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Abstract: Based on tracking-by-detection, we propose a hierarchical-matching-based online and
real-time multi-object tracking approach with deep appearance features, which can effectively reduce
the false positives (FP) in tracking. For the purpose of increasing the accuracy rate of data association,
we define the trajectory confidence using its position information, appearance information, and the
information of historical relevant detections, after which we can classify the trajectories into different
levels. In order to obtain discriminative appearance features, we developed a deep convolutional
neural network to extract the appearance features of objects and trained it on a large-scale pedestrian
re-identification dataset. Last but not least, we used the proposed diverse and hierarchical matching
strategy to associate detection and trajectory sets. Experimental results on the MOT benchmark
dataset show that our proposed approach performs well against other online methods, especially for
the metrics of FP and frames per second (FPS).

Keywords: multiple object tracking; convolutional neural network; data association; pedestrian
re-identification; trajectory confidence

1. Introduction

In recent decades, due to the academic potential and commercial value, multi-object tracking (MOT)
has attracted increased attention in computer vision. MOT has been applied in many applications,
such as video surveillance [1], intelligent driving, human-computer interaction [2], virtual reality [3]
and biomedical imaging [4], etc. The main tasks of multi-object tracking are locating multiple objects,
maintaining their identities, and yielding their individual trajectories given an input video, or an image
sequence. However, in crowd scenes many problems occur such as the overlaps of objects, frequent
occlusion, and drastic changes in appearance, which will lead to a significant decline in the speed and
accuracy of the tracking algorithms. Each tracking algorithm itself contains a lot of parameters. How
to adjust the parameters to make the algorithm adapt to more scenarios is also an urgent problem to
be solved.

According to the processing mode, multi-object tracking algorithms are usually classified into
online and offline. The difference is that in processing the current frame, the online algorithms only
rely on exploiting the information of the frames up to the current frame, while the offline algorithms
can use both past and future frames. Generally, the offline algorithms can build the optimal trajectories
set based on global information, but they often need higher computational complexity and larger
memory capacity. On the contrary, the online algorithms can only infer the current optimal trajectory
set based on limited information. Although their real-time performance is relatively high, they are more
vulnerable to object occlusion, error detection, and other problems, which lead to erroneous trajectories.
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At present, in the area of pedestrian movement, most multi-object tracking algorithms are designed
based on a tracking-by-detection framework. This kind of method is usually divided into five steps:
first, detect objects in the current frame. Second, extract features of the detections. Third, measure
the similarity between detections and existing trajectories. Fourth, associate detections and existing
trajectories according to the similarity matrix. Fifth, manage all trajectories and remaining detections,
such as initialization, update, termination, etc. With the rapid development of the object detection field,
object detection algorithms are becoming more and more mature. In both deep learning methods [5–7]
and traditional methods of extracting features manually [8] great progress has been made in accuracy
and real-time.

More recently, several emerging state-of-the-art methods have been published. Sadeghian et al. [9]
applied a recurrent neural network (RNN) in modeling appearance, motion, and interaction information
of objects to compute their similarity to detections. Wu et al. [10] designed a multi-branch neural
network to predict the confidence and location of objects. Yoon et al. [11] exploited the one-shot
learning MOT framework based on an attention mechanism. Despite the accurate tracking performance
on account of deep learning, the common disadvantage of this framework is low speed owing to the
need for multiple complex networks. Baisa [12] proposed an online MOT tracker based on Gaussian
Mixture Probability Hypothesis Density (GMPHD) in combination with a similarity convolution neural
network (CNN), which also utilized pedestrian re-identification technology. The way it deals with
trajectory states is similar to our network, yet there is still a difference in identities switches (IDS) and
other metrics.

Although the performance of object detection algorithms is improving constantly, it is still difficult
to avoid the problems of false detection, missed detection, incomplete bounding boxes, etc. Because
of the interference of these factors, it is not easy to obtain useful and reasonable appearance features
when extracting from objects, which further makes the similarity measurement particularly difficult.
In addition, the scale transformation and occlusion of the objects will also have a great impact on data
association. More importantly, many multi-object tracking algorithms do not attach importance to the
real-time performance. They tend to pursue accuracy and ignore speed. However, in the era of pursuing
high efficiency in all aspects, the real-time performance of the algorithms is of vital importance.

In this paper, we propose a hierarchical matching based online and real-time multiple object
tracking approach with deep appearance features (DAFs) to solve the aforementioned problems (low
FPS, false detection, unreliable features). Through our method, we can significantly reduce IDS, FP, and
the number of track fragmentation (Frag) while maintaining real-time analysis and accurate results. In
summary, our main contributions are as follows:

To handle problems like false detection, missed detection, and occlusion, we designed four
different trajectory states and transition conditions in each state. Each object can use different strategies
to tackle problems under different situations.

• In order to obtain discriminative appearance features, we exploited an extraction CNN which
divided the input image into several different regions. Moreover, we trained the network on a
large-scale pedestrian re-identification dataset, and evaluated it on the test set.

• As for the data association, we proposed the calculation equations of trajectory confidence and
the hierarchical matching strategy. By adopting the equations, we divided the trajectory set into
different confidence sets, representing different reliability levels. Furthermore, we designed a
hierarchical matching strategy, associating the trajectory set and detection set after measuring the
similarity distance between each of them from the aspect of appearance and motion.

• We carried out some ablation studies on our algorithm as well as the experiments on the
MOT15 benchmark dataset [13,14] and MOT17 benchmark dataset [15]. The experimental results
demonstrate the effectiveness of our proposed approach.

The rest of this paper is organized as follows. In Section 2, we introduce a detailed description
of the proposed hierarchical-matching-based online and real-time multi-object tracking with deep
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appearance features. Experimental evaluation of our tracking approach is carried out in Section 3.
Section 4 presents our conclusions.

2. Proposed MOT Method

The multi-object tracking algorithm designed in this paper, as shown in Figure 1, consists of three
parts: (1) prediction, loading detections, and extracting features, (2) similarity measurement, and
(3) data association. Given the detections in frame t, we first extract the appearance feature of each
object using the designed CNN, and use a Kalman filter [16] to predict its motion information. Then,
similar to the above, we load the appearance features of the existing trajectories in the buffer, and use a
Kalman filter to predict their motion information. After that, the similarity analysis between detections
in frame t and the trajectories in frame t–1 is carried out from the aspect of appearance and motion.
According to the measurement results, we employ our proposed matching strategy to associate the
trajectories and detections so that the new trajectories in frame t can be obtained. In the following
sections, we will discuss the details of each part of the algorithm.
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Figure 1. Proposed multi-object tracking pipeline is illustrated. At the beginning, we load the
appearance features of trajectories in the t–1 frame from gallery, and extract the appearance features of
detections in the t frame. Then, we predict motion information of the above trajectories and detections
by using a Kalman filter. We measure their similarity distance through our proposed equation after
obtaining the appearance and motion information. In the end, we match the trajectories and detections
with the designed matching strategy.

2.1. Trajectory States

Trajectory states are the basis of our framework. When tracking begins, the tracker receives object
detections from the detector. It needs to make a corresponding decision for each detection, such as
initialization, tracking, or abandon. The aim is to make the objects have different strategies to solve
these problems in different situations, such as occlusion, disappearing, and so on, so as to reduce the
number of IDS and Frag.

There are four trajectory states designed in our paper: Tentative, Confirmed, Vanished, and
Deleted. The Tentative state is the preparatory stage before an object is formally tracked. All the
object detections will stay in this state for several frames, and only those which continuously appear
will be considered as true positives (TP). Thus this state can be used to reduce false positives (FP).
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The Confirmed state is the state in which an object is being correctly tracked, and only in this state
can the bounding box of the object be displayed. The Vanished state is the state in which an object
disappears or is lost, due to occlusion or drastic changes in appearance. Here, the trajectory will be
hidden temporarily so we can reduce the number of IDS and Frag. The Deleted state is the termination
state of a trajectory. When it determined that an object no longer appears in the video, it is included in
this state.

In order to screen out the error detections, we set the threshold θTC, which represents the required
continuous successful matching frames to transfer from Tentative to Confirmed. Additionally, for the
purpose of reducing IDS and Frag, we set the threshold θVD, which represents the required continuous
unsuccessful matching frames to transfer from Vanished to Deleted.

Figure 2 is an example of the object state transition. At the beginning, the bounding box for the
person on the far right side of frame (a) is not displayed, because he just appeared, so his state was
Tentative. In frame (b) his state transferred to Confirmed because the object continuously appeared for
θTC frames. In frame (c), his state turned to Vanished as a result of being occluded by the purple object.
In frame (d), the blue object recovered from the occlusion and his state turned to Confirmed again. At
last, in frame (e), he went out of the screen so his state first transferred to Vanished for θVD frames, and
then transferred to Deleted until the last.
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2.2. Trajectory Confidence

Trajectory confidence is an important basis to distinguish whether a trajectory is reasonable or not
and whether it can continue to match the new detection. The higher the trajectory confidence, the more
likely it is to be the correct trajectory, and vice versa. Generally, there are many factors that determine
the trajectory confidence, such as its total length, its length in the Vanished state, the confidence of
its historical relevant detections, and its historical similarity distance. Based on the above factors,
we define the trajectory confidence as follows:

con f (Ki) = con fa f f (Ki)con fiou(Ki)con fdet(Ki) (1)

Ki represents the i-th trajectory in the whole trajectory set,Ki =
{
ki

ts
, . . . , ki

t, . . . , ki
te

}
, where ts

represents the number of initial frame of the trajectory and te represents the number of terminal frame.
ki

t represents the trajectory state in frame t. con fa f f represents the similarity distance between the
trajectory and its corresponding historical relevant detections. con fiou represents the Intersection over
Union (IoU) score between the trajectory and its corresponding historical relevant detections. con fdet



Algorithms 2020, 13, 80 5 of 16

represents the weighted confidence of the detection which has been associated with the trajectory. Each
score is derived from the following equation:

con fa f f (Ki) = 1
h
∑

t∈[ts,te] Φ(ki
t)A(ki

t, d j
t)

con fiou(Ki) = 1
h
∑

t∈[ts,te] Φ(ki
t)IoU(ki

t, d j
t)

con fdet(Ki) = 1
h
∑

t∈[ts,te] Φ(ki
t)c

j
t

(2)

where h represents the number of frames that the trajectory successfully matches to the detection, and
h <= te − ts + 1. Φ(ki

t) indicates that if ki
t successfully matches with detection in current frame, it equals

to 1, otherwise 0. d j
t represents the j-th detection in frame t. A(ki

t, d j
t) represents the similarity distance

between ki
t and d j

t in frame t, which is described in Section 2.4. IoU(ki
t, d j

t) represents the IoU score

between ki
t and d j

t in frames t. c j
t represents the confidence of the j-th detection in frame t, which is

given by the detector in advance.
Figure 3 is part of the qualitative tracking results of our algorithm on the MOT15 benchmark

dataset. Generally speaking, low confidence trajectories are often caused by overlapping occlusion,
dynamic ambiguity, drastic changes in appearance, and other factors. These trajectories are prone to
track segmentation, IDS, and other phenomena in subsequent frames. Therefore, we prefer to associate
high confidence trajectories with detection targets first, and then deal with low confidence trajectories.
The experimental results in Section 3 prove the feasibility of our algorithm.

In order to cooperate on our matching strategy, we set the trajectory confidence threshold and the
detection confidence threshold according to practical experience, which will be discussed in Section 3.4.
Trajectories and detections that exceed the threshold will be classified as high confidence sets, while
those below the threshold will be classified as low confidence sets.
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set of training images and (–h) are from a set of testing images. Following # is the individual frame
number in each image sequence. Different trajectories are illustrated in different colors, with different
identities marked in white. The red boxes without identities are detections, some of which have not
been associated with trajectory. The filled boxes are low-confidence trajectories, while the unfilled
rectangles are high-confidence trajectories.

2.3. Appearance Feature Extracting Network

A robust appearance feature can prevent the object from drifting to false detection, and can also
distinguish the correct object from occlusion. As time goes, the appearance of the object may change
gradually, especially for the occluded object. Traditional artificial feature extraction methods imitate the
characteristics of human vision and extract features with specific physical meanings. These methods
often divide the image into several regions and construct feature vectors or histograms according
to the information of multiple local regions. However, they are not perfectly suitable for occlusion
and other situations because the artificial feature extraction is not very comprehensive and relatively
simple, which often makes it impossible for the tracking algorithm to accurately correlate the same
objects of different frames. Therefore, we propose a convolutional neural network based on pedestrian
re-identification [17,18].

Following the idea of combining traditional methods with the technology of deep learning, we
segment the input image, and then pass all the slices as input into the convolutional neural network.
As Figure 4 shows, the original image size was 128 × 64, which is the Global part. In addition, we
extend the original image to two other copies, Local Cross and Local Horizontal. Local Cross divides
the original image into four local regions with a size of 64 × 32, while Local Horizontal divides the
original image into four local regions with a size of 32 × 64. The reasons for our design are as follows.

Firstly, we design the Local Horizontal patch by referring to the longitudinal distribution of
human body structure, like head, trunk, legs, and feet, so that the discriminant ability of our model
for pedestrians is reasonably enhanced. Secondly, according to the shooting angle of the camera in
the scene, pedestrians are often obscured by one or more parts, therefore they cannot be displayed
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completely in the image while Local Cross can help the model to enhance its recognition ability on the
basis of the different local characteristics of pedestrians. Thirdly, when the global slice and the local slice
pass through the convolution neural network, we concatenate their output vectors, which can combine
the common area of interest of both the global and local information, further consolidating the model.
By artificially designing different feature extraction regions and using neural networks to extract
effective features relatively accurately, we can make better use of the advantages of traditional methods
and deep learning methods. We will discuss our network structure and experiments in Section 3.3.

Algorithms 2020, 13, 80 7 of 16 

for pedestrians is reasonably enhanced. Secondly, according to the shooting angle of the camera in 
the scene, pedestrians are often obscured by one or more parts, therefore they cannot be displayed 
completely in the image while Local Cross can help the model to enhance its recognition ability on 
the basis of the different local characteristics of pedestrians. Thirdly, when the global slice and the 
local slice pass through the convolution neural network, we concatenate their output vectors, which 
can combine the common area of interest of both the global and local information, further 
consolidating the model. By artificially designing different feature extraction regions and using 
neural networks to extract effective features relatively accurately, we can make better use of the 
advantages of traditional methods and deep learning methods. We will discuss our network structure 
and experiments in Section 3.3. 

   

(a) Global (b) Local Cross (c)Local Horizontal 

Figure 4. Region segmentation. The size of the Global part is 128 × 64. The size of the sub-blocks of 
Local Cross and Local Horizontal are 64 × 32 and 32 × 64, respectively. 

2.4. Similarity Distance Measurement 

Similarity distance is a metric to measure whether the trajectory and the detection belong to the 
same object. The smaller the metric is, the more likely they are the same, and vice versa. In this paper, 
we establish the similarity distance measurement equation from two aspects. 

On one hand, in terms of appearance features, although we can get discriminative pedestrian 
appearance features through our proposed network, it is still difficult for us to correlate and match 
two identical objects in different frames which are far apart from each other. Therefore, we set up a 
feature buffer space for each trajectory to store the appearance features of the detections that it has 
been associated with. When measuring the similarity distance between a trajectory and detection, our 
method loads all of the trajectory appearance features from its buffer, and calculates the distance 
between each feature and the detection features. Then, it uses the minimum of the above distance as 
the similarity distance. In this paper, the appearance features extracted by our CNN has been already 
normalized, that is, their L2 norm is equal to 1. Then we use the square of Euclidean distance as the 
similarity distance measurement of appearance features, and define the following equation: 

( , ) min{( )( ) | }i j i j i j T i i
app t t t t t t tA k d feat feat feat feat feat G= − − ∈  (3) 

where i
tfeat  represents the appearance feature of i-th trajectory and j

tfeat  represents the 

appearance feature of j-th detection. iG  represents the features buffer of i-th trajectory. 
In terms of motion characteristics, we introduce the Kalman filter prediction method to assist 

our algorithm since it is suitable for linear systems, in which the object states obey Gaussian 
distribution. Meanwhile, many pedestrians move in a linear mode in real scenes, enabling the Kalman 
filter to predict the uncertain object state more easily. Specifically, we define the measurement space 
of a trajectory state or a detection as ),,,,,,,( hwyx vvvvhwyx , respectively representing the horizontal 

and vertical coordinates, width and height, as well as the corresponding velocities of the center point 
of the trajectory bounding box. In our paper, we use the square of Mahalanobis distance as the 
measurement standard of motion feature similarity distance, and define the following equation: 

1( , ) ( ) ( )i j i j i i j
mot t t t t t tA k d X Y S X Y−= − −  (4) 

Figure 4. Region segmentation. The size of the Global part is 128 × 64. The size of the sub-blocks of
Local Cross and Local Horizontal are 64 × 32 and 32 × 64, respectively.

2.4. Similarity Distance Measurement

Similarity distance is a metric to measure whether the trajectory and the detection belong to the
same object. The smaller the metric is, the more likely they are the same, and vice versa. In this paper,
we establish the similarity distance measurement equation from two aspects.

On one hand, in terms of appearance features, although we can get discriminative pedestrian
appearance features through our proposed network, it is still difficult for us to correlate and match
two identical objects in different frames which are far apart from each other. Therefore, we set up a
feature buffer space for each trajectory to store the appearance features of the detections that it has
been associated with. When measuring the similarity distance between a trajectory and detection,
our method loads all of the trajectory appearance features from its buffer, and calculates the distance
between each feature and the detection features. Then, it uses the minimum of the above distance as
the similarity distance. In this paper, the appearance features extracted by our CNN has been already
normalized, that is, their L2 norm is equal to 1. Then we use the square of Euclidean distance as the
similarity distance measurement of appearance features, and define the following equation:
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where f eati
t represents the appearance feature of i-th trajectory and f eat j

t represents the appearance
feature of j-th detection. Gi represents the features buffer of i-th trajectory.

In terms of motion characteristics, we introduce the Kalman filter prediction method to assist our
algorithm since it is suitable for linear systems, in which the object states obey Gaussian distribution.
Meanwhile, many pedestrians move in a linear mode in real scenes, enabling the Kalman filter to
predict the uncertain object state more easily. Specifically, we define the measurement space of a
trajectory state or a detection as (x, y, w, h, vx, vy, vw, vh), respectively representing the horizontal and
vertical coordinates, width and height, as well as the corresponding velocities of the center point of the
trajectory bounding box. In our paper, we use the square of Mahalanobis distance as the measurement
standard of motion feature similarity distance, and define the following equation:

Amot(ki
t, d j

t) = (Xi
t −Y j

t)S
i−1(Xi

t −Y j
t) (4)
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where Xi
t and Si−1 represent the projection of i-th trajectory state in the measurement space and the

covariance matrix of i-th trajectory state in frame t, respectively. Y j
t represents the measurement space

of j-th detection in frame t. In the initial measurement space of a detection, the first four element values
are obtained from the prior detector, while the last four element values are initialized to zero. When a
track is not associated with any detection, we use the constant velocity linear motion model of the
Kalman filter to predict the measurement space of the track directly without correction. Otherwise,
when a track is associated with any detection, we update the measurement space of the track according
to the detection. Note that when the track state changes from Confirmed to other states, due to
occlusion or other reasons, the uncertainty of the track during this period is increased according to
the characteristic of the Kalman filter, which may result in a smaller distance between the track and
detections, thus we introduce the threshold function as follows. By synthesizing Equations (3) and (4),
we define the final similarity distance measurement equation:

A(ki
t, d j

t) =
{
g(Amot(ki

t, d j
t),θmot)Aapp(ki

t, d j
t)
∣∣∣∣Aapp(ki

t, d j
t) < θapp

}
(5)

where g(Amot(ki
t, d j

t),θmot) is a threshold function; when Amot(ki
t, d j

t) is smaller than the threshold, the
result of the function is equal to 1, otherwise it is 0. As mentioned above, one of the reasons why we
use the threshold function for motion features is that we do not correlate trajectories with detection
based on the specific results of the Kalman filter prediction, but only use this to help us screen out
some pairs that do not conform to linear motion in terms of motion information, and then use the
appearance features to determine how to match the remaining trajectories and detection. Lastly, we
need to set a threshold θapp to filter some pairs with too large of a similarity distance of appearance
features to reduce the number of FP.

2.5. Diverse and Hierarchical Matching Strategy

The Hungarian algorithm [19] is simple and fast, and is often used in the correlation matching
between trajectory and detection. However, it often matches trajectories and detections only according
to the loss matrix between them, elements of which are the similarity distance, without considering the
need for specific similarity in specific scenarios. For example, at a certain time, two different trajectories
have the same similarity with the same detection. According to the Hungarian algorithm, since it is
based on global information for correlation matching, it may assign a trajectory to a detection which
should not be its match. In this case, we can use other additional information to help us infer how to
match the trajectory and detection correctly. The trajectory confidence introduced above is one of the
important ways.

Before starting matching, we first divide the current existing trajectories according to the confidence,
so that the high confidence trajectories are correlated before the confidence trajectories. We also have to
divide the detections into two sets, because the above situation can be reversed, that is, two detections
can compete for one trajectory. In addition, instead of dividing all existing trajectories, we must divide
the trajectories in the Confirmed and Tentative states. As mentioned in Section 2.1, Vanished and
Deleted states are equivalent to two situations in which the object disappears, so we don’t need to
consider their confidence. To sum up, we design Algorithm 1 for data association.

First of all, we take the trajectory set and detections set of the current frame as input. In line 1, we
divide the trajectories in different states and we calculate the confidence of trajectories in Confirmed
and Tentative states according to Equations (1) and (2), and divide the trajectory sets with high and low
confidence according to the confidence threshold mentioned in Section 2.2. Similarly, we divide the
detection set into high and low confidence sets. In line 3, we calculate the similarity matrix between
the current trajectory and the detection according to Equations (3), (4), and (5).

After the preparations have been completed, in line 4 we use the Hungarian algorithm to match
the high and low confidence trajectory sets and the detection set in order of their priority, to ensure
that the correct matches are matched in advance, so as to reduce the number of FP. Since the drastic
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change of appearance caused by occlusion, illumination, or other reasons may affect the appearance
characteristics of the object and make the similarity measurement inaccurate when the moving distance
of the object between two continuous frames is not large, in line 5 we make IoU matching for the
remaining unmatched Confirmed and Tentative trajectory sets and the detection set. In line 6, we match
the trajectories in the Vanished state only according to the appearance similarity matrix. The reason for
this is that the current position of trajectories in the Vanished state may be far from their positions
before they disappear, and it is unreasonable to predict them in motion information. Therefore, we do
not use the total similarity equation correlate here.

Finally, we update the matching pairs, unmatched trajectory sets, and unmatched detection sets
in lines 7–9 and return them in line 10; thus we then can update and initialize the trajectories.

Algorithm 1. Trajectories Association
Input: Trajectories set K, Detections set D
Output: Set of unmatched trajectories UK, set of unmatched detections Ud, set of matches M
1: Initialize set of confirmed and tentative trajectories KCT and set of vanished trajectories KV , set of
high-confidence trajectories KH and set of low-confidence trajectories KL, set of high-confidence detections DH
and set of low-confidence detections DL
2: Initialize UK, Ud and M to ∅
3: Compute affinity matrix A and appearance affinity matrix Aapp using Equation: (3) (4) (5)
4: Associate KH and DH,KH and DL,KL and DH,KL and DL according to A
5: Associate remaining trajectories and remaining DH and DL according to IoU
6: Associate KV and remaining DH and DL according to Aapp

7: Update UK to remaining trajectories
8: Update Ud to remaining detections
9: Update M to successful matches
10: return UK, Ud, M

3. Experiments

3.1. Dataset

We evaluated the proposed online multi-object tracking algorithm on the MOT15 benchmark
dataset and MOT17 benchmark dataset. The MOT15 benchmark dataset includes 11 training videos
and 11 test videos. The MOT17 benchmark dataset is among the latest online challenges in tracking,
which contains seven training videos and seven test videos, with three different detectors of objects,
namely SDP (Session Description Protocol) [20], Faster-RCNN(Region convolution neural network) [21]
and DPM( Direct Part Marking) [22] respectively. The resolution, length, and number of each video
are different, and the videos include static and dynamic cameras, dense and sparse crowds, indoor
and outdoor scenes of public places, and other scenarios. The annotations are basically correct. In
summary, these are comprehensive datasets for evaluating multi-object tracking algorithm.

In addition, we evaluated our deep appearance feature extracting network on a public pedestrian
re-identification dataset, Market1501 [23]. The dataset contains more than 32,000 images of pedestrians,
including 1501 different identities; each person is composed of two to six cameras.

3.2. Evaluation Metrics

We used the evaluation metrics [13,24,25] of the MOT benchmark dataset as our measurement
metrics. The higher the score, the better the metric with (↑) and the worse the metric with (↓). These
metrics include:

MOTA(↑)[24]: Multiple Object Tracking Accuracy, combines three error sources: false positives,
missed objects, and identity switches.

MT(↑): Mostly tracked objects. The ratio of ground-truth trajectories that are covered by a track
hypothesis for at least 80% of their respective life spans.
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ML(↓): Mostly lost objects. The ratio of ground-truth trajectories that are covered by a track
hypothesis for at most 20% of their respective life spans.

FP(↓): The total number of false positives.
FN(↓): The total number of false negatives.
IDS(↓): The total number of identity switches.
Frag(↓): The total number of times a trajectory is fragmented.
FPS(↑): The processing speed in frames per second on the benchmark excluding the detector.

3.3. Implementation Details

In order to extract the appearance features in real time, we needed to train our network on
the pedestrian re-identification dataset in advance. In this paper, we trained it on a public dataset,
Market1501 [23]. Our network structure is shown in Table 1. In terms of width, we divided it into three
parts as mentioned in Section 2.3. In terms of depth, we had a total of seven convolution blocks for the
global part, and only four convolution blocks for the local part. These convolution blocks mainly refer
to residual blocks in the wide residual network (ResNet) [26], which has the characteristics of smaller
parameters and more efficient performance. In order to solve the vanishing gradient problem and
ensure that the accuracy of the deep layer network is not lower than the shallow layer network, ResNet
introduced a skip connection. By directly adding the output of the upper layer to lower layer, the
output of the two layers could be identically mapped, which means it maintains the optimal accuracy
of the network without any modification to the optimal features. After convoluting each region by
different blocks, we got the relatively deep semantic information of the global region and the shallow
semantic information of the two local regions. Then, we attached a full connection layer and a batch
and L2 normalization layer to the network. By combining the 128-dimensional global feature with two
256-dimensional local features, we got a 640-dimensional appearance feature from the last layer.

Table 1. Proposed appearance extracting structure. MP: Max-Pooling; S: Stride; SL: Slice; CA:
Concatenation; G: Global; LC: Local Cross; LH: Local Horizontal.

Layer Output Size Patch Size, Channel, Stride

Global Local Cross Local Horizontal

Conv1 128 × 64 [3 × 3, 32] × 2

Conv2
G: 64 × 32

LC: 64 × 32
LH: 32 × 64

3 × 3 MP, S-2 SL-4, 2x2 MP, S-1 SL-4, 2x2 MP, S-1

[3 × 3, 32] × 2 [3 × 3, 32] × 2 [3 × 3, 32] × 2

Conv3
G: 64 × 32

LC: 32 × 16
LH: 16 × 32

[3 × 3, 32] × 2 [3 × 3, 64], S-2
[3 × 3, 64]

[3 × 3, 64], S-2
[3 × 3, 64]

Conv4
G: 32 × 16
LC: 16 × 8
LH: 8 × 16

[3 × 3, 64], S-2
[3 × 3, 64]

[3 × 3, 64] × 2
3 × 3 MP, S-2

[3 × 3, 64] × 2
3 × 3 MP, S-2

Conv5 G: 32 × 16 [3 × 3, 64] × 2

Conv6 G: 16 × 8 [3 × 3, 128], S-2
[3 × 3, 128]

Conv7 G: 16 × 8 [3 × 3, 128] × 2

Fc 1 × 1
16 × 8 MP CA-4, 16x8 MP CA-4, 8x16 MP

CA-3, [1 × 1, 640]

Batch and L2
normalization 1 × 1 [1 × 1, 640]
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Our appearance feature extraction was implemented in Tensorflow [27] and tested on a PC
with Intel core i7-7700 CPU, 16 GB RAM, and Nvidia GTX 1070 GPU, while our tracking part was
implemented in Python and tested on the same PC. In the training, we used cosine softmax loss [28]
as our loss function and Adam [29] as the optimizer with a learning rate of 1xe-3. It took about
50,000 iterations to converge the model. We evaluated our model on the Market1501 test set and
achieved a result of mAP = 0.595. In comparison, the AlexNet identification model reached a result
of mAP = 32.36 while the ResNet-50 identification model reached a result of mAP = 47.78 in [30],
proving that our model had certain discrimination for pedestrians. When it was actually applied to
multi-target tracking, we extracted the appearance features of more than 460 detections in a second
on the PC. In fact, there was only about 10 to 20 detections in one frame. Therefore, our appearance
feature extracting network can fully meet the requirements of real-time tracking.

It takes about 32 seconds and 130 seconds to generate the output results of the MOT15 test set
and the MOT17 test set on the same PC, while it takes approximately 122 seconds and 371 seconds
to extract the appearance features of all the detections in the two test sets using the network we
designed. The reason why the MOT17 test set takes much longer than the MOT15 test set is that the
number of detections in the MOT17 test set (including DPM, FRCNN, and SDP) is much larger than
that in the MOT15 test set, and the additional calculation time was mainly spent on extracting the
appearance features.

3.4. Ablation Studies

In order to prove the validity of each part of our algorithm, we disabled the functions of each part
of the algorithm and evaluated them on the MOT15 training set. As shown in Table 2, the Proposed
Algorithm is the result of the complete algorithm in our paper.

Table 2. Performance of our method when different components are disabled.

Method MOTA(↑) MT(↑) ML(↓) FP(↓) FN(↓) IDS(↓) Frag(↓)

Proposed Algorithm 30.0 59 269 4101 23,580 269 845

B1 26.3 60 245 5088 23,028 1284 1518

B2 26.8 40 297 2559 25,891 742 889

B3 25.8 40 306 4018 24,126 933 968

B4 27.3 40 300 2488 26,133 404 690

B1: We disabled all trajectory states and states transition proposed in Section 2.1, i.e., deleted trajectories that were
not associated with detections directly in the current frame. B2: We disabled the trajectory confidence proposed
in Section 2.2 and the matching strategy proposed in Section 2.5. We replaced the matching strategy between
trajectories and detections with directly using the Hungarian algorithm according to the similarity distance in
the current frame. B3: We disabled the deep appearance features proposed in Section 2.3 and replaced it with a
histogram of oriented gradients (HOG) [31] appearance. B4: We disabled the similarity distance measurement
proposed in Section 2.4 and replaced the correlation measure in the matching strategy with the measurement based
on IoU.

As can be seen from the Table 2, each part of the algorithm has a certain impact on the whole
algorithm. Among them, deep appearance features have the largest impact on MOTA, MT, and ML.
The results support that DAFs are much more discriminative than traditional features. Trajectory states
and state transitions also have a great influence. This method helps us greatly reduce the number of
IDS, FP, and Frag, but at the same time it also adds a lot of FN. This is because the trajectory is not
shown in the Tentative state, which causes the tracker to miss many supposedly correct trajectories, but
also as a result of this the tracker can screen out many false detections. In fact, our matching strategy
also depends on the designed trajectory states, which are also affected to some extent. Additionally,
similarity distance measurements and diverse and hierarchical matching strategies also have certain
impact on the metrics to different degrees.
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In order to study the impact of numerous thresholds or weights on the algorithm, we have done a
lot of comparative experiments. Since there are too many parameters involved, this paper does not list
them one by one. Here, we take the threshold θTC mentioned in Section 2.1 as an example, as shown in
Table 3. From the table, we can see that the number of MT, FP, IDS, and Frag gradually decreased while
ML and FN gradually increased with the increase of threshold. This also proves that our algorithm
misses the correct trajectory while eliminating the error detection. The number of MOTA first increased
and then decreased, reaching its maximum at 2, so we let θTC = 2 in the following experiments.
Similarly, we got the best value of other threshold parameters on the MOT15 benchmark dataset
through experimental data, including θVD = 100, θapp = 0.2, θmot = 9.4877, ρK = 0.03375, ρD = 25,
Gi = 110, where the value θmot were obtained from the table of critical values of chi-square distribution.

Table 3. Performance of our method under different θTC.

θTC MOTA(↑) MT(↑) ML(↓) FP(↓) FN(↓) IDS(↓) Frag(↓)

1 29.2% 67 250 5036 22,875 360 985

2 30.0% 59 269 4101 23,580 269 845

3 29.9% 57 280 3550 24,205 207 726

4 29.5% 55 287 3185 24,785 177 665

5 29.2% 46 302 2833 25,270 153 609

8 27.8% 42 326 2147 26,552 112 509

10 26.8% 33 346 1837 27,282 104 464

3.5. Evaluations on MOT15

To verify the efficiency of our method, as shown in Table 4, we exhibit part of the experimental
results, where our method is denoted by HMB_DAF (Hierarchical-Matching-Based MOT with Deep
Appearance Features). All the results in Table 4 were generated using public detection sets of the
MOT15 benchmark as an input. In order to make a fair and effective comparison, we gathered some
online methods published in recent years as the baseline methods, which also attach great importance
to data association and make full use of appearance features. However, since many works did not
publish the FPS of their methods as well as non-open sources, we only choose those methods which
can be accessed publicly for fair comparison.

Table 4. Tracking performance on the MOT15 dataset. Best results in each category appear in bold. (A)
Traditional method, (B) deep learning method. Our method is denoted by HMB_DAF.

Method MOTA(↑) MT(↑) ML(↓) FP(↓) FN(↓) IDS(↓) Frag(↓) FPS(↑)

A

GMPHD [32] 18.5% 3.9% 55.3% 7864 41,766 459 1266 19.8

TSDA_OAL [33] 18.6% 9.4% 42.3% 16,350 32,853 806 1544 19.7

MTSTracker [34] 20.6% 9.0% 36.9% 15,161 32,212 1387 2357 19.3

EAMTTpub [35] 22.3% 5.4% 52.7% 7924 38,982 833 1485 12.2

MDP [36] 30.3% 13.0% 38.4% 9717 32,422 680 1500 1.1

B

TC_SIAMESE [37] 20.2% 2.6% 67.5% 6127 42,596 294 825 13.0

INARLA [10] 34.7% 12.5% 30.0% 9855 29,158 1112 2848 2.6

AMIR15 [9] 37.6% 15.8% 26.8% 7933 29,397 1026 2024 1.0

Tracktor++ [38] 44.1% 18.0% 26.2% 6477 26,577 1318 1790 0.9

HMB_DAF (Ours) 22.4% 3.3% 57.4% 5603 41,410 634 1686 37.6
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As can be seen in Table 4, although our method cannot outperform AMIR15 or MDP in terms of
MOTA, we surpassed most algorithms in speed. Moreover, our FP was the lowest, which proves the
effectiveness of our algorithm in handling error detection. However, as mentioned in Section 3.4, our
FN was relatively high, leading to the low MT rate, but overall it had little effect on the comprehensive
metric. Compared with the traditional MOT methods, our MOTA was higher except for MDP, which
utilized machine learning to reinforcement its data association part, leading to low FPS. Compared
with deep learning methods, our advantage mainly lies in FPS, as a result of their multiple complex
network structures in each part of methods. For example, AMIR15 [9] designed three RNNs for
object appearance, motion, and interaction separately in order to calculate the similarity between
detections and objects. In contrast, we only used deep learning in feature extraction, which was a
trade-off between accuracy and speed. By exploiting the bounding box regression of an object detector,
Tracktor++ [38] converted the detector into a tracktor, such as Faster-RCNN, which could predict the
position of an object in the next frame after training the network on the MOT17Det [15]. In contrast,
we only considered the public detections as the input of our tracktor, instead of directly generating
other detections or applying object detection techniques in MOT, which would significantly increase
consumption times and training costs.

3.6. Evaluations on MOT17

Similarly to the experiment on the MOT15 dataset, we used the public detection results of the
MOT17 benchmark dataset as the input detections of the algorithm, and compared it with other
excellent methods. For a fair comparison, these baseline methods are all online and they are also
dependent on the appearance cue. Parts of the experimental results are shown in Table 5. Identically,
we only choose those accessible published methods for fair comparison.

Table 5. Tracking performance on the MOT17 dataset. Best results in each category appear in bold. (A)
Traditional method, (B) deep learning method. Our method is denoted by HMB_DAF.

Method MOTA(↑) MT(↑) ML(↓) FP(↓) FN(↓) IDS(↓) Frag(↓) FPS(↑)

A

GM_PHD [39] 36.4% 4.1% 57.3% 23,723 330,767 4607 11,317 38.4

GMPHD_KCF [40] 39.6% 8.8% 43.3% 50,903 284,228 5811 7414 3.3

GMPHD_N1Tr [41] 42.1% 11.9% 42.7% 18,214 287,646 10,698 10,864 9.9

EAMTT [35] 42.6% 12.7% 42.7% 30,711 288,474 4488 5720 12.0

GMPHD_HDA
[32]

43.7% 11.7% 43.0% 25,935 287,758 3838 4046 9.2

B

GMPHD_DAL [12] 44.4% 14.9% 39.4% 19,170 283,380 11,137 13,900 3.4

FPSN [42] 44.9% 16.5% 35.8% 33,757 269,952 7136 14,491 10.1

YOONKJ17 [11] 51.4% 21.2% 37.3% 29,051 243,202 2118 3072 3.4

Tracktor++ [38] 53.5% 19.5% 36.6% 12,201 248,047 2072 4611 1.5

HMB_DAF (Ours) 45.5% 14.6% 40.4% 21,161 282,901 3592 7696 35.5

Compared to the MOT15 dataset, the detections provided in the MOT17 dataset were much
precise, leading to our relatively higher MT score and lower FN score. It proved that our method
relies heavily on detections as well. The more accurate the detection, the better the performance of
our method. It is worth mentioning that GMPHD_DAL [12] also utilized pedestrian re-identification
technology. The difference is that we trained our appearance extraction network on a pedestrian
re-ID dataset while GMPHD_DAL was applied on the data association part for object re-matching.
Although our MOTA was only 1% higher than GMPHD_DAL, there was still an obvious gap in IDS,
Frag, and FPS, which further highlights the effectiveness of our method.
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4. Conclusions

In this paper, we proposed a hierarchical matching based online and real-time multi-object tracking
approach with deep appearance features. A hierarchical data association strategy can effectively
reduce the number of FP, IDS, and other metrics while maintaining high real-time accuracy. In order
to cooperate with the data association strategy, we designed our model in four aspects: Firstly,
we have designed different trajectory states and state transitions, which can reasonably manage
trajectory allocation and deal with missing objects and false object; secondly, we have defined trajectory
confidence based on position information, appearance information, and history-related detection
information of trajectory, so as to help us to diversify strong and weak trajectories; thirdly, we have
combined traditional methods with deep learning methods and designed a deep convolution neural
network, which has been trained on a large-scale pedestrian re-identification dataset to help us
extract discriminant pedestrian appearance features; fourthly, we have designed a similarity distance
measurement based on appearance features and motion features, so that we can get the proximate
similarity score between the trajectory and the detection.

We have studied the influence of each part of the algorithm in a comparative experiment and
achieved excellent results on the MOT15 and MOT17 benchmark datasets, showing the effectiveness of
our algorithm. In future work, we will do more experimental research on our approach and improve a
series of shortcomings in this paper, such as studying the relationship among the various parameters,
reducing the number of FN, and raising the number of MT.
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