is introduced to perform the role of an indicator that shows which atom of the dictionary
D is used for the representation of y. We then combine (1) with (2) to obtain the problem

minimize
x∈Rn ,b∈{0,1}n

‖y− Dx‖2
2 + λ‖x‖1

subject to 1T
n b ≤ K

−Mb ≤ x ≤ Mb,

(3)

where 1n is a vector of length n whose elements are all equal to 1. The l1 regularization enforces the
sparsity condition on the representation x, as the l1 norm favors sparsity, and helps the convergence
of the Feasibility Pump algorithm, which will be used as an (approximate) MIP solver. As in
Reference [13], a pioneer of MIP techniques for sparse representations, the big-M trick is employed in
(3), where M is a preset parameter chosen as M = 1.1‖DTy‖∞/‖D‖2

2. This is used to bound the size of
the representation coefficients. Note that if b = 0, then x = 0; if b = 1, then x is practically free, since
the constraint |x| ≤ M is of no consequence due to the large value of M.

Finally, to implement problem (3), an auxiliary variable w ∈ Rn is introduced for the regularization
term, resulting in

minimize
x∈Rn ,w∈Rn ,b∈{0,1}n

xT DT Dx− 2yT Dx + λ1T
n w

subject to 1T
n b ≤ K

−w ≤ x ≤ w

w ≤ Mb.

(4)

In this paper, the focus is on the implementation of the Feasibility Pump of problem (4). Our
solution is based on the Objective FP, originated in Reference [3]. Section 2 presents our Feasibility
Pump algorithm and the implementation details. Section 3 is dedicated to experimental results showing
the behavior of our algorithm and comparisons with the Orthogonal Matching Pursuit (OMP) and
Fast Iterative Shrinkage-Thresholding (FISTA) algorithms. We show that our regularized Feasibility
Pump algorithm is consistently better when compared to the other algorithms. Section 4 presents the
conclusions and future ideas for research.

2. Algorithm

Algorithm 1 solves the reformulation (4) of problem (1). It is similar in structure to that
in Reference [12], although the underlying optimization problem and some important details are
different. We will point out the differences when they are presented.

The Feasibility Pump algorithm starts with the computation of the solution for the relaxed version
of the initial problem (4), where b takes values in the [0, 1]n interval, instead of being a binary variable.
The problem becomes convex; more precisely, it belongs to quadratic programming; the MATLAB
function quadprog is used to solve it, based on an interior-point algorithm; other solvers or packages
could be used as well.

The real solution b is rounded to the vector b̃ ∈ {0, 1}n. The largest K elements of b are rounded
upwards to 1, while the others are rounded downwards to 0. Indirectly, a sparse solution is obtained
with exactly K elements.

Algorithms 2020, 13, 88 3 of 9

Algorithm 1: Modified Feasibility Pump.

Data: Dictionary D ∈ Rm×n, signal to represent y ∈ Rm, number of non-zero coefficients used
for the representation K ∈ Z, maximum number of iterations Iter, weight parameters α,
λ, γ

Result: a feasible solution x ∈ Rn

Solve relaxed (4) with b ∈ [0, 1]n. The vectors x and b are obtained.
Use rounding procedure to obtain vector b̃.
while number of iterations ≤ Iter do

Solve problem (5). The vectors x and b are obtained.
if b is integer then

return x;
end
Use rounding procedure to obtain vector b̃.
if cycle is detected then

Use perturbation on b̃.
end
Update the value of α using (6).

end
Use Least Squares Method to optimize the error for the found support.

In each iteration of the Feasibility Pump, the vector b and the tentative solution x are updated
by solving

minimize
x∈Rn ,w∈Rn ,b∈[0,1]n

(1− α)4(b, b̃) + α

[
K

err2
init

(xT DT Dx− 2yT Dx) + λ1T
n w

]
subject to 1T

n b ≤ K

−w ≤ x ≤ w

w ≤ Mb,

(5)

where4(b, b̃) = ‖b− b̃‖1 and errinit is the representation error at the initial Feasibility Pump step (4).
This quadratic programming problem is also solved with quadprog in MATLAB. The iteration step
has an objective that combines the representation error ‖y− Dx‖2 with a term that enforces the new
solution b to be near from the current integer vector b̃, with the aim of making the solution b nearer
from a binary vector. This kind of modification, named Objective FP, is proposed in Reference [3]
and is essential in our case for finding good values of the objective; feasibility is easy to obtain, since
rounding always gives a K-sparse solution, and so the original FP [1] would always converge in one
iteration, possibly to a poor solution.

After each iteration, the parameter α is reduced and the integer condition will weigh more than
the error objective. The reduction of α is done by multiplication with a value γ ∈ (0, 1):

α← γα. (6)

A large γ will give the smallest error, but the execution time is longer, while a smaller γ offers
faster results, but with a larger error.

During our tests, it was observed that the addition of the factor K
err2

init
in (5) is necessary to increase

the influence of the error in the optimization process because the error is much smaller than the4(b, b̃)
and ‖x‖1 terms and it needs an additional weight parameter. The division with the square of the error
removes the difference of the orders in magnitude between the4(b, b̃) term, regularization term and
the error term during the first iteration steps. With each iteration the importance of the error terms

Algorithms 2020, 13, 88 4 of 9

decays. Without the weight, the importance of the error term decays too fast and has little effect in
the optimization process; the weight is used so that the error term plays an important role for more
iterations of the algorithm. The factor K is added such that the error term is as important as the4(b, b̃)
term for more time, as α decreases the importance of the error term. It also helps the choice of λ. As
0 ≤ 4(b, b̃) ≤ 2K, with 2K being nearly impossible to attain, the multiplication with K puts both the
error and the feasibility term on similar weights; without the K value, the square error would only
normalize the error term, while the magnitude of the4(b, b̃) term would act as a weight that forces
the algorithm to focus more on getting a sparse solution, than on reducing the representation error.
We note that directly using the algorithm from Reference [12], without the factor K

err2
init

, leads to poor

results. Balancing the terms of the objective, like we did in (5), is also done in Reference [9], but with
different means.

The regularization term ‖x‖1 has a double role. It helps enforce the desired sparsity and also
helps the algorithm to converge when the dictionary is ill conditioned. The lack of the regularization
term increases the running time of the algorithm, sometimes not even reaching convergence. The λ

tuning parameter is very important as it influences heavily the performance of the model, as shown in
Reference [14]. Note that at the end of Algorithm 1, when the support is settled, the regularization term
is removed and the (optimal) least squares solution corresponding to that sparse support is computed;
such a feature was not present in Reference [12].

The perturbation strategy used when cycles occur in the Feasibility Pump iterative process is
similar to the one used in Reference [12]; it belongs to the category of strong perturbations, as all
elements of b̃ are perturbed. Inspired by Reference [6], we consider that a cycle appears when one of the
following conditions is met (we use index t for the current iteration and t− 1 for the previous one): (i) b̃
is the same as in the previous iteration and |αt − αt−1| < 10−3 (note that even if b̃ is the same, different
values of α lead to different solutions in (5)), (ii) ‖bt− bt−1‖ < 10−4, (iii) ‖bt− bt−1‖ ≥ 0.9‖bt−1− bt−2‖;
the last two conditions take into account both the absolute value of ‖bt − bt−1‖ and its relative change
with respect to the previous iteration.

The algorithm described above is named Sparse Quadratic Feasibility Pump (SQFP). Unlike the
Branch and Bound algorithms from Reference [13], SQFP may not attain the optimal solution, but it
has a running time that is comparable with those of popular algorithms for sparse representation.
In contrast, the MIP algorithms from Reference [13] may be extremely slow for some problems.

3. Results

In order to obtain numerical results, the testing scheme from Reference [12] is used, with the
significant distinction that noise is now Gaussian.

In a first test, for which we report extensive results, we use randomly generated dictionaries with
condition numbers of 100, 1000, 10,000 and 100,000. For each condition number, 160 dictionaries of
size 80× 200 are generated. The test signals are obtained with y = Dxtrue + u, where the solutions
xtrue have K ∈ {5, 7, 9, 11} nonzero coefficients generated randomly following a Gaussian distribution,
in random positions; the noise u is Gaussian and its variance is chosen such that the signal to noise
ratios have values 10, 20, 30, ∞.

For the computation of the representation error, the relative error

e =
‖Dx− y‖2

‖y‖2
(7)

is used (where now x is the computed solution), in accordance with the formulation of the initial
problem (1).

We have implemented SQFP as shown in Algorithm 1. The initial weight α is set to 1 and
is multiplied by an update factor γ = 0.9 at each iteration; these values seem to provide a good
compromise between convergence speed and representation error. The number of iterations Iter is set

Algorithms 2020, 13, 88 5 of 9

to 1000. We run SQFP with 50 equally spaced values of the regularization parameter λ from 0 to 1.
The value for which the mean representation error is the smallest is considered the best choice for λ.

Several types of algorithms have been proposed [15] to find the solution of (1) or its relaxed
version (2). The OMP (Orthogonal Matchmaking Pursuit) [16] and the FISTA (Fast Iterative
Shrinkage-Thresholding Algorithm) [17] algorithms where chosen for comparison as they are some of
the most commonly used.

Both FISTA and SQFP use the regularization parameter λ. FISTA is tested with 500 equally spaced
values between 0 to 0.05.

The algorithms are implemented in MATLAB and tested on a computer with a 6-core 3.4 GHz
processor and 32 GB of RAM.

The variation of the error produced by SQFP depending on λ is represented in Figure 1 for K = 11
and condition number 1000. It can be seen that for the lower SNR values, the error has a relatively
well defined minimum around λ = 0.5 for SNR = 10 and λ = 0.18 for SNR = 20. From the minimum
point the error increases as λ increases. For the larger SNR values, the error is very small in the
beginning, with small variations as λ increases from zero; after a certain value the error increases a lot.
In these cases regularization offers very small benefits.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ

0.27

0.272

0.274

0.276

0.278

0.28

0.282

0.284

0.286

e
S
F
P
r
e
g

SNR = 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ

0.0935

0.094

0.0945

0.095

0.0955

0.096

0.0965

0.097

0.0975

e
S
F
P
r
e
g

SNR = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ

0.029

0.03

0.031

0.032

0.033

0.034

0.035

0.036

0.037

e
S
F
P
r
e
g

SNR = 30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

λ

0

1

2

3

4

5

6

7

e
r
r
o
r

×10-3 SNR = Inf

Figure 1. Mean representation error depending on λ for K = 11, for matrix conditioning of 1000.

An example of relative errors (7) is given in Figure 2, where SQFP shows the ability to consistently
produce solutions whose errors are at about the SNR level. In the same conditions, the recovery
error ‖x− xtrue‖/‖xtrue‖ has the values shown in Figure 3; although with more variability, the errors
decrease nicely with the SNR for all values of K.

Algorithms 2020, 13, 88 6 of 9

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

Test number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

e
S
Q
F
P

K = 5

SNR =10
SNR = 20
SNR = 30
SNR = Inf

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

Test number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

e
S
Q
F
P

K = 7

SNR =10
SNR = 20
SNR = 30
SNR = Inf

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

Test number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

e
S
Q
F
P

K = 9

SNR =10
SNR = 20
SNR = 30
SNR = Inf

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

Test number

0

0.05

0.1

0.15

0.2

0.25

0.3

e
S
Q
F
P

K = 11

SNR =10
SNR = 20
SNR = 30
SNR = Inf

Figure 2. Relative errors for Sparse Quadratic Feasibility Pump (SQFP) for matrix conditioning
of 10,000.

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

Test number

0

0.05

0.1

0.15

0.2

0.25

0.3

e
r
e
c,
S
Q
F
P

K = 5

SNR = 10
SNR = 20
SNR = 30
SNR = Inf

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

Test number

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

e
r
e
c,
S
Q
F
P

K = 7

SNR =10
SNR = 20
SNR = 30
SNR = Inf

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

Test number

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

e
r
e
c,
S
Q
F
P

K = 9

SNR =10
SNR = 20
SNR = 30
SNR = Inf

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031323334353637383940

Test number

0

0.1

0.2

0.3

0.4

0.5

0.6

e
r
e
c,
S
Q
F
P

K = 11

SNR = 10
SNR = 20
SNR = 30
SNR = Inf

Figure 3. Recovery errors for SQFP for matrix conditioning of 10,000.

The mean errors obtained by running the tests are displayed in Figures 4–7. The first (red) bar in
each cell corresponds to the relative error of FISTA, the second (green) is for SQFP and the last (blue) is
for OMP.

It can be seen that as the sparsity level K increases, the SQFP algorithm has a much smaller
representation error than FISTA and, only for some condition numbers, than OMP. For K = 5 and
K = 7, the difference between the algorithms is very small. For larger K, SQFP is clearly better.

To evaluate the complexity of the algorithms, we note that the mean number of iterations is 43.33
for SQFP and 726.56 for FISTA. The FISTA iterations are much less complex and time consuming.
The average running time for SQFP is 1.09 s, for FISTA is 0.43 s and for OMP is 0.0025 s.

Algorithms 2020, 13, 88 7 of 9

0

0.05

0.1

0.15

0.2

0.25

0.3

SNR = 10

K=5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
K=7

0

0.05

0.1

0.15

0.2

0.25

0.3
K=9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
K=11

0

0.02

0.04

0.06

0.08

0.1

SNR = 20

0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

SNR = 30

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0

0.005

0.01

0.015

0.02

0.025

0.03

0

0.02

0.04

0.06

0.08

FISTA

SQFP

OMP

Figure 4. Mean errors for all algorithms, dictionary size 80× 200, condition number 100.

0

0.05

0.1

0.15

0.2

0.25

0.3

SNR = 10

K=5

0

0.05

0.1

0.15

0.2

0.25

0.3
K=7

0

0.05

0.1

0.15

0.2

0.25

0.3
K=9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
K=11

0

0.02

0.04

0.06

0.08

0.1

SNR = 20

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.05

0.1

0.15

0.2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

SNR = 30

0

0.005

0.01

0.015

0.02

0.025

0.03

0

0.01

0.02

0.03

0.04

0.05

0.06

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

FISTA

SQFP

OMP

Figure 5. Mean errors for all algorithms, dictionary size 80× 200, condition number 1000.

0

0.05

0.1

0.15

0.2

0.25

0.3

SNR = 10

K=5

0

0.05

0.1

0.15

0.2

0.25

0.3
K=7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
K=9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
K=11

0

0.02

0.04

0.06

0.08

0.1

SNR = 20

0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

SNR = 30

0

0.005

0.01

0.015

0.02

0.025

0.03

0

0.005

0.01

0.015

0.02

0.025

0.03

0

0.02

0.04

0.06

0.08

0.1

FISTA

SQFP

OMP

Figure 6. Mean errors for all algorithms, dictionary size 80× 200, condition number 10,000.

Algorithms 2020, 13, 88 8 of 9

0

0.05

0.1

0.15

0.2

0.25

0.3

SNR = 10

K=5

0

0.05

0.1

0.15

0.2

0.25

0.3
K=7

0

0.05

0.1

0.15

0.2

0.25

0.3
K=9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
K=11

0

0.02

0.04

0.06

0.08

0.1

SNR = 20

0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.05

0.1

0.15

0.2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

SNR = 30

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0

0.02

0.04

0.06

0.08

0

0.01

0.02

0.03

0.04

0.05

0.06

FISTA

SQFP

OMP

Figure 7. Mean errors for all algorithms, dictionary size 80× 200, condition number 100,000.

To evaluate the quality of support recovery, we note that, out of the 640 tests, false negatives
appear in 254 (39%) cases for OMP, in 225 (35%) cases for SQFP and in 281 (44%) cases for FISTA.
While SQFP needs the longest running time, it recovers the support more precisely than the two
other methods. FISTA shows a false positive in 609 (95%) cases. False negatives indicate when an
atom is missing from the support of the true solution. False positives appear when the support of the
computed solution contains atoms outside the true support.

The second experiment is made with the same parameters as before, but now the dictionary size
is 80× 400, the condition number is 1000 and K ∈ {9, 11, 13, 15}. The overcompleteness factor is larger
than in the first experiment, hence the properties of the dictionary are less favorable to sparse recovery.
Also, higher sparsity levels are considered, hence the problem becomes more difficult. The mean errors
are shown in Figure 8. Now the results of SQFP are even clearly better than those of OMP and FISTA,
confirming its ability to work well in more difficult conditions.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

SNR = 10

K=9

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
K=11

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
K=13

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
K=15

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

SNR = 20

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.05

0.1

0.15

0.2

0

0.05

0.1

0.15

0.2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

SNR = 30

0

0.02

0.04

0.06

0.08

0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.05

0.1

0.15

FISTA

SQFP

OMP

Figure 8. Mean errors for all algorithms, dictionary size 80× 400, condition number 1000.

4. Conclusions

In this paper we have presented a version of the Feasibility Pump algorithm adapted for the
sparse representation problem with l2 norm of the error. Our tests show that the Feasibility Pump
gives a better solution when compared with FISTA and OMP, especially at higher sparsity levels.
The addition of the weight term for the error proves to be a very important factor for the performance
of the algorithm, as it forces the representation error to be smaller. The regularization and the big-M
trick limit the magnitude of the values of the coefficients and thus allow the use of this algorithm
for ill-conditioned problems. Future lines of research will focus on improving the randomization

Algorithms 2020, 13, 88 9 of 9

step, using different regularization terms, treating other norms of the error, implementing recent
modifications of FP, like those from [5,9], and adapting the algorithm for other sparse problems
reformulations and dictionary learning.

Author Contributions: Conceptualization, B.D. and F.I.M.; Methodology, B.D. and F.I.M.; Software, F.I.M.;
Validation, F.I.M. and B.D.; Formal analysis, B.D. and F.I.M.; Investigation, F.I.M.; Data curation, F.I.M.;
Writing—original draft preparation, F.I.M.; Writing—review and editing, B.D.; Visualization, F.I.M.; Supervision,
B.D.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fischetti, M.; Glover, F.; Lodi, A. The feasibility pump. Math. Program. 2005, 104, 91–104. [CrossRef]
2. Bertacco, L.; Fischetti, M.; Lodi, A. A feasibility pump heuristic for general mixed-integer problems. Discret.

Optim. 2007, 4, 63–76. [CrossRef]
3. Achterberg, T.; Berthold, T. Improving the feasibility pump. Discret. Optim. 2007, 4, 77–86. [CrossRef]
4. Huang, K.; Mehrotra, S. An empirical evaluation of walk-and-round heuristics for mixed integer linear

programs. Comput. Optim. Appl. 2013, 55, 545–570. [CrossRef]
5. De Santis, M.; Lucidi, S.; Rinaldi, F. A new class of functions for measuring solution integrality in the

Feasibility Pump approach. SIAM J. Optim. 2013, 23, 1575–1606. [CrossRef]
6. De Santis, M.; Lucidi, S.; Rinaldi, F. Feasibility pump-like heuristics for mixed integer problems. Discret.

Appl. Math. 2014, 165, 152–167. [CrossRef]
7. Boland, N.; Eberhard, A.; Engineer, F.; Fischetti, M.; Savelsbergh, M.; Tsoukalas, A. Boosting the feasibility

pump. Math. Program. Comput. 2014, 6, 255–279. [CrossRef]
8. Dey, S.; Iroume, A.; Molinaro, M.; Salvagnin, D. Exploiting sparsity of MILPs by improving the

randomization step in feasibility pump. SIAM J. Optim. 2016, 28, 355–378. [CrossRef]
9. Geißler, B.; Morsi, A.; Schewe, L.; Schmidt, M. Penalty alternating direction methods for mixed-integer

optimization: A new view on feasibility pumps. SIAM J. Optim. 2017, 27, 1611–1636. [CrossRef]
10. Dey, S.; Iroume, A.; Molinaro, M.; Salvagnin, D. Improving the randomization step in feasibility pump.

SIAM J. Optim. 2018, 28, 355–378. [CrossRef]
11. Berthold, T.; Lodi, A.; Salvagnin, D. Ten years of feasibility pump, and counting. EURO J. Comput. Optim.

2019, 7, 1–14. [CrossRef]
12. Miertoiu, F.I.; Dumitrescu, B. Feasibility Pump Algorithm for Sparse Representation under Laplacian Noise.

Math. Probl. Eng. 2019, 2019, 5615243. [CrossRef]
13. Bourguignon, S.; Ninin, J.; Carfantan, H.; Mongeau, M. Exact sparse approximation problems via

mixed-integer programming: Formulations and computational performance. IEEE Trans. Signal Process.
2016, 64, 1405–1419. [CrossRef]

14. Kirkland, L.A.; Kanfer, F.; Millard, S. LASSO tuning parameter selection. Annu. Proc. S. Afr. Stat. Assoc.
Conf. 2015, 57, 49–56.

15. Zhang, Z.; Xu, Y.; Yang, J.; Li, X.; Zhang, D. A survey of sparse representation: Algorithms and applications.
IEEE Access 2015, 3, 490–530. [CrossRef]

16. Tropp, J.A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 2004,
50, 2231–2242. [CrossRef]

17. Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J.
Imaging Sci. 2009, 2, 183–202. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10107-004-0570-3
http://dx.doi.org/10.1016/j.disopt.2006.10.001
http://dx.doi.org/10.1016/j.disopt.2006.10.004
http://dx.doi.org/10.1007/s10589-013-9540-0
http://dx.doi.org/10.1137/110855351
http://dx.doi.org/10.1016/j.dam.2013.06.018
http://dx.doi.org/10.1007/s12532-014-0068-9
http://dx.doi.org/10.1137/16M1095962
http://dx.doi.org/10.1137/16M1069687
http://dx.doi.org/10.1137/16M1095962
http://dx.doi.org/10.1007/s13675-018-0109-7
http://dx.doi.org/10.1155/2019/5615243
http://dx.doi.org/10.1109/TSP.2015.2496367
http://dx.doi.org/10.1109/ACCESS.2015.2430359
http://dx.doi.org/10.1109/TIT.2004.834793
http://dx.doi.org/10.1137/080716542
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Problem Formulation
	Algorithm
	Results
	Conclusions
	References

