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Abstract: Inspired by biological systems, swarm intelligence algorithms are widely used to solve
multimodal optimization problems. In this study, we consider the hybridization problem of an
algorithm based on the collective behavior of fish schools. The algorithm is computationally
inexpensive compared to other population-based algorithms. Accuracy of fish school search increases
with the increase of predefined iteration count, but this also affects computation time required
to find a suboptimal solution. We propose two hybrid approaches, intending to improve the
evolutionary-inspired algorithm accuracy by using classical optimization methods, such as gradient
descent and Newton’s optimization method. The study shows the effectiveness of the proposed
hybrid algorithms, and the strong advantage of the hybrid algorithm based on fish school search
and gradient descent. We provide a solution for the linearly inseparable exclusive disjunction
problem using the developed algorithm and a perceptron with one hidden layer. To demonstrate
the effectiveness of the algorithms, we visualize high dimensional loss surfaces near global extreme
points. In addition, we apply the distributed version of the most effective hybrid algorithm to the
hyperparameter optimization problem of a neural network.

Keywords: evolutionary optimization; swarm intelligence; fish school search; gradient descent;
hybrid algorithm; Newton’s algorithm; neural network training; hyper parameter optimization;
distributed computations

1. Introduction

Optimization problems arise in various modern economic sectors, including engineering [1],
chemistry [2], economics [3], operations research and computer science. The recent research in artificial
intelligence expanded the variety of optimization problems. Indeed, when a neural network is being
trained, its loss function is being optimized in respect to the weights of the connections among neural
network layers [4]; when a data clustering algorithm like k-means is evaluated, an optimization
algorithm minimizes the distance between points in respect to the locations of centroids [5]. Neural
network hyperparameter optimization is another promising research area.

In mathematics, optimization denotes the selection of the best element
→
x ∈ X from some set

of available alternatives X. The optimization process consists of maximizing or minimizing a real
function f : X→ R by systematically choosing

→
x ∈ X and computing the value of f

(
→
x
)
. The goal of
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the maximization process is to find such
→
x max, that ∀

→
x ∈ X : f

(
→
x max

)
≥ f

(
→
x
)
. The goal of the dual

minimization process is to find such
→
x min, that ∀

→
x ∈ X : f

(
→
x min

)
≤ f

(
→
x
)
.

Evolutionary algorithms are a family of algorithms inspired by biological evolution.
These algorithms are also known as population-based, due to the fact that they process a variety of
solutions to an optimization problem at a time. Many kinds of population-based algorithms were
introduced, including genetic algorithms [6], swarm intelligence algorithms [7], ant colony algorithm [8],
bee swarm algorithm [9], fish school search [10] and others. Modifications and hybrid versions of
these algorithms exist [11], applied to solve practical problems. Such problems include parameter
optimization of models based on support vector machine (SVM) algorithms [12] or random forests [13],
neural network architecture optimization using evolutionary-inspired algorithms [14].

In this paper, we consider the hybridization problem of the evolutionary-inspired algorithm based
on the collective behavior of fish schools, invented by Bastos Filho et al. in [10] and known as Fish
School Search (FSS). Variations of FSS exist, intending to improve the performance of the original
algorithm on multi-plateau functions [15]. In 2017, Bastos Filho et al. proposed a multi-objective
version of FSS [16].

Recently, many advanced population-based optimization algorithms have been proposed, such
as particle swarm optimization [17], memetic computing [18], genetic algorithms [6], differential
evolution [19] and others. The original FSS algorithm showed superior results in comparison to particle
swarm optimization in [20]. Moreover, FSS and its modifications outperformed genetic and differential
evolution algorithms in image reconstruction of electrical impedance tomography in [21]. Other known
FSS applications include its use in intellectual assistant systems [22], in solving assembly line balancing
problems [23] and in multi-layer perceptron training for mobility prediction [24], where the application
of FSS allowed to obtain more accurate results compared to back propagation and bee swarm algorithm.
The aims of the evolutionary-inspired FSS algorithm include the minimization of time required to find
the suboptimal solution and the elimination of the premature convergence problem, inherent to many
population-based algorithms. FSS is a relatively lightweight algorithm, compared to other swarm
intelligence algorithms.

However, the results produced by evolutionary computation can be less accurate compared to the
results that can be obtained from classical optimization methods; and classical optimization methods
have a higher chance to converge to a locally optimal solution. Due to the fact that population-based
algorithms process a variety of solutions at a time, by starting from different points in the search space
of a given fitness function, there is a higher chance for such algorithms to converge closer to a globally
optimal solution, especially when the search space is multimodal. Hence, in global optimization tasks,
when high solution accuracy matters, it is reasonable to take the best from both worlds, by first applying
a global search metaheuristic and then using a local search method to converge to the closest optimum.

The hybridization idea of evolutionary-inspired algorithms and classical optimization methods
is not new. A similar approach was proposed by Requena-Pérez et al. in 2006 for accurate inverse
permittivity measurement of arbitrarily shaped materials [25]. In the proposed hybrid approach,
the best solution obtained by a genetic algorithm was used as a starting point for gradient descent.
The results demonstrate that the hybrid algorithm requires fewer iterations to obtain a similar accuracy,
compared to the original genetic and gradient descent algorithms used separately, applied to the
calculations of complex permittivity of materials. Using a similar strategy, Ganjefar et al. in [26]
achieved better accuracy and faster convergence speed when training a qubit neural network. Another
similar hybrid algorithm was proposed by Reddy et al. in [27], which involved post-hybridization of
the enhanced bat algorithm with gradient-based local search. The algorithm proved its superiority
over other bat algorithms in dealing with multidimensional test functions for optimization. Coelho
and Mariani proposed the use of the population-based particle swarm optimization algorithm with a
classical Quasi-Newton local search method [28]. In the proposed technique, the best solution obtained
by swarm intelligence was used as a starting point for the Broyden–Fletcher–Goldfarb–Shanno
optimization method.
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This paper extends the research presented earlier by Liliya A. Demidova and Artyom V.
Gorchakov [4], where we proposed a hybrid algorithm based on FSS and classical optimization
methods, such as the Newton’s method in optimization and gradient ascent. In this paper, we provide
additional benchmarks on test functions for optimization and the results of the non-parametric
statistical hypothesis Wilcoxon signed-rank test, to demonstrate the effectiveness of the proposed
techniques. The test was used to determine if significant statistical differences exist among the original
algorithm and the considered hybrids. We also describe the applications of the most effective hybrid
algorithm, including loss function optimization during neural network training, and hyperparameter
optimization of neural networks. Evolutionary-inspired algorithms can be easily distributed across
multiple computational nodes using various distribution strategies [29], such as master-slave model
or island model. We provide the solution of the hyperparameter optimization problem of a neural
network, by computing fitness function values in distributed mode, to decrease the time required to
find the suboptimal solution.

However, the proposed algorithms based on FSS and classical optimization techniques impose a
limitation—the methods cannot optimize non-differentiable numerical functions. Hence, the discussed
techniques cannot be used for neural network training wherein the derivative of the loss function
does not exist. The computational complexity of FSS depends on the considered fitness function, the
dimensionality of the search space, predefined iteration count and population size. In the proposed
hybrid algorithms, the impact on the time complexity of the incorporated classical methods is relatively
small, compared to the impact of the evolutionary-inspired algorithm. In Section 3 of this work,
alongside with accuracy comparison, we compare the time required for the hybrid algorithms to
converge. The results of the numerical experiment confirm, that the accuracy of the solutions obtained
by the discussed hybrid algorithms improve at the cost of minor time losses.

2. Materials and Methods

The objective of any optimization technique is to find the optimal or approximately optimal
solution. The core idea of FSS is to make the agents in a population move towards the positive gradient
of the optimized function in order to gain weight; agents with larger weight have a greater impact
on the population behavior. On each iteration of the algorithm, one feeding and three movement
operators are applied sequentially, and then the best agent

→
x best is chosen, which is considered as the

suboptimal solution until a new agent is found with better fitness function value. First, the individual
movement operator is applied, given by:

→
x i,t+1 =

→
x i,t + stepind

→
r . (1)

where,
→
r is the vector containing random real numbers, uniformly distributed on [−1, 1]. The stepind

variable denotes the maximum displacement of an agent,
→
x i,t is the position of i-th agent on t-th

iteration. The new position is accepted only in case if f
(
→
x i,t+1

)
> f

(
→
x i,t

)
. To perform the check, the

delta value is computed for each agent, according to the following:

∆ fi,t+1 = f
(
→
x i,t+1

)
− f

(
→
x i,t

)
. (2)

where, f is the fitness function. After the individual movement step, the feeding operator is applied to
the whole population. The scalar weight value

→
wi,t is associated with each

→
x i,t agent. The weights of

all agents are adjusted on every iteration according to the following formula:

∆wi,t+1 = wi,t +
∆ fi,t+1

max[∆ ft+1]
. (3)

As a result, the weights of agents with greater fitness function improvements increase more, compared
to other agents. On the next step, the collective-instinctive movement operator is applied to every
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agent in the population. The position delta value is computed for each agent. The collective-instinctive
movement occurs according to the following formula:

→
x i,t+1 =

→
x i,t+1 +

Σn
i=1

(
→
x i,t+1 −

→
x i,t

)
∆ fi,t+1

Σn
i=1∆ fi,t+1

. (4)

Then, the barycenter vector
→

B t+1, required for the collective-volitive movement step, is computed:

→

B t+1 =
Σn

i=1
→
x i,t+1wi,t+1

Σn
i=1wi,t+1

. (5)

The collective-volitive movement operator is given by:

→
x i,t+1 =

→
x i,t+1 ± stepvol

→
r
→
x i,t+1 −

→

B t+1∣∣∣∣∣∣∣∣∣∣→x i,t+1 −
→

B t+1

∣∣∣∣∣∣∣∣∣∣ . (6)

The
→
r vector contains real numbers, uniformly distributed on the [−1, 1] interval. The stepvol variable

denotes the collective-volitive movement step size. If the total weight of the population has increased
since the last iteration, the ‘−’ sign is used in Equation (6); this means that the agents are attracted to
the barycenter of the population. Otherwise we use the ‘+‘ sign in Equation (6); the agents are spread
away from the population barycenter.

On each iteration of FSS, the variables stepind and stepvol decay linearly. If we are maximizing
a function f , then on each iteration t the best agent

→
x t,best is chosen from the Pt population, that

∀
→
x t ∈ Pt : f

(
→
x t,best

)
≥ f

(
→
x t

)
. The algorithm stops when the predefined iteration count itermax is

reached. The best agent found on the last iteration is assumed as the optimal solution of the maximized
function f .

The FSS algorithm shows accurate results in multimodal optimization because of its
population-based nature. The algorithm is computationally inexpensive compared to other swarm
intelligence algorithms, does not require storing or computing large matrices or finding solutions
to complicated equations. However, due to the heuristic nature of the algorithm, the estimated
optimum can sometimes not be as accurate, as the optimum that classical optimization algorithms
can find. The drawback of the classical gradient-based or Hessian-based algorithms is that they often
converge to local minima or maxima, although various techniques exist, that can prevent the premature
convergence of such algorithms. To take the best from both worlds, we propose the combination of the
evolutionary-inspired FSS algorithm and the two classical optimization methods.

The first proposed algorithm consists of the population-based FSS described above in detail and
of the Newton’s method in optimization. The latter classical optimization algorithm is based on the
Newton’s method for finding roots of a differentiable function f by solving the f

(
→
x
)
= 0 equation.

Such solutions are the stationary points of the considered function f , which can either be minimum,
maximum or saddle points [30]. In general, the iterative scheme for the Newton’s classical optimization
method is given by:

→
x t+1 =

→
x t −

[
H f

(
→
x t

)]−1
∇ f

(
→
x t

)
. (7)

where, t is the iteration number,
→
x t vector represents the solution on the t-th iteration,

[
H f

(
→
x t

)]−1

denotes the inversion of the Hessian matrix, ∇ f
(
→
x t

)
represents the gradient of the function f at the

given point
→
x t. The derivatives can be computed either symbolically or numerically, using finite

difference approximation [31]. The iterative optimization process continues until the specified iteration
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limit is not achieved, or while
∣∣∣xi,t+1 − xi,t

∣∣∣ > ε, where xi,t represents the i-th component of the
→
x t vector

on iteration t.
In the proposed hybrid approach, we run itermax iterations of the FSS algorithm first, and then,

using the discovered
→
x best solution as the starting point, we apply the Newton’s method in optimization.

The Newton’s method converges to the closest to
→
x best stationary point. Notably, in some cases the

Newton’s method is not applicable, for example, when the Hessian matrix is singular, and, consequently,
not invertible.

The second proposed algorithm is based on gradient descent methods. Gradient descent is an
iterative optimization technique for finding the minimum of a function, and gradient ascent is a
technique for solving the dual maximization problem. To minimize a given function f , one takes
steps proportional to the negative of the gradient ∇ f ; to maximize a given function, one takes steps
proportional to the positive of the gradient:

→
x t+1 =

→
x t ∓ γ∇ f

(
→
x t

)
. (8)

Gradient descent formula is given by Equation (8) with the ‘−’ sign used, gradient ascent formula is
given by Equation (8) with the ‘+’ sign used. The

→
x t vector represents the solution on the t-th iteration,

γ is the learning rate, ∇ f
(
→
x t

)
is the gradient of the optimized function f at the point

→
x .

Convergence to the local extreme point is guaranteed, when the learning rate γ is adjusted on
each iteration according to:

γt =

∣∣∣∣∣(→x t −
→
x t−1

)T(
∇ f

(
→
x t

)
−∇ f

(
→
x t−1

))∣∣∣∣∣∣∣∣∣∣∣∣∣∇ f
(
→
x t

)
−∇ f

(
→
x t−1

)∣∣∣∣∣∣∣∣2 . (9)

In the proposed hybrid algorithm, we first run itermax iterations of the evolutionary-inspired FSS
algorithm. Then, we apply the gradient ascent algorithm, starting from the

→
x best solution obtained on

the previous step. The population-based algorithm is expected to find the most promising region of
many, and the classical optimization algorithm will improve the resulting solution.

3. Numerical Experiment

The original FSS algorithm and the hybrids were implemented using the interpreted Python
programming language and such libraries, as SciPy and NumPy. First-order and second-order partial
derivatives, required by gradient ascent and Newton’s method, respectively, were computed using
finite difference approximation.

We benchmarked the described hybrid algorithms on multidimensional test functions for
optimization, such as the Sphere [32] function f1, the Styblinsky–Tang function [33] f2, the
Rosenbrock [34] function f3 and the Rastrigin [35] function f4. We performed the tests using 3,
5 and 10 dimensions. Additionally, we considered such two-dimensional test functions, as Ackley [32],
Matyas [36], Eggholder [37] and Booth [36] functions, defined in Table 1 as f5, f6, f7 and f8, respectively.
The Michalewicz [32] function f9 was tested with 2, 5 and 10 dimensions. The cause of this is that
according to [32] the approximate optimum values for the Michalewicz function are well known only
for these dimensions.

The functions from Table 1 were designed to be minimized. However, we solved the dual
maximization problem in our experiments, so the functions were multiplied by −1 and then
maximized. We spawned 100 agents and ran itermax = 50 iterations multiple times for each of
the functions, except for the Eggholder. Due to the fact, that the Eggholder function f7 has many
local extreme points in its search area, as shown in Figure 1a, we used a population of 512 agents
there. The evolutionary-inspired algorithm was preliminary approbated on the two-dimensional
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Styblinsky–Tang function f2, the optimization process on 5-th iteration of 25 total is illustrated in
Figure 1b.

Table 1. Test functions used to benchmark the hybrid optimization algorithms.

Test Function Formula Dimension Search Area Optimum

f1
(
→
x
)
= Σn

i=1x2
i . 3, 5, 10 xi ∈ [−10, 10] 0

f2
(
→
x
)
= 0.5Σn

i=1

(
x4

i − 16x2
i + 5xi

)
. 3, 5, 10 xi ∈ [−5, 5] −39.16599n

f3
(
→
x
)
= Σn−1

i=1

(
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

)
. 3, 5, 10 xi ∈ [−10, 10] 0

f4
(
→
x
)
= An + Σn

i=1

(
x2

i −Acos(2πxi)
)
, A = 10. 3, 5, 10 xi ∈ [−5.12, 5.12] 0

f5(x, y) = −20 exp
(
−0.2

(
0.5

(
x2 + y2

))0.5
)
−

exp(0.5(cos2πx + cos2πy)) + e + 20.
2 x, y ∈ [−5, 5] 0

f6(x, y) = 0.26
(
x2 + y2

)
− 0.48xy. 2 x, y ∈ [−10, 10] 0

f7(x, y) = −(y + 47) sin
(∣∣∣0.5x + (y + 47)

∣∣∣0.5
)
−

x sin
(∣∣∣x− (y + 47)

∣∣∣0.5
)
.

2 x, y ∈ [−512, 512] −959.6407

f8(x, y) = (x + 2y− 7)2 + (2x + y− 5)2. 2 x, y ∈ [−10, 10] 0

f9
(
→
x
)
= −Σn

i=1 sin(xi) sin2m
(
ix2

i π
−1

)
, m = 10. 2, 5, 10 xi ∈ [−π, π]

−1.8013
−4.6876
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Figure 1. (a) Dual Eggholder function ଻݂ search area, which has many local extreme points. (b) A fish 
school optimizing the dual two-dimensional Styblinsky–Tang function ଶ݂. 

For each of the test runs, the individual step size ݌݁ݐݏ௜௡ௗ was set to be equal to the radius of the 
search area, and the collective-volitive step size was defined as ݌݁ݐݏ௩௢௟ = 0.5 × ߛ ௜௡ௗ. We used݌݁ݐݏ =
5 × 10ିଷ  initial step size for gradient ascent, and ߝ  = 10ି଺  desired accuracy for both of the two 
classical optimization algorithms. Iteration limit for each of the classical methods was set to 25. The 
benchmarks were evaluated on a PC running Ubuntu 18.04 operating system, inside a Docker 
container with Python, Anaconda, Keras and Jupiter Notebooks software installed. The PC had 
Intel® Core™ i7-4770 CPU installed with 8 virtual cores and 3.40 GHz processor clock frequency, 
16GB of RAM and an HDD hard drive.  

Each of the test functions listed in Table 1 was evaluated 50 times to determine how accurate the 
algorithms are, compared to each other. We gathered such metrics, as the best function value, mean 
function value, variance and standard deviation. Here, the best value denotes the closest value to the 
optimum of the considered fitness function. The results are shown in Table 2 and in Table 3, where 
the best result in each row is highlighted in bold. We use the FSSN abbreviation for the hybrid 
algorithm, which is based on fish school search and Newton’s optimization method. The FSSGD 
abbreviation denotes the hybrid algorithm where gradient ascent is used. Benchmark results for two-
dimensional, three-dimensional and ten-dimensional versions of multidimensional functions ଵ݂, ଶ݂,

ଷ݂, ସ݂ and ଽ݂ were deliberately omitted for brevity. The omitted results are similar to those shown in 
Table 2 and in Table 3. 

Table 2. Accuracy comparison of the algorithms optimizing 5-dimensional functions from Table 1. 

Function Metric FSS FSSN FSSGD 

ଵ݂ 
Mean −5.9 × 10ିଵ −૚. ૜ × ૚૙ି૝૝ −5.3 × 10ିଷଽ 
Best −5.8 × 10ିଶ −૜. ૞ × ૚૙ି૝૟ −1.4 × 10ିସହ 

Std. dev 3.3 × 10ିଵ ૛. ૢ × ૚૙ି૝૝ 1.6 × 10ିଷ଼ 

ଶ݂ 
Mean 189.65 ૚ૢ૙. ૝૟ ૚ૢ૙. ૝૟ 
Best 195.58 ૚ૢ૞. ૡ૜ ૚ૢ૞. ૡ૜ 

Std. dev 7.43 ૠ. ૝૛ ૠ. ૝૛ 

ଷ݂ 
Mean −82.94 −17.72 −૞. ૟૟ 
Best −1.0 × 10ଵ −૝. ૜ × ૚૙ି૛૙ −1.7 × 10ିଶ 

Std. dev 52.58 47.49 ૚૛. ૛ૢ 

ସ݂ 
Mean −7.09 −2.64 −૛. ૝ૡ 
Best −2.20 0.00 0.00 

Std. dev 2.11 1.64 ૚. ૚૟ 

ଽ݂ 
Mean 3.41 3.42 ૝. ૙૟ 
Best 4.12 4.65 ૝. ૟ૢ 

Std. dev ૙. ૛૞ 0.29 0.44 

Figure 1. (a) Dual Eggholder function f7 search area, which has many local extreme points. (b) A fish
school optimizing the dual two-dimensional Styblinsky–Tang function f2.

For each of the test runs, the individual step size stepind was set to be equal to the radius of
the search area, and the collective-volitive step size was defined as stepvol = 0.5 × stepind. We used
γ = 5× 10−3 initial step size for gradient ascent, and ε = 10−6 desired accuracy for both of the two
classical optimization algorithms. Iteration limit for each of the classical methods was set to 25.
The benchmarks were evaluated on a PC running Ubuntu 18.04 operating system, inside a Docker
container with Python, Anaconda, Keras and Jupiter Notebooks software installed. The PC had Intel®

Core™ i7-4770 CPU installed with 8 virtual cores and 3.40 GHz processor clock frequency, 16 GB of
RAM and an HDD hard drive.

Each of the test functions listed in Table 1 was evaluated 50 times to determine how accurate the
algorithms are, compared to each other. We gathered such metrics, as the best function value, mean
function value, variance and standard deviation. Here, the best value denotes the closest value to the
optimum of the considered fitness function. The results are shown in Table 2 and in Table 3, where the
best result in each row is highlighted in bold. We use the FSSN abbreviation for the hybrid algorithm,
which is based on fish school search and Newton’s optimization method. The FSSGD abbreviation
denotes the hybrid algorithm where gradient ascent is used. Benchmark results for two-dimensional,
three-dimensional and ten-dimensional versions of multidimensional functions f1, f2, f3, f4 and f9



Algorithms 2020, 13, 85 7 of 17

were deliberately omitted for brevity. The omitted results are similar to those shown in Table 2 and in
Table 3.

Table 2. Accuracy comparison of the algorithms optimizing 5-dimensional functions from Table 1.

Function Metric FSS FSSN FSSGD

f1
Mean −5.9× 10−1 −1.3× 10−44

−5.3× 10−39

Best −5.8× 10−2 −3.5× 10−46
−1.4× 10−45

Std. dev 3.3× 10−1 2.9× 10−44 1.6× 10−38

f2
Mean 189.65 190.46 190.46
Best 195.58 195.83 195.83

Std. dev 7.43 7.42 7.42

f3
Mean −82.94 −17.72 −5.66
Best −1.0× 101 −4.3× 10−20

−1.7× 10−2

Std. dev 52.58 47.49 12.29

f4
Mean −7.09 −2.64 −2.48
Best −2.20 0.00 0.00

Std. dev 2.11 1.64 1.16

f9
Mean 3.41 3.42 4.06
Best 4.12 4.65 4.69

Std. dev 0.25 0.29 0.44

Table 3. Accuracy comparison of the algorithms optimizing 2-dimensional functions from Table 1.

Function Metric FSS FSSN FSSGD

f5
Mean −0.18 −0.18 −0.04
Best −0.01 −0.01 −0.01

Std. dev 0.12 0.12 0.01

f6
Mean −4.6× 10−4 −3.2× 10−44

−2.0× 10−13

Best −7.3× 10−6 −1.7× 10−47
−5.8× 10−38

Std. dev 4.9× 10−4 7.6× 10−44 9.7× 10−13

f7
Mean 951.06 951.57 959.15
Best 959.63 959.63 959.64

Std. dev 13.14 11.97 3.40

f8
Mean −1.6× 10−2 −2.3× 10−61

−3.2× 10−22

Best 0.00 0.00 0.00
Std. dev 1.5× 10−2 4.8× 10−31 1.8× 10−11

From the obtained results, shown in Table 2 and in Table 3, we see that the hybrid algorithms
generally perform better than the original algorithm. To demonstrate the convergence process of the
hybrid algorithms, we obtained the plots shown in Figure 2.

As shown in Figure 2, the classical algorithms can either slightly improve the obtained solution,
as shown in (a) and (d) plots, or considerably, as shown in (b) and (e) plots. The plots (c) and (f) show
that the FSSN hybrid can diverge on multimodal optimization problems that can be solved fine by
FSSGD. The FSSN hybrid algorithm based on Newton’s method diverges in a multimodal search space
in the direction towards saddle points, local minima and local maxima. The hybrid based on the
collective behavior of fish schools and gradient ascent successfully converged to the optimal solution.

The hybrid algorithm based on fish school search and Newton’s method in optimization can show
accurate results, but has limited applications. For example, the Newton’s algorithm is not applicable
to a function which Hessian matrix is singular, because a singular matrix is not invertible. Another
limitation is the possible convergence to a wrong solution when optimizing a multimodal function.
The method can converge, for example, to a saddle point. The use of the hybrid algorithm based on the
collective behavior of fish schools and gradient ascent does not impose such limitations. This hybrid
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algorithm can be used in cases, when a function is differentiable inside the study region, by computing
the derivative either numerically, by using finite difference approximations, or symbolically.
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Additionally, we benchmarked the time required for the original and hybrid algorithms to optimize
the functions listed in Table 1. The results are shown in Tables 4 and 5, where the best result in each
row is highlighted in bold.

Table 4. Time benchmarks of 5-dimensional test functions listed in Table 1.

Function Metric FSS FSSN FSSGD

f1
Mean 0.85 0.86 0.85
Min 0.83 0.85 0.84

Std. dev 0.01 0.01 0.01

f2
Mean 1.14 1.16 1.15
Min 1.13 1.14 1.14

Std. dev 0.01 0.01 0.01

f3
Mean 1.16 1.23 1.17
Min 1.10 1.19 1.02

Std. dev 0.04 0.03 0.05

f4
Mean 0.93 0.95 0.93
Min 0.90 0.94 0.91

Std. dev 0.01 0.01 0.01

f9
Mean 1.59 1.66 1.62
Min 0.97 0.98 0.99

Std. dev 0.31 0.32 0.30
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Table 5. Time benchmarks of 2-dimensional test functions listed in Table 1.

Function Metric FSS FSSN FSSGD

f5
Mean 0.67 0.68 0.68
Min 0.64 0.67 0.66

Std. dev 0.01 0.01 0.01

f6
Mean 0.63 0.64 0.63
Min 0.61 0.60 0.61

Std. dev 0.01 0.03 0.01

f7
Mean 1.01 1.05 1.03
Min 0.99 1.03 1.01

Std. dev 0.01 0.01 0.01

f8
Mean 0.67 0.68 0.68
Min 0.65 0.66 0.63

Std. dev 0.01 0.01 0.03

From Tables 4 and 5 we can conclude that the hybrid algorithms usually run a bit longer than
the evolutionary-inspired algorithm without modifications. However, according to Tables 2 and 3,
in most cases the hybrids find solutions that are more accurate. The FSSGD algorithm is generally
faster than the FSSN algorithm. The cause of this is that the hybrid algorithm based on Newton’s
method computes the Hessian matrix on each iteration, using finite difference approximation, and
such computations can be expensive, especially in high-dimensional space.

To verify, that the hybrid algorithms outperform the original algorithm, we used the Wilcoxon
signed-ranks statistical test, often used to determine if significant statistical differences exist between
two algorithms in computational intelligence. The results are shown in Table 6.

Table 6. Wilcoxon signed-rank test applied to the original and hybrid algorithms accuracy measurements.
The sign of W1 denotes whether FSSN algorithm outperforms Fish School Search (FSS), the sign of W2

denotes whether FSSGD outperforms FSS, W3 sign denotes whether FSSN outperforms FSSGD. The
equality sign indicates no significant difference.

Function W1 W2 W3

f1 + + +
f2 + + =
f3 + + +
f4 + + +
f5 + + +
f6 + + +
f7 = + −

f8 + + +
f9 = + −

In our case, we ensured that the significant differences exist between FSS and FSSN, and between
FSS and FSSGD. We assumed the level of significance α = 5× 10−2, which means the 95% confidence
level. The null hypothesis H0 is that the two related paired samples come from the same distribution.
For each test function fi listed in Table 1, we ran the original algorithm and hybrids 20 times. Then,
we applied the Wilcoxon signed-ranks statistical test to the obtained distributions of solutions.

Based on the results shown in Table 6, we observed, that both of the hybrid algorithms can
improve the accuracy of the original population-based algorithm, and in most cases, a statistically
significant difference exists between the distributions the considered algorithms produce. The FSSN
hybrid, which is based on Newton’s optimization method, outperforms the FSSGD hybrid based on
gradient ascent, however in some cases Newton’s method converges to a stationary point or is not
applicable to a function due to the singularity of its Hessian matrix in the given point. The FSSGD
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hybrid based on gradient ascent is more stable and shows more accurate results, than the original FSS
algorithm; and can be used in cases, when the fitness function is differentiable in the study region.

4. Solution for the Linearly Inseparable XOR Problem

A neural network can be described as a programmatic system which allows making decisions
using the evolution of a complex non-linear system. Such decisions are based on recognized underlying
relationships in datasets. Neural networks take in a vector encoding the input object; the output signal
of a neural network encodes the decision made by the system [38]. A perceptron is a mathematical
model, proposed by Frank Rosenblatt in 1957; it can be treated as a simple neural network used to
classify the data into two classes. Neural networks are often trained using back propagation, however,
evolutionary algorithms show promising results as well [39–41]. As shown in [26], a hybrid algorithm
which incorporates evolutionary-inspired and classical optimization techniques can achieve faster
convergence speed and better accuracy.

The FSSGD, as the most effective hybrid algorithm proposed in this paper, can be used to optimize
loss functions of neural networks, in cases, when the loss function of a perceptron is differentiable inside
the study region. As a proof-of-concept, we used FSSGD as the loss function optimization algorithm to
train a multi-layer perceptron. We were solving the linearly inseparable exclusive disjunction (XOR)
problem [42], commonly used to benchmark neural network optimization algorithms [43]. In the
problem we consider, we have the X set of input objects, and the Y set of answers. Both the objects
and the answers are Boolean values, belonging to the {0, 1} set. The goal is to restore the function
f ∗ : X→ Y using a multi-layer perceptron. The binary XOR function can be described by Table 7.

Table 7. Exclusive disjunction (XOR) function truth table.

X1 X2 Y

0 0 0
0 1 1
1 0 1
1 1 0

To solve the formulated problem, we built a perceptron with one hidden layer consisting of eight
neurons. Other neural network architectures exist, which can solve the XOR problem [43,44], but the
goal of the experiment was to see how the FSSGD algorithm would deal with a plenty of conflicting
solutions. Perceptron architecture is shown in Figure 3.

On the hidden layer, we used the hyperbolic tangent activation function, given by:

th(x) =
ex
− e−x

ex + e−x . (10)

where, x is the input signal multiplied by the weight value of a neuron. While the Y set of decisions
of our neural network should be represented as the Boolean values, we used the sigmoid activation
function on the output layer. The sigmoid activation function is given by:

σ(x) =
1

1 + ex . (11)

We used the binary cross-entropy as the loss function for the multi-layer perceptron:

L
(
X,Y,

→
w
)
= −

1
N

∑N

i=0

(
yi log f

(
→
x i,
→
w
)
+ (1− yi) log

(
1− f

(
→
x i,
→
w
)))

. (12)

where, X and Y are the set of objects and the set of answers, respectively;
→
w denotes the weights; yi is

the i-th answer , yi ∈ Y;
→
x i is the i-th object,

→
x i ∈ X; N = |X| = |Y|.
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The training process of a neural network leads to the optimization of its loss function. In our
case, we optimized the Equation (12) loss function, using the hybrid FSSGD algorithm, in respect
to the weights vector

→
w. After the neural network loss function was optimized, we plotted the

surface of the loss function using the method [45], which allows visualizing functions that live in very

high-dimensional spaces. In this approach, one chooses two orthogonal direction vectors
→

δ and
→
η .

The loss function is transformed into the following function parameterized by two arguments:

f (α, β) = L
(
X,Y,

→
wbest + α

→

δ + β
→
η
)
. (13)

where, X and Y are the objects and answers, respectively,
→
wbest is the optimized weights vector, α and β

are the scalar coefficients required to visualize the function in the three-dimensional space. The loss
function was optimized twice, using different parameter sets of the hybrid algorithm. The obtained
results are shown in Figure 4.

In the first run, we defined the parameters as itermax = 20, rboundary = 10, stepind = 5, stepvol = 10,
|P| = 15, γ = 10−1, ε = 10−4, α ∈ [−10, 10], β ∈ [−10, 10]; the rboundary variable denotes that coordinate

components xi, j of each agent
→
x i are bounded inside the region

[
wi,init − rboundary, wi,init + rboundary

]
.

In the second case, the parameters were defined as rboundary = 4, stepind = 2, stepvol = 4, α ∈ [−4, 4],
β ∈ [−4, 4], other parameters were left the same.

When using rboundary = 10, it took 22 iterations for FSSGD to converge. When using rboundary = 4,
it took 30 iterations for the hybrid to converge. When using rboundary = 10, the neural network output is
more accurate, compared to the results obtained when rboundary = 4. The same pseudorandom number
generator seed was used in both experiments. Assuming the fact, that the obtained solutions differ, we
can suppose, that if we increase the rboundary value, then we can get other, probably better, solutions.



Algorithms 2020, 13, 85 12 of 17

Notably, in Figure 4b,c,e,f, we see that the surface of the neural network loss function has a plenty of
local minima points that can prevent the classical optimization algorithms from finding the global
optimum. In Figure 4d we see, how finite difference-based gradient descent improves the solution
obtained using Fish School Search.
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convergence when r = 4; (e) loss function surface visualization near the suboptimal solution, r = 4;
(f) Contour plot of the loss function, r = 4.

5. Neural Network Hyperparameter Optimization

Modern neural networks achieve excellent performance in a wide variety of fields, but
accuracy of predictions made by a neural network highly depends on chosen hyperparameters.
The hyperparameters are the parameters usually adjusted by a researcher; such parameters include
layer count in a neural network, neuron count on each layer, optimizer and learning rate, activation
functions. Evolutionary-inspired algorithms are commonly used for neural network architecture
optimization; neural network topologies can be evolved, for example, by using genetic algorithms [46]
or particle swarm algorithms [47]. Training neural networks takes time, especially in deep learning.
The benefit of using population-based algorithms is that such algorithms can be distributed across
different worker nodes easily, and that can drastically reduce the amount of time required to run a
single iteration of an optimization algorithm.

We applied the FSSGD algorithm to neural network hyperparameter optimization, evolving the
architecture of a neural network for the prediction of house prices. Different neural networks were
trained on the well-known Boston Housing dataset [48]. The Boston Housing dataset is relatively small,
consisting of 506 rows and 14 columns. Each column represents the factor, which can potentially affect
the price of a house. The dataset is split into training and testing data frames, the former consisted of
404 rows, and the latter consisted of 102 rows. We applied the feature normalization technique to the
dataset by subtracting the mean value from the data and diving the data by standard deviation.

Each of the considered neural network architectures consisted of two layers. The optimized
parameters were defined as follows: x0 denoted neuron count on the first layer, x0 ∈ [10, 90], x0 ∈ Z;
x1 denoted neuron count on the second layer, x1 ∈ [10, 90], x1 ∈ Z; x2 denoted the activation function
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used on the first layer, x2 ∈
{
relu, tanh, sigmoid, so f tmax

}
; x3 denoted the activation function used

on the second layer, x3 ∈
{
relu, tanh, sigmoid, so f tmax

}
; x4 denoted the learning rate; x5 denoted the

optimizer used to train the neural network, x4 ∈
{
RMSprop, Adam, Sgd

}
. Neural network models

were built with Keras and Tensorflow libraries. During every call to the fitness function of FSSGD, a
parameterized model was trained during 50 epochs. The k-fold cross-validation technique was used to
obtain the score of the model, assuming k = 3. During the training process of different neural networks,
the mean squared error loss function was used:

MSE =
1
N

∑N

i=1

(
yi − f

(
→
x i

))2
. (14)

Assuming X and Y are the sets of objects and answers, respectively,
→
x i is the i-th object,

→
x i ∈ X; yi is

the i-th answer, yi ∈ Y; f
(
→
x i

)
denotes the predictions generated by the neural network; N = |X| = |Y|.

Due to the use of the k-fold cross-validation technique, the training dataset was split into three data
frames, then two of the three data frames were used to train the neural network; the one data frame
left was used to test the network. During the training phase, the N value was set equal to 270; during
the testing phase, the N value was set to 134. The mean absolute error function was used to estimate
the fitness score of the model:

MAE =
1
N

∑N

i=1

∣∣∣∣yi − f
(
→
x i

)∣∣∣∣. (15)

The reason for using the mean absolute error metric seen in Equation (15) is that it produces results
that can be easily interpreted by a human. In the Boston Housing dataset, we were solving a linear
regression problem to predict house prices, so the mean absolute error metric gives us the error value
in thousands of dollars.

To handle the experiment, five Ubuntu 18.04 LTS nodes were rented on Microsoft Azure. For the
FSS part of the proposed FSSGD algorithm, four agents were spawned. The FSS algorithm was
running on the server node; fitness function values were computed on each iteration of the algorithm,
the computations were distributed across four worker nodes. For the FSS part of the hybrid algorithm,
we assumed itermax = 8, stepind = 4, stepvol = 2. On each fitness function call, separate neural network
models were built and trained on different worker nodes multiple times, using k-fold cross-validation,
to estimate the quality of a model according to Equation (15). The distributed computations architecture
of the FSS algorithm is illustrated in Figure 5a.
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i-th agent; F is the time-consuming fitness function; Wi is the i-th worker; S0 is the server, which hosts
the algorithm; (b) FSSGD algorithm convergence when optimizing hyperparameters.

For the gradient descent part of the FSSGD hybrid algorithm, we used finite difference
approximation to compute first-order partial derivatives for the gradient vector numerically on
each iteration; the computations were distributed across four worker nodes as well, assuming γ = 1;
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negative and positive derivative values were rounded down and up, respectively. Each worker node
computed its own first-order partial derivative. The convergence of the hybrid algorithm optimizing
neural network architecture is shown in Figure 5b.

The first layer of the evolved neural network model consisted of 58 neurons; the second layer
consisted of 78 neurons; the softmax and tanh activation functions were used on the first and second
layers, respectively. The optimizer selected by FSSGD was RMSprop with 10−3 learning rate. The mean
absolute error Equation (15) metric value obtained on the testing data frame was equal to 2.43, this is
equivalent to 2430 USA dollars. The minimum price of a house in the Boston Housing dataset is 5000,
the maximum price equals to 50,000 USA dollars. It took 1097 seconds total for the FSSGD algorithm
to optimize the architecture in distributed mode, using four worker nodes, as shown in Figure 5a;
560 seconds for 8 iterations of FSS and 537 seconds for 2 iterations of gradient descent; the gradient
descent computations were based on finite difference approximation of the fitness function. Without
using the distributed approach to fitness function computations, it took more than an hour for the
hybrid algorithm to converge.

The obtained results confirm that the hybrid algorithm based on the collective behavior of
fish schools and gradient descent can produce slightly more accurate results, than the original
population-based algorithm. However, when optimizing hyperparameters of neural networks the time
losses required to compute the gradient vector numerically are too big, due to a large number of fitness
function calls required to obtain the vector consisting of first-order partial derivatives, even in case if
computations are distributed across multiple nodes. With the increase of search space dimensionality,
the time required to compute the gradient of a fitness function increases, and this makes this technique
not suitable for hyperparameter optimization of deep neural networks.

6. Discussion

The benchmarks of the proposed FSSN and FSSGD hybrid algorithms, which are based on
the collective behavior of fish schools and classical optimization methods, on test functions for
optimization, including the multidimensional Rastrigin, Rosenbrock, Sphere, Ackley, Michalewicz,
Eggholder, Styblinsky–Tang function and others, indicate, that the hybrid algorithms generally produce
more accurate solutions, and the Wilcoxon signed-rank test confirms that. The improvement in accuracy
costs minor time losses, but the time losses increase with the increase of search space dimensionality.

The FSSN algorithm imposes a number of limitations upon the optimized function and has a
chance to converge to the nearest saddle point, or to the wrong extremum. The FSSN algorithm can
often produce solutions that are more accurate compared to FSS or FSSGD. However, the computations
of the Hessian matrix can be quite expensive, especially in high-dimensional search space, or in
cases, when the evaluation of a fitness function takes a long time to complete. In addition, there
are such cases, when the Hessian matrix of the optimized function becomes singular. The Newton’s
optimization method requires the Hessian matrix to be invertible, so in case if the matrix is singular,
the method is unable to proceed with the optimization process. The FSSGD algorithm only requires
the fitness function to be differentiable inside the study region. Gradient vector computations using
finite difference approximation are far less expensive than Hessian matrix computations, so the time
losses introduced by performing local search by gradient ascent are quite small, as shown in Table 4
and in Table 5. Except from using numerical differentiation, the gradient of a fitness function can
be obtained by either using symbolical or automatic differentiation, and in this case, the time losses
become even smaller.

The proposed FSSGD algorithm can be applied to such practical tasks, as optimization of loss
functions in neural networks or SVM classifiers. When training neural networks, the full gradient
descent method can be replaced with its modifications, commonly used to train neural networks, to
speed up the optimization process.

The FSSGD algorithm can be applied to hyperparameter tuning of a neural network as well, but
in this case, the time losses become unaffordable due to the fact, that the derivative of a fitness function
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cannot be found analytically or symbolically here. The only option left is numerical differentiation,
which takes a large amount of time, especially in high-dimensional spaces and in cases, when the fitness
function is either computationally expensive or takes a long time to execute due to other reasons. Hence,
for neural network hyperparameter optimization it is better to use the original evolutionary-inspired
FSS algorithm. In evolutionary-inspired algorithms, fitness function computations can be easily
distributed across different worker nodes, and this can considerably speed up the optimization process.

Future research could compare various hybrid algorithms based on FSS and Quasi-Newton
methods. Notably, a hybrid algorithm based on particle swarm optimization and the
Broyden–Fletcher–Goldfarb–Shanno optimization method showed a strong advantage in [28].
Considering loss function optimization in neural networks, future work could compare the proposed
FSSGD algorithm with other gradient-based methods, commonly used to train neural networks, such as
Adam or stochastic gradient descent with momentum [49]. Another promising research area is chaos
theory in evolutionary optimization. The initial locations of agents in swarm intelligence algorithms
affect the quality of the obtained solution, so a chaos-based pseudorandom number generator could be
used to initialize the population in an evolutionary-inspired algorithm [50].
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