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Abstract: Point projection is an important geometric need when boundaries described by parametric
curves and surfaces are immersed in domains. In problems where an immersed parametric boundary
evolves with time as in solidification or fracture analysis, the projection from a point in the domain to
the boundary is necessary to determine the interaction of the moving boundary with the underlying
domain approximation. Furthermore, during analysis, since the driving force behind interface
evolution depends on locally computed curvatures and normals, it is ideal if the parametric entity is
not approximated as piecewise-linear. To address this challenge, we present in this paper an algebraic
procedure to project a point on to Non-uniform rational B-spline (NURBS) curves and surfaces.
The developed technique utilizes the resultant theory to construct implicit forms of parametric
Bézier patches, level sets of which are termed algebraic level sets (ALS). Boolean compositions of
the algebraic level sets are carried out using the theory of R-functions. The algebraic level sets and
their gradients at a given point on the domain are then used to project the point onto the immersed
boundary. Beginning with a first-order algorithm, sequentially refined procedures culminating in
a second-order projection algorithm are described for NURBS curves and surfaces. Examples are
presented to illustrate the efficiency and robustness of the developed method. More importantly,
the method is shown to be robust and able to generate valid solutions even for curves and surfaces
with high local curvature or G0 continuity—problems where the Newton–Raphson method fails
due to discontinuity in the projected points or because the numerical iterations fail to converge to a
solution, respectively.

Keywords: NURBS; implicit representation; resultant; algebraic level sets; point projection and inversion

1. Introduction

Given a test point and a parametric entity (curve or surface), the generalized point projection
problem is to find the closest point (footpoint) on the entity as well as the corresponding parameter
value. Since the footpoint is the closest point on the curve or surface, the line connecting the test point
to the footpoint is normal to the curve or the surface [1]:

g(u) = C′(u) · (C(u)− P) = 0 (1)

Given a parametric curve or surface entity C(u) ∈ Rn (u is treated as a vector when the entity is a
surface), the Euclidean distance function dE(x) is defined as the shortest distance from physical test
point x to C(u) given by:

dE(x) = inf
u
‖x−C(u)‖ (2)
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where C(u) is a physical point on the curve or surface of interest. The distance function dE(x) is
continuous for all x ∈ Rn and differentiable almost everywhere. The “footpoint” of projection in
parametric space u f is defined as:

u f (x) = arg min
u∈[a,b]

‖x−C(u)‖ (3)

where [a, b] is the parameter range. In general, u f (x) may be non-unique, discontinuous,
or non-existent, as illustrated in Figure 1. The footpoint of a test point near the curve or surface
segment with high local curvature can be non-unique, leading to discontinuity of point projection
process as illustrated in Figure 1a. The non-existence is illustrated in Figure 1b, and occurs around
points where C(u) has only G 0 continuity.

(a) (b)
Figure 1. Special cases encountered during point projection: (a) Exact projection from points on
a straight line to a bell-shaped curve. Discontinuity occurs at the circled central point due to
non-uniqueness of point projection. (b) Projection from points on a straight line to a cone-shaped curve.
The dashed line segment has no footpoint on the curve.

This problem is of importance in geometric modeling. For instance, while fitting a curve or surface
to sampled data, one may need to compute corresponding parameter values and errors at data points
since the error is the distance between the data point and the fitting curve or surface [2].

Point projection also plays an important role in computer aided engineering (CAE), especially
when boundaries are immersed into the domain and evolved. Such immersed boundary analysis [3]
uses a non-conforming mesh to significantly reduce computational cost required for mesh generation
as the boundaries evolve. Often, the immersed boundaries are represented as parametric splines,
and, more recently, in isogeometric analysis, the underlying domain is also approximated by
parametric splines. Isogeometric analysis (IGA) [4,5] is aimed at building behavioral approximations
isoparametrically on a spline geometry, most commonly on NURBS curves and surfaces. The goal is to
eliminate the need to mesh the geometry for analysis and to ensure the exactness of geometry to the
CAD model during analysis. Tambat and Subbarayan [6] developed an Enriched Isogeometric Analysis
(EIGA) for immersed boundary problems in which both the domain as well as the enrichments are
described by NURBS entities, which are then blended to describe the enriched approximation.

In any immersed boundary problem solution, capturing the interaction of the field approximation
defined on the immersed (explicitly defined) boundary with the approximations on the enriched
domain requires one to determine the nearest point on the boundary from any given point in the
underlying domain. This projection from the spatial point to the boundary is necessary to compute the
influence of the domain approximation on those approximations defined on the boundary (see Figure 2).
For example, in solutions to mechanical contact problems [7,8], point projection is needed to define the
normal gap and tangential slip between two bodies. In fluid–structure interaction (FSI) problems, point



Algorithms 2020, 13, 82 3 of 25

projection is required to transfer kinematic and traction data between non-matching fluid–structure
interface [9]. In the enriched isogeometric analysis mentioned above, point projection is used to enrich
the base approximations with those on lower-dimensional geometrical features such as crack surfaces
and phase boundaries, enabling simulations of fracture propagation [6,10] and solidification [11].
A fast and robust point projection method is critical to efficiently solving these problems.

Figure 2. Behavioral analysis in the presence of complex free form embedded surface. The spatial
point may only influence a local region of the surface with the highlighted control points, which can be
identified by point projection.

The rest of the paper is organized as follows. In Section 2, a review of the literature pertaining
to the point projection problem is carried out. In Section 3, the algebraic estimation of distance
from a low-degree NURBS curve or surface is reviewed. In Section 4.1, a detailed algorithm for
two-dimensional algebraic point projection is presented followed in Section 4.2 by its extension
to three-dimensional NURBS surfaces. Several examples are provided in Section 5 to validate the
developed algorithm. The paper is concluded with remarks in Section 6.

2. Literature Review

The use of Newton–Raphson (NR) iterations for solving Equation (1) is well established at this
time. These iterative methods mainly consist of two steps:

1. Seek an initial point or segment.
2. Iterate by Newton–Raphson scheme until convergence.

The robustness and the efficiency of Newton–Raphson scheme depends significantly on the initial
guess. Therefore, to assure convergence of the second step, careful selection of initial guess is needed.
In addition, if the NURBS entity has only G0 continuity at some local point, the derivative based
Newton–Raphson scheme would fail to converge to such a point.

To assure robustness of the iterations, a significant focus of the existing literature is on eliminating
portions of the curve or surface where the solution cannot lie. Piegl and Tiller [2] developed a
non-iterative, heuristic algorithm where a NURBS surface was decomposed into quadrilaterals and
test points were projected onto the closest quadrilateral. Ma and Hewitt [12] described a search for
the initial guess of the footpoint by recursively sub-dividing the Bézier segment associated with a
valid control polygon. However, using the control polygon to eliminate segments of the curve may
exclude the correct solution [13]. Selimovic [14] improved Ma and Hewitt’s method using selective
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sub-division of the NURBS curve (surface) based on distance to the end (corner) point of the entity.
Chen et al. [15] pointed out the need for all control points to lie on different sides of a hyperplane
in Selimovic’s algorithm and proposed a circular clipping method with a sufficiency condition for
a curve to lie outside an elimination circle. Other iterative methods in the physical space have also
been proposed for point projection including the geometric first-order iterative [16–18] and geometric
second-order iterative [19–21] methods.

In this paper, a robust and efficient point projection technique for low degree two-dimensional (2D)
NURBS curves and three-dimensional (3D) NURBS surfaces is developed. The proposed technique
preserves and operates directly on the parametric description of the NURBS curve or surface. Therefore,
the technique gives a projected point directly on the curve or surface when query points lie on the
parametric curve or surface. In addition, the technique is robust for curves and surfaces with high local
curvature or G0 continuity compared to techniques that rely on derivatives. A detailed comparison of
existing methods in the literature relative to the proposed method is listed in Table 1.

Table 1. Comparison of methods used for point projection in literature

Description Reference Algebraic Initial Guess Efficiency Accuracy SmoothnessDependent?

Subdivision method [22] Yes No High Medium No

Subdivision method + [12,14,15] No Yes High High NoNewton–Raphson method

Geometric iteration method [16–21] No Yes High High No

Proposed method Yes No High Medium Yes

3. Background on Algebraic Level Sets

In addition to point projection, blending behaviors on immersed boundaries with domain
also requires distance estimates from the boundary to a point in the domain. This is because
the behavioral influence of the immersed boundaries decays monotonically with distance. While
traditionally distances are estimated using Newton–Raphson iterations, recently, Upreti et al. [23,24]
developed algebraic procedures for efficient computation of distance estimates from curves and
surfaces. The method developed by Upreti et al. relies on converting the parametric NURBS geometry
to its implicit form using the Dixon resultant, and constructing level sets on the implicit form of the
geometry. Upreti et al. termed these level sets as algebraic level sets. The construction of the algebraic
level sets requires one to decompose the NURBS entity into constituent Bézier patches and later to
blend the level sets constructed on Bézier patches using R-functions. The algebraic level sets provide
monotonic measures of distance that are accurate to exact distance near the boundary. While the
algebraic level sets are approximate measures of distance, they are sufficient to capture the interaction
of domain approximations with those on the immersed boundary during analysis. The algebraic level
sets have the following properties:

1. Accurate measure of distance locally near the curve/surface
2. Monotonic function of Euclidean (exact) distance
3. Sufficiently smooth for engineering applications
4. Efficiently obtained without numerical iterations for points close to the curve/surface

For the sake of completeness, we briefly review the computation of algebraic level sets and
illustrate the procedure through simple examples.



Algorithms 2020, 13, 82 5 of 25

3.1. Implicitization of a Parametric Curve

Given a rational parametric curve C(X(u), Y(u), W(u)) of degree p with x = X(u)
W(u) , y = Y(u)

W(u) , one
can construct two auxiliary polynomials:

g1(x, u) = W(u)x− X(u) = 0 (4a)

g2(y, u) = W(u)y−Y(u) = 0 (4b)

The above polynomial equations can be rearranged in descending power of u as follows:

g1(u) = apup + ap−1up−1 + · · ·+ a1u + a0 (5a)

g2(u) = bpup + bp−1up−1 + · · ·+ b1u + b0 (5b)

From the above, the following resultant system may be obtained through algebraic manipulations [25]:

(apbp−1) · · · (apb0)
...

. . .
...

(apb0) · · · (a1b0)




up−1

up−2

...
1

 =
[
MB
]

p×p


up−1

up−2

...
1

 = 0 (6)

where (aibj) = aibj − ajbi, MB is Bezout matrix and is a function of x and y having the following
important property:

MB(x, y) = MB
x x + MB

y y + MB
w (7)

where MB
x , MB

y , and MB
w depend on control point coordinates and weights. Therefore, these matrices

can be pre-computed for a given rational parametric curve and re-used given any new physical point
x. The determinant, det(MB(x)), is defined as the Bezout resultant. Since all the allowable parameter
values u for curve C(X(u), Y(u), W(u)) are roots of Equation (6), det(MB(x)) = 0 gives the equation
of the implicitized curve. Thus, the algebraic level sets corresponding to a rational parametric curve
(e.g., Bézier curve) are given by:

Γ(x) = det(MB(x)) (8)

An example of algebraic level sets is shown in Figure 3.
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Figure 3. Implicitization of a quartic Bézier curve. Level set Γ(x) = det(M(x)) can be used as a measure
of distance.
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3.2. Boolean Operations by R-Functions

As observed in Figure 3, the direct implicitization extends the parametric curve beyond its end
points, and yields an invalid distance measure in the extended region. Therefore, it is desirable to trim
the curve C(X(u), Y(u), W(u)) within its parameter range u ∈ [a, b]. In related prior work, Biswas and
Shapiro [26] constructed an approximate distance from a line segment as:

g =

√
Γ2 +

(|φ| − φ)2

4
(9)

with Γ being the distance in the normal direction from a piecewise linear approximation of the curve,
and φ being distance to the region formed by a circle circumscribing the line that is positive inside
and negative outside. This form yields a smooth distance function across the boundary φ = 0.
Upreti et al. [23] extended the above idea by carrying out Boolean operations on fields obtained on
(individual curve segments of) an arbitrarily shaped parametric curve and an enclosing convex region
using R-functions (Figure 4). The R-functions [27,28] enable a smooth and purely algebraic Boolean
operation, and result in a continuous distance measure. Two specific R-functions used in this study are:

1. R-conjunction, equivalent to Boolean intersection:

g1 ∧ g2 = g1 + g2 −
√

g2
1 + g2

2 (10)

2. R-disjunction, equivalent to Boolean union:

g1 ∨ g2 = g1 + g2 +
√

g2
1 + g2

2 (11)

𝑪(𝑢)
Γ(𝐱) = 0

𝜙 ≥ 0

Figure 4. A convex region φ ≥ 0 is used to trim the implicitized curve Γ(x) = 0 constructed from a
parametric curve C(u).

A well known property of Bézier and NURBS geometry is the convex hull property, which
assures that the curve/surface is contained within its convex hull constructed using the control points.
Upreti et al. [23] used the convex hull property of Bézier and NURBS curves to provide a natural
convex region bounded by control points for curve trimming. Assume that the ith hyper-plane of the
convex hull is expressed as:

hi(x) = ni · x + bi = 0 (12)

where x ∈ Rn is a spatial point, ni ∈ Rn is inner normal, and bi ∈ R is offset. Thus, the exact distance
from any point x to the hyper-plane hi(x) = 0 is hi(x). The function φ can be obtained by applying
R-conjunction operation of Equation (10) to all hi(x), i = 1, 2, ..., n. An example of a cubic Bézier curve
is shown in Figure 5.
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Figure 5. The control points of a cubic Bézier curve C(u) form a convex hull consisting of four
hyper-planes h1, h2, h3 and h4 with inner normals n1, n2, n3, and n4, respectively. Boolean intersection
of the four hyper-planes using R-functions yields a trimming region φ ≥ 0.

3.3. Normalization and Composition of Algebraic Level Sets

The aforementioned procedure generates a monotonic and continuous distance measure for a
basic parametric curve such as a Bézier curve. Piecewise polynomial curves such as NURBS curves, on
the other hand, require decomposition to Bézier segments and composition of algebraic level sets of the
obtained segments. Further, normalization for individual level sets is desired to yield a monotonically
varying composed field. Considering a physical footpoint x f , one can approximate Γ(x f ) to a first
order using Taylor expansion:

Γ(x f ) = Γ(x)− ∂Γ(x)
∂n

d (13)

Since the resultant has exact zero set on a parametric curve, i.e., Γ(x f ) = 0, one can derive a
distance in the normal direction as follows:

d =
Γ(x)
∂Γ(x)

∂n

=
Γ
‖∇Γ‖ (14)

After obtaining normalized algebraic level sets for each decomposed Bézier segment, one can
compose them using R-conjunction operation (Equation (10)) and thereby generate the desired algebraic
level sets. As demonstrated in [23], the R-conjunction operation preserves the normalization of
individual Bézier segments. However, an implicitized curve obtained from a Bézier curve of degree p
may have as many as 1

2 (p− 1)(p− 2) self-intersections or double points [29]. Any double points inside
the convex hull will affect the algebraic level sets construction, and therefore need to be moved out
by sub-divisions of the Bézier curve. The algorithm to carryout this process is discussed in Reference
[23]. Thus, for practical reasons of avoiding more than one double point while enabling sufficient
generality in modeling complex geometries, the methodology is restricted to low degree NURBS
curves (p ≤ 3). Figure 6 shows an example of algebraic level sets of an open curve containing two
points with G 0 continuity.
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Figure 6. Algebraic level sets of a symmetric cubic spline. G 0 continuity is present at (x, y) = (−1, 0)
and (1, 0). The generated algebraic level sets retain the symmetry while ensuring the smoothness of
the field.

3.4. Extension to NURBS Surface

The algebraic level sets construction can be extended to three-dimensional NURBS surfaces in a
straightforward manner by implicitizing the rational parametric surface with the Dixon resultant [25].
Given a rational parametric surface S(X(u, v), Y(u, v), Z(u, v), W(u, v)) of degree p × q with x =
X(u,v)
W(u,v) , y = Y(u,v)

W(u,v) and z = Z(u,v)
W(u,v) , three auxiliary polynomials can be formed as follows:

g1(x, u, v) = W(u, v)x− X(u, v) = 0 (15a)

g2(y, u, v) = W(u, v)y−Y(u, v) = 0 (15b)

g3(z, u, v) = W(u, v)z− X(u, v) = 0 (15c)

As before, using algebraic elimination theory, one can derive the corresponding resultant system
for surface S:[

MD
]

2pq×2pq

(
1 u · · · up−1 · · · v2q−1 uv2q−1 · · · up−1v2q−1

)T
= 0 (16)

where the vector is indexed lexicographically. MD is the Dixon matrix, which also possesses a property
analogous to Equation (7) of linearity with respect to x, y, and z:

MD(x) = MD
x x + MD

y y + MD
z z + MD

w (17)

where, as before, MD
x , MD

y , MD
z , and MD

w depend on control point coordinates and weights.
The determinant of the Dixon matrix is the Dixon resultant:

Γ(x) = det(MD(x)) (18)

An example of the algebraic level sets from a free surface is illustrated in Figure 7. The pseudo-code
in Algorithm 1 shows the generic steps in algebraic level sets computation for NURBS curves and
surfaces. Both NURBS curves and surfaces are denoted by C(u) here for notational convenience, with
the implicit understanding that u = (u) for curves and u = (u, v) for surfaces.
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Figure 7. Algebraic level sets from a symmetric quadratic NURBS surface. (a) The valley of the surface
contains only a G 0 continuity across the plane of symmetry. The level sets are plotted over three
principal planes slicing the surface: (b) x-y plane; (c) y-z plane; and (d) x-z plane.

Algorithm 1 Algebraic level sets algorithm.

Input: NURBS curve or surface C(u) and given test point x
Output: Algebraic distance measure d from x to the NURBS entity C(u)

1: function ALGEBRAIC_DISTANCE(C, x)
2: B(C)← Split NURBS entity C into a Bézier set with segments Bi, i = 1, 2, · · · , n
3: for i← 1, n do . Loops are independent and parallelizable
4: hi ← Create convex hull for Bi ∈ B(C)

5: Γi ← Compute the Bezout or Dixon resultant using Equation (8) or Equation (18),

respectively
6: Γi ← Γi

‖∇Γi‖
. Normalization of the resultant using Equation (14)

7: di ← Carryout Boolean union of distance fields of hi obtained using Equation (9) with Γi

8: end for
9: d← Carryout Boolean intersection of individual level sets di, i = 1, 2, · · · , n using Equation

(10)
10: end function

3.5. Time Complexity of the Algebraic Level Sets Algorithm

The algorithmic complexity of Algorithm 1 is given in [23] and reproduced here. Consider a
NURBS curve of degree p. Further, assume that the NURBS curve decomposes into n Bézier curves.
This decomposition process can be carried out in O(n) time. For each step in constructing the algebraic
level sets of the Bézier curve, the time complexity is a function of its degree p and is given in Table 2.
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Since each Bézier curve comprises of p + 1 control points, the construction of its convex hull requires
O(p log p) time. Since the convex hull contains at most p+ 1 edges, computing the normalized distance
field for the hull requires O(p) time. Finding the Bezout/Dixon resultant involves evaluating the
determinant of the Bezout matrix of size p× p and costs O(p3) time. Normalization of this resultant
requires the gradient of the resultant, which in turn requires solving a linear system (see Equation (21))
and costs O(p3) time. The trimming operation only evaluates Equation 9 and can be carried out in
O(1) time. Thus, constructing algebraic level sets for a Bézier curve segment requires O(p3) time.
These level sets constructed on Bézier curve segments can then be combined to construct level sets for
the NURBS curve in O(np3) time. The computational time complexity for a NURBS surface of degree
p× q may be obtained analogously. For a Bézier segment of such a NURBS surface, the convex hull
contains at most (p + 1)(q + 1) points and edges, and the Dixon matrix used for the resultant is of
size 2pq× 2pq. From the step-by-step time complexities listed in Table 2, construction of algebraic
level sets for a Bézier surface segment requires O(p3q3) time, while that of the NURBS surface requires
O(np3q3) time.

Table 2. Time complexity of each step in Algorithm 1 for computing the algebraic level sets for a Bézier
segment. Time complexities are listed for Bézier curves of degree p and Bézier surfaces of degree p× q.

Step
Time Complexity

Curve Surface

Convex hull construction O(p log(p)) O(pq log(pq))
Distance field of convex hull O(p) O(pq)
Computing Dixon resultant O(p3) O(p3q3)
Normalization of resultant O(p3) O(p3q3)
Trimming operation O(1) O(1)

4. Methodology of Algebraic Point Projection

In this section, we describe the developed procedure for algebraic point projection.
The development of the algorithmic procedure is initially motivated using one-parameter NURBS
curves and later extended to two-parameter NURBS surfaces.

4.1. Algebraic Point Projection for a NURBS Curve

As illustrated using Figure 1, iterative numerical solution for point projection may lead to a
discontinuity in the projected point or may miss the correct solution. Hence, we develop in this section
a purely algebraic point projection algorithm with the following properties:

1. Exact at any point on the curve or surface, i.e., exact point inversion
2. Controllable accuracy when projected from points near the curve or surface
3. Efficient, non-iterative, and non-recursive solution procedure
4. Footpoints are continuous even near curve segments with high curvature
5. Valid solutions even when projected onto curves with only G 0 continuity

The present method consists of two steps: estimation of the footpoint in physical space and
parametric inversion using the resultant matrix.

4.1.1. First Order Algebraic Point Projection in Physical Space

From Equation (14), the gradient of the normalized approximate distance function to a Bézier
segment is derived as:

∇d =

(
I− Γ

‖∇Γ‖2 H

)
∇Γ
‖∇Γ‖ (19)
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where I is the identity matrix and H is the Hessian of function Γ(x). Using the above gradient, the
physical footpoint x f can now be approximately located as:

x f = x− d
∇d
‖∇d‖ (20)

To calculate d and ∇d using Equations (14) and (19), it would appear at first glance as though
Γ,∇Γ, and H need to be evaluated for every test point. However, the following derivation as well as
procedural detail show that d and ∇d can be computed efficiently without explicitly calculating Γ,∇Γ
or H. One can express ∇Γ and H in terms of Bezout matrix MB and its components MB

x and MB
y (the

superscript B is dropped in the following for ease of reading):

∇Γ = |M|

tr
(

M−1 ∂
∂x M

)
tr
(

M−1 ∂
∂y M

) = |M|

tr
(

M−1Mx

)
tr
(

M−1My

) = Γg̃ (21)

H = |M|



tr2
(

M−1Mx

)
tr
(

M−1Mx

)
tr
(

M−1My

)
−tr

((
M−1Mx

)2
)

−tr
((

M−1Mx

) (
M−1My

))
tr
(

M−1My

)
tr
(

M−1Mx

)
tr2
(

M−1My

)
−tr

((
M−1My

) (
M−1Mx

))
−tr

((
M−1My

)2
)


= ΓH̃ (22)

where g̃ and H̃ are the vector/matrix multiplying |M| in the above equations, respectively. Substituting
Equations (21) and (22) back into Equations (14) and (19), one obtains:

d =
1
‖g̃‖ (23)

∇d =
g̃
‖g̃‖ −

H̃g̃

‖g̃‖3 (24)

The efficiency of algebraic point projection in two-dimensional physical space is summarized
as follows:

1. Component matrices Mx, My, and Mw are constant for a given rational parametric curve.
Therefore, they can be pre-computed and repeatedly used at a point x.

2. Only matrix M needs to be factorized, and the procedure extensively reuses the products M−1Mx

and M−1My when computing H̃ and g̃.
3. For a Bezout matrix M of size p× p, where p is the degree of the rational parametric curve, the

typical computational cost is low since p is usually small in engineering applications.

4.1.2. Second Order Algebraic Point Projection in Physical Space

For test points near the curve, the first-order algebraic point projection method described in
Section 4.1.1 performs well; however, as shown through the example in Figure 8, when points are
farther away, the projection is not accurate. The example is of a quadratic Bézier curve with test points
on a horizontal line. The failure of first-order algebraic point projection is because the distance function
derived in Equation (14) is essentially a first order approximation using Taylor expansion. To improve
accuracy and make algebraic point projection possible for points farther from the curve, we present
next a second-order algebraic point projection algorithm in the following. While the second-order
algorithm is also approximate, in practice, it is sufficient for enriched immersed boundary analysis
since only quadrature points near the immersed boundary needs to be projected on to the surface.
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Figure 8. First-order algebraic point projection fails to reach footpoints on the curve for test points not
close to quadratic Bézier curve.

The second-order approximation of resultant Γ(x f ) at footpoint x f can be written as:

Γ(x f ) = Γ(x)− ∂Γ(x)
∂n

dquad +
∂2Γ(x)

∂n2 d2
quad (25)

Since the resultant at footpoint is zero, i.e., Γ(x f ) = 0, Equation (25) can be rearranged as:

dquad =
1

n ·H · n (∇Γ · n±
√
(∇Γ · n)2 − 2Γn ·H · n) (26)

where dquad is the distance estimate between the test point and footpoint based on the second-order
approximation. ∇Γ and H are the gradient and Hessian of algebraic level sets, which are calculated as
described in Section 4.1.1. For test points near the curve, a good approximation of normal vector n
could be n = ∇Γ

‖∇Γ‖ or n = ∇d
‖∇d‖ .

Algebraic point projection in two-dimensional physical space is validated in Figure 9, where
the second-order point projection result is compared against first-order point projection as well as
Newton–Raphson iterations for various test distances. Both algebraic point projection methods yield
the reference solution obtained using the Newton–Raphson method in the limit when the query point
is on the curve/surface, and when test distance is small (d̄ = 0.1). The second-order point projection,
however, converges to the solution when distances are larger (d̄ = 0.3), where the first-order point
projection fails.
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(a) Test distance d̄ = 0.1

(b) Test distance d̄ = 0.3

Figure 9. Point projection for cubic Bézier curve in two-dimensional physical space using the developed
algebraic method as well as Newton–Raphson iterations for: (a) test distance d̄ = 0.1; and (b) test
distance d̄ = 0.3. From left to right, Newton–Raphson method, first-order algebraic point projection,
and second-order algebraic point projection are shown. The inset image shows that first-order point
projection fails to converge onto footpoints on the curve when distances are larger.

4.1.3. Improvement to First Order Algebraic Point Projection

As illustrated in Figures 8 and 9, when the test point is far from the curve, first-order algebraic
point projection is inaccurate. In immersed boundary analysis, point projection is only required at
quadrature points near the boundary since the physical influence of the boundary on the underlying
domain is local. For quadrature points that are far from the boundary, a recursive first-order algebraic
point projection must be adopted for accuracy. The main idea is to treat the footpoint estimate of the
previous step of first-order algebraic point projection as the starting point for the next step, and to
recursively proceed until convergence. If a point is far from the boundary, we combine the distance
to the curve d in Equation (14) and distance to convex hull of Bézier segment φ to get the composed
distance d̃ and its gradient ∇d̃ as follows:

d̃ =

√
d2 +

(|φ| − φ)2

4
(27)

∇d̃ =


∇d, φ ≥ 0
2∇d + 2∇φ√

d2 + φ2
, φ < 0

(28)

The composed distance together with its gradient is then used for estimating the footpoint in
Equation (20). The result after recursive execution is illustrated in Figure 10. Comparing against
original first-order algebraic point projection in Figure 9b, one can observe that the improved first
order procedure is better.
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Figure 10. Recursive first-order algebraic point projection at test distance d̄ = 0.3.

4.1.4. Improvement to Second Order Algebraic Point Projection

While second-order algebraic point projection is more accurate, as should be expected, relative to
first-order algebraic point projection, it could be further improved, as discussed below. Since the n
computed locally at a point in the domain is relatively inaccurate for approximating the direction of
the vector x− x f at greater distances, Equation (26) will fail to provide the correct solution as distance
from the curve increases. As illustrated in Figure 11a, at test points along the line where n does not
intersect with the Bézier curve, no valid solution is obtained. This is because the normal vector n
generated using algebraic level sets usually does not coincide with normal vector n f at footpoint,
especially when test point is far away. One solution to this issue is to construct a new vector ncorr,
which is guaranteed to have positive discriminant in Equation (26). A trial ncorr that points to the
centroid of control polygon achieves the desired result. This choice of the normal direction at points
far away from the curve is simple and effective as shown in Figure 11b. While this correction is not
general, it is likely to provide sufficient accuracy in practice for quadrature points where the behavior
of the immersed boundary is blended with that of the underlying domain.

(a) Before correction (b) After correction

Figure 11. Second-order algebraic point projection with test points at a far distance: (a) using
non-corrected normal vector; and (b) using corrected normal vector.

4.1.5. Inversion to Parametric Space

Given a footpoint x f in physical space, finding a corresponding parameter u f such that C(u f ) = x f
is the point inversion problem. The direct approach to carrying out point inversion is by solving a
system of polynomial equations, which may not be easy to do since there is no analytical solution for
high-order polynomials of deg > 4, and since x f may not lie exactly on curve C(u) [22].
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This drawback can be overcome by using the Bezout matrix [25], as shown in the following.
Evaluate MB(x f ) with x f = (x f , y f ):

MB(x f ) = MB
x x f + MB

y y f + MB
w = [mij]p×p (29)

Then, Equation (6) can be rewritten as the following over-constrained linear system:

Aũ ≡


m11 m12 · · · m1(p−1)
m21 m22 · · · m2(p−1)

...
...

...
. . .

...
mp1 mp2 · · · mp(p−1)




up−1

up−2

...
u

 = −


m1p
m2p

...
mpp

 (30)

Matrix A is full ranked if Equation (5) has only one common root, i.e., if x f is not a double point [30].
Thus, u f can be obtained by solving a linear least square problem resulting from Equation (30), which
requires bounded computational cost unlike numerical iterations using the Newton–Raphson method.
In addition, if a physical test point x is initially on the curve, then x f = x, and the point inversion can
be directly applied, without needing to find the footpoint. Alternative to solving the over-constrained
system, one can discard any one row of A in Equation (30), which will make it full rank and the point
inversion solution can be obtained by solving linear system of equations.

To compute u f on a NURBS curve, which is piece-wise polynomial, projection onto the appropriate
Bézier segment is required. For this purpose, one can identify the closest Bézier segment using
individual algebraic level sets, and apply algebraic point projection on the closest Bézier segment.
Denoting the computed parameter on the closest Bézier curve as uB

f , the corresponding parameter

on the original NURBS curve uN
f can be obtained by purely linear scaling and offset. Unlike iterative

or recursive schemes, the algebraic method guarantees the existence of a definite footpoint without
needing to manipulate user-controlled parameters such as stop criterion or recursion limit in an effort
to coax a solution. If a test point is close to the connection node of two adjacent Bézier segments,
a result of uB

f < 0 or uB
f > 1 may be obtained. In this case, higher projection precision can be achieved

when a second point projection to the adjacent Bézier segment is attempted (see Figure 12).

0 𝑢𝐵1

0 𝑢𝑁

1𝑠𝑡 projection

2𝑛𝑑 projection
(𝑢𝑓

𝐵 ∉ [0, 1])

Figure 12. Illustration of the second projection onto an adjacent Bézier curve segment if the first
projection yields an out-of-span solution.

4.2. Extension to NURBS Surfaces

Analogous to the algebraic level sets in three-dimensions, the algebraic point projection can be
naturally extended to three-dimensional Bézier and NURBS surfaces by replacing Bezout matrix MB

with Dixon matrix MD. Since the Dixon matrix also has the linearity property, as given in Equation (17),
the basic procedure for point projection remains the same, as outlined in Section 4.1.
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4.2.1. Projection in Physical Space

Utilizing the linearity property (Equation (17)), one can rewrite ∇Γ and H in Equation (19) as
follows (as before, superscript D is dropped for ease of reading):

∇Γ = |M|


tr
(

M−1 ∂
∂x M

)
tr
(

M−1 ∂
∂y M

)
tr
(

M−1 ∂
∂z M

)
 = |M|


tr
(

M−1Mx

)
tr
(

M−1My

)
tr
(

M−1Mz

)
 = Γg̃ (31)

H = |M|



tr2
(

M−1Mx

)
tr
(

M−1Mx

)
tr
(

M−1My

)
tr
(

M−1Mx

)
tr
(

M−1Mz

)
−tr

((
M−1Mx

)2
)

−tr
((

M−1Mx

) (
M−1My

))
−tr

((
M−1Mx

) (
M−1Mz

))
tr
(

M−1My

)
tr
(

M−1Mx

)
tr2
(

M−1My

)
tr
(

M−1My

)
tr
(

M−1Mz

)
−tr

((
M−1My

) (
M−1Mx

))
−tr

((
M−1My

)2
)

−tr
((

M−1My

) (
M−1Mz

))
tr
(

M−1Mz

)
tr
(

M−1Mx

)
tr
(

M−1Mz

)
tr
(

M−1My

)
tr2
(

M−1Mz

)
−tr

((
M−1Mz

) (
M−1Mx

))
−tr

((
M−1Mz

) (
M−1My

))
−tr

((
M−1Mz

)2
)


= ΓH̃ (32)

Next, as before, Equations (20), (23) and (24) can be exploited to obtain the physical footpoint x f in
three-dimensional space. Earlier statements on efficiency of the algebraic point projection for rational
parametric curves also apply to rational parametric surfaces except that the size of the Dixon matrix
MD is 2pq× 2pq, where p and q are the degrees of the rational parametric surface in each dimension.
Algebraic point projection in three-dimensional physical space is demonstrated in Figure 13, where
test points are projected onto a target Bézier surface using the proposed second-order algebraic point
projection method and the Newton–Raphson iterations. Again, one can observe that the proposed
method leads to accurate solutions for test points closer to the surface.

Figure 13. Point projection in 3D physical space using the proposed algebraic method and
Newton–Raphson iterations.

4.2.2. Inversion to Parametric Space

The point inversion for rational parametric surfaces can be carried out using Dixon matrix as well.
Substituting the physical coordinates of the footpoint x f = (x f , y f , z f ) in MD, we get:

MD(x f ) = MD
x x f + MD

y y f + MD
z z f + MD

w = [mij]2pq×2pq (33)
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Thus, as before, the homogeneous system in Equation (16) can be converted into an
over-constrained non-homogeneous system as follows:


m12 · · · m1(1+i+jp) · · · m1(2pq)

...
. . .

...
. . .

...
m(2pq)2 · · · m(2pq)(1+i+jp) · · · m(2pq)(2pq)




up−1v2q−1

...
uivj

...
u


= −


m11

...
m(2pq)1

 (34)

Generally, the parameters (u f , v f ) of the footpoint x f can be computed by solving a least square
problem or discarding any one row and then solving a linear system of equations as mentioned earlier.
As before, the computation of parameters (uN

f , vN
f ) on a NURBS surface requires sub-division of the

surface into a set of Bézier segments. One can apply algebraic point projection to the Bézier segment
with smallest algebraic level set measure, and acquire (uN

f , vN
f ) from the Bézier parameters (uB

f , vB
f )

by simple linear scaling and offset. As illustrated in Figure 14, a second projection may be necessary
when uB

f or vB
f is outside the range [0, 1].

𝑢𝐵

𝑣𝐵

𝑢𝑁

𝑣𝑁

1𝑠𝑡 projection

2𝑛𝑑 projection
(𝑢𝑓

𝐵 ∉ 0, 1 ⊕ 𝑣𝑓
𝐵 ∉ [0, 1])

2𝑛𝑑 projection
(𝑢𝑓

𝐵 ∉ 0, 1 ∧ 𝑣𝑓
𝐵 ∉ [0, 1])

Figure 14. Illustration of the second projection onto an adjacent Bézier surface segment if the first
projection yields an out-of-span solution.

4.3. Time Complexity of the Algebraic Point Projection Algorithm

The generic pseudo-code of algebraic point projection for both NURBS curves and surfaces is
listed in Algorithm 2. As can be seen in Algorithms 1 and 2, algebraic level sets (ALS) and algebraic
point projection (APP) are closely connected. Algebraic level sets provide the closest Bézier segment
for the first point projection, but also restrict the target curve or surface to be low degree (p, q ≤ 3) so
as to avoid double points.

The time complexity for Algorithm 2 is now presented for both curves and surfaces. Consider a
NURBS curve of degree p or a NURBS surface of degree p× q, decomposing into n Bézier segments.
For each step in finding the point projection, the time complexity is a function of the degree and is
given in Table 3. As shown in Section 3.5, computing the algebraic level set at a point costs O(np3)

time for a curve and O(np3q3) time for a surface. Choosing the closest Bézier segment requires finding
the minimum of the level sets of n Bézier segments and costs O(n) time. Projection in the physical
space to the closest Bézier segment involves finding the gradient and Hessian of the Bezout/Dixon
matrix, which requires the solution to a linear system (see Equations (21) and (22)). This costs O(p3)

time for curves and O(p3q3) time for surfaces. Point inversion to parametric coordinates requires
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solving a resultant system (Equations (30) and (34)), which also requires O(p3) time for curves and
O(p3q3) time for surfaces. Finally, the parametric coordinates of the Bézier segment are scaled and
offset to obtain the parametric coordinates of the NURBS curve/surface. This can be done in O(1)
time. Thus, the total time complexity of algebraic point projection is the same as that of computing the
algebraic level sets, i.e., O(np3) for NURBS curves and O(np3q3) for NURBS surfaces.

Algorithm 2 Algebraic point projection algorithm.

Input: NURBS curve or surface C(u) and given point x
Output: Parameter uN

f of footpoint on NURBS entity C.

1: function ALGEBRAIC_POINT_PROJECTION(C, x)
2: B(C)← Split NURBS entity C into a Bézier set with segments Bi, i = 1, 2, · · · , n
3: for i← 1, n do . Loops are independent, parallelization is possible
4: di ← ALGEBRAIC_DISTANCE(Bi, x)
5: end for
6: x f ← x− dBj(x)nBj(x) . j = arg mini∈[1,n] di, and dBj is the distance to jth Bezier segemnt using

1st or 2nd order approximation, nBj(x) is normal vector of dBj

7: uB
f ← Solve Equation (30) with MB(x f ) or Equation (34) with MD(x f )

8: if uB
f is out of span then

9: uB
f ← Carryout the second projection based on Figure 12 or Figure 14

10: if Second projection is infeasible or uB
f is still out of span then

11: uB
f ← Compute corresponding parameter value on Bj boundary

12: end if
13: end if
14: uN

f ← Scale and offset uB
f based on knot span of C

15: end function

Table 3. Time complexity of each step in Algorithm 2 for algebraic point projection. Time complexities
are listed for NURBS curves of degree p and NURBS surfaces of degree p× q.

Step
Time Complexity

Curve Surface

Computing algebraic level set O(np3) O(np3q3)
Determining the closest Bézier segment O(n) O(n)
Projection in physical space O(p3) O(p3q3)
Point inversion to parametric space O(p3) O(p3q3)
Scaling and offset O(1) O(1)

5. Results and Discussion

Four numerical examples are presented to demonstrate the algebraic point projection methodology
of Sections 4.1.1 and 4.1.2. Two of the examples are projections to curves and the remaining two to
surfaces. The curve examples show the performance of algebraic point projection in simple tests
to achieve the accuracy of the Newton–Raphson method. The examples also reveal the superiority
of second-order point projection over first-order point projection. The surface examples further
demonstrate the cheaper computational cost of second-order algebraic point projection when compared
against the Newton–Raphson method.

The procedure for algebraic point projection implemented in the examples is summarized as
follows and illustrated through a flowchart in Figure 15:
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1. Decompose NURBS curve or surface and get the corresponding implicit form for each Bézier
entity.

2. Construct algebraic level sets for the decomposed Bézier entities.
3. Compose level sets on Bézier patches using R-functions to construct algebraic level sets on the

NURBS entity.
4. Find nearest Bézier entity for a given quadrature point in the domain.
5. Project test point on the nearest Bézier entity to get foot point in the physical space.
6. Apply point inversion and decide if recursive projection is needed.
7. Obtain global parametric solution by scaling the parameter value of the Bézier entity to that of

the NURBS entity.

Figure 15. Flowchart for execution of algebraic point projection.

5.1. Curve Tests

The first curve example is illustrated in Figure 16, where physical points in the underlying domain
are projected onto a given NURBS curve using both Newton–Raphson iterations as well as the algebraic
point projection. Contour levels indicate the value of parameter uN

f of the predicted footpoint.
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(a) Parameter values of the footpoints obtained through Newton–Raphson iterations

(b) Parameter values of the footpoints obtained through first-order algebraic point projection

(c) Parameter values of the footpoints obtained through second-order algebraic point projection

Figure 16. Parameter values of footpoints obtained using: (a) Newton–Raphson method; (b) first-order
algebraic point projection; and (c) second-order algebraic point projection. Parameter range of NURBS
curve is [0, 1].

As can be observed in Figure 16, both first- and second-order algebraic point projection provide
exact on-curve solutions and good approximate solutions to the parameter values from points
near the curve. In addition, one may observe that there are two regions, at the bottom-left and
upper-right of Figure 16a, respectively, where due to high curvature of nearby curve segments, a jump
in parameter value occurs when Newton–Raphson iterations are used. Such discontinuities disappear
when algebraic point projection is used. The relationship between distance from the curve and
relative error is obtained for both first- and second-order algebraic point projection methods using
the Newton–Raphson method as a reference (Figure 17). The test points are picked along an arbitrary
vertical trace line in Figure 16. The parameter range of the NURBS curve is [0, 1] in the example. As the
test point moves closer to the target curve, the projection error decreases quadratically (first-order
point projection) and cubically (second-order point projection).

The second curve example shown in Figure 18 demonstrates the robustness of the algebraic point
projection when the footpoint is either discontinuous or non-existent. One can observe in Figure 18b
that, although Points A and B are continuous in terms of the parametric value on the tracing curve,
the Newton–Raphson method results in a large jump in parametric solution AN

f and BN
f , whereas the

algebraic method yields a continuous parameter value. In general, the algebraic projected solution is
smoother and matches the Newton–Raphson solution well, and second-order point projection is more
accurate than first-order point projection.
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Figure 17. Relative error
|uNR

f −uAPP
f |

b−a vs. distance of test points d(x), where uNR
f and uAPP

f are parameter
values of footpoints obtained using the Newton–Raphson method and the algebraic point projection
respectively.

(a) Trace of test points and target curve. The trace was
roughly offset relative to the target.

(b) Parameter values of footpoints vs. those of the trace
curve

Figure 18. Illustration of the robustness of the 2D algebraic point projection for the NURBS curve.
(a) Trace of points that were projected onto target curve. (b) Solution parameter of footpoints on target
curve vs. parameter of trace curve for the two methods. Parameter discontinuity in Newton–Raphson
solution occurs due to non-uniqueness of the footpoint near the local minimum at utrace ≈ 0.176

5.2. Surface Tests

The first and second surface examples demonstrate the robustness of the second-order algebraic
point projection for NURBS surfaces involving discontinuous and non-existent footpoints, respectively.
In the first example (Figure 19), the discontinuous projection occurs again when the Newton–Raphson
method is applied on a surface segment with high mean curvature. In the second example (Figure 20),
the Newton–Raphson method failed in regions where the mathematical footpoints do not exist.
Not only does the algebraic point projection overcome those problems, but it also produces an accurate
and efficient solution. As listed in Table 4, the computational cost per point of the proposed method is
only 26% and 14% of that of the Newton–Raphson method in the first and second surface examples,
respectively.
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(a) Trace of test points, bowl-shaped target surface and the identified footpoints.

(b) Parameter values (utarget, vtarget) of footpoints shown in (a).

Figure 19. Illustration of the robustness of the 3D algebraic point projection algorithm involving
discontinuous footpoints. (a) Trace of points that were projected onto bowl-shaped target surface using
the proposed algebraic method and the Netwon-Raphson method. (b) Parameters of footpoints on the
target obtained by both the methods. Discontinuity occurs due to non-unique footpoints for test points
near the bottom of the surface.
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(a) Trace of test points, mountain-shaped target surface and consequent footpoints.

(b) Parameter values (utarget, vtarget) of footpoints.

Figure 20. Illustration of the robustness of the 3D algebraic point projection algorithm involving
test points whose mathematical footpoints do not exist. (a) Trace of points which are projected
onto mountain-shaped target surface using both methods. (b) Parameters of footpoints on target.
The solution does not exist near the four mountain ridges of G 0 continuity as shown in the four corner
regions of (b).
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Table 4. The results of point projection for NURBS surfaces. The tolerance in Newton–Raphson
iterations was chosen as ε = 10−8. Note that the time of finding an initial point is excluded in the time
per iteration.

Example Surface Newton–Raphson Iterations 2nd order APP

Time per Point Average Number Time per Iteration Time per Point Time per Point for Algorithm 1
(µs) of Iterations (µs) (µs) (µs)

#1 (Figure 19) 211.91 5.00 36.03 55.28 14.84
#2 (Figure 20) 769.73 10.85 50.47 107.88 16.92

6. Conclusions

In this paper, novel first- and second order-algebraic point projection methods for low degree
two-dimensional NURBS curves and three-dimensional NURBS surfaces are proposed. The procedure
utilizes the recently developed algebraic level sets. As a first step, the differential property of the
resultant matrix is used to obtain the footpoint in the physical space. Next, the parameter value of the
footpoint is computed by solving the over-constrained resultant system. Algebraic point projection
eliminates inefficient iterative computations and the need for a good initial guess by providing an
exact on-curve solution and good approximate solution for points near the curve. Through numerical
examples, the algebraic method, especially the second-order point projection is demonstrated to be
faster and more smooth than Newton–Raphson iterations.

The proposed algebraic point projection technique possesses two limitations. As illustrated in
Section 4, the proposed method is inaccurate or will fail when query points are far away from the
curve/surface due to the inaccuracy of the algebraic distance measure. Algebraic point projection will
also fail at points where the gradient of the algebraic level-sets is not defined. Such a point occurs,
for example, at the center of a circle or sphere. At these locations, a correction to the gradient or a
perturbed point is needed. Although algebraic point projection is an approximation, particularly
for test points far away from the curve/surface, it has utility for isogeometric analysis, where small
inaccuracy in point inversion solution may be acceptable as a trade-off against smooth, robust, and
efficient projection. Such a projection is critical given the large number of quadrature points at which
point projection is necessary during analysis.
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