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Abstract: Granular computing techniques are a huge discipline in which the basic component is to
operate on groups of similar objects according to a fixed similarity measure. The first references to the
granular computing can be seen in the works of Zadeh in fuzzy set theory. Granular computing allows
for a very natural modelling of the world. It is very likely that the human brain, while solving problems,
performs granular calculations on data collected from the senses. The researchers of this paradigm have
proven the unlimited possibilities of granular computing. Among other things, they are used in the
processes of classification, regression, missing values handling, for feature selection, and as mechanisms
of data approximation. It is impossible to quote all methods based on granular computing—we can
only discuss a selected group of techniques. In the article, we have presented a review of recently
developed granulation techniques belonging to the family of approximation algorithms founded by
Polkowski—in the framework of rough set theory. Starting from the basic Polkowski’s standard
granulation, we have described further developed by us concept dependent, layered, and epsilon
variants, and our recent homogeneous granulation. We are presenting simple numerical examples
and samples of research results. The effectiveness of these methods in terms of decision system
size reduction and maintenance of the internal knowledge from the original data are presented.
The reduction in the number of objects in our techniques while maintaining classification efficiency
reaches 90 percent—for standard granulation with usage of a kNN classifier (we achieve similar
efficiency for the concept-dependent technique for the Naive Bayes classifier). The largest reduction
achieved in the number of exhaustive set of rules at the efficiency level to the original data are
99 percent—it is for concept-dependent granulation. In homogeneous variants, the reduction is less
than 60 percent, but the advantage of these techniques is that it is not necessary to look for optimal
granulation parameters, which are selected dynamically. We also describe potential directions of
development of granular computing techniques by prism of described methods.

Keywords: rough sets; granular rough computing; granulation techniques; classification

1. Introduction

Granular computing is dedicated to work on data in the form of grouped, similar information
vectors. The idea was introduced by Lotfi Zadeh [1,2]. Granulation is an integral part of the fuzzy
set theory by the very definition of fuzzy set, where inverse values of fuzzy membership functions
are the basic forms of granules. Shortly after Lotfi Zadeh proposed the idea of granular computing,
the granules were introduced in terms of rough set theory [3] by T.Y. Lin, L. Polkowski, and A. Skowron.
In this theory, granules are defined as classes of indiscernibility relations. Interesting research on more
flexible granules based on blocks was conducted by (Grzymala–Busse) (see the LEM2 algorithm),
and templates by (H.S. Nguyen), used in classification processes. The granules based on rough
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inclusions were introduced by (Polkowski and Skowron [4]), based on tolerance or similarity
relations, and, more generally, binary relations by (T.Y. Lin [5], Y. Y. Yao [6–8]). In the context of
rough mereology was proposed by (L. Polkowski and A. Skowron), in approximation spaces by
(A. Skowron and J. Stepaniuk [9,10]), and finally in logic for approximate reasoning by (L. Polkowski,
M. Semeniuk-Polkowska [11], and Qing Liu [12]). Of course, many other authors are conducting
considerations on groups of similar objects, which is simply the most natural way of modeling
problems; it is impossible to name them all. Let us quote a few very interesting works on various
research topics from recent years on granular computing [13–18]. Additionally, interesting research
on the field of granular computation with the use of neural network techniques can be found in the
works [19–21].

We have developed our methods in terms of granular rough computing paradigm—the internal
part of rough sets theory [3]. The computations are based on granules, the groups of objects
collected together by fixed similarity measure or metrics. Theoretical background and the framework
of discussed methods were proposed by Polkowski in [22–24]—the idea of data approximation
using rough inclusions. The basic idea was to create the r-indiscernible groups of objects (objects
indiscernible in fixed degree) around each training sample, cover the original training decision
system using selected granules and create the granular reflection of training data using granules
from the covering in the final step. This particular technique is called standard granulation and was
proposed in [24]. The initial work was extended later in many variants and contexts—see [25,26],
Polkowski [27,28], Polkowski and Artiemjew [29,30]. These methods, among others, have found
application in classification processes [31], data approximations [30], missing values absorbtion [26,29],
and, in the recent work, these were used as a key component of the new Ensemble model—see [32].

In the review, we are focusing on decision system size reduction and maintaining the internal
knowledge at the same time. Despite the fact that the granulation of the decision systems in a
pessimistic case has a square complexity, it is possible to apply classical techniques of transferring
methods to big data for the purpose mentioned. In the article, we have described standard
granulation [24], concept-dependent [25], layered [25] and homogeneous granulation [33]—designed for
symbolic data, and exemplary variants developed for numerical one—with descriptors indiscernibility
ratio–epsilon granulation [33,34].

The rest of the paper has the following content. In Section 2, there is a detailed description of
granulation techniques with toy examples. In Section 3, we present the experimental part for a kNN
classifier. In Section 4, we have additional results for the SVM and Naive Bayes classifier. In Section 5,
we write about possible future developments of these techniques, and we conclude the paper in
Section 6.

2. Granulation Techniques

Our methods are based on rough inclusions. Introduction to rough inclusions in the framework
of rough mereology is available in Polkowski [22,35]; a detailed, extensive discussion can be found
in Polkowski [23]. We refer the reader for a very precise theoretical introduction, but, in the paper,
we include the details that allow for understanding its content.

In Polkowski’s granulation procedure, we can distinguish three basic steps.

2.0.1. First Step—Granulation
We begin with computation of granules around each training object using a selected method.

2.0.2. Second Step—The Process of Covering
The training decision system is covered by selected granules.

2.0.3. Third Step—Building the Granular Reflections
The granular reflection of original training decision system is derived from the granules selected
in step 2.
We start with detailed description of the basic method—see [24].
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2.1. Standard Granulation

Let us consider the decision system (U, A, d), where U is the universe of objects, A the set of
conditional attributes, d 6∈ A is the decision attribute, and rgran granulation radius from the set
{0, 1
|A| ,

2
|A| , ..., 1}.

The standard rough inclusion µ, for u, v ∈ U and for selected rgran is defined as

µ(v, u, rgran)⇔
|IND(u, v)|
|A| ≥ rgran, where IND(u, v) = {a ∈ A : a(u) = a(v)}, (1)

For each object u ∈ U, and selected rgran, we compute the standard granule grgran(u) as follows:

grgran(u) is {v ∈ U : µ(v, u, rgran)}. (2)

In the next step, we use a selected strategy to cover the training decision system U by computed
granules—the random choice is the simplest among the most effective studied in [30]). All studied
methods are available in [30] (pages 105–220).

In addition, in the last step, granular reflection of training decision set is computed with the use
of the Majority Voting procedure. The ties are resolved randomly. In the next section, we show the toy
example of the method. To present toy examples, we used the same system from Table 1.

Table 1. Exemplary decision system (U, A, d) by J. R. Quinlan [36].

Day Outlook Temperature Humidity Wind Play.golf

u1 Sunny Hot High Weak No
u2 Sunny Hot High Strong No
u3 Overcast Hot High Weak Yes
u4 Rainy Mild High Weak Yes
u5 Rainy Cool Normal Weak Yes
u6 Rainy Cool Normal Strong No
u7 Overcast Cool Normal Strong Yes
u8 Sunny Mild High Weak No
u9 Sunny Cool Normal Weak Yes
u10 Rainy Mild Normal Weak Yes
u11 Sunny Mild Normal Strong Yes
u12 Overcast Mild High Strong Yes
u13 Overcast Hot Normal Weak Yes
u14 Rainy Mild High Strong No

Toy Example

For a given training decision system from Table 1, the granulation radius rgran ∈ {0, .25, .5, .75, 1},
the steps of the standard granulation are as follows.

In case of rgran = 0, each single granule is equal U because objects are treated as indiscernible
even if they are completely different. In addition, we expected only one object as the granular reflection
of the training data.

The second boundary case is rgran = 1; each granule contains only their central object or duplicates
because the objects are indiscernible.

Now, allow us to show how the standard granulation works for radius rgran = 0.5.
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Assuming that grgran(ui) = {uj ∈ Utrn :
|IND(ui, uj)|

|A| ≥ rgran }

IND(ui, uj) = {a ∈ A; a(ui) = a(uj)}, Utrn is the universe of training objects,

and |X| is the cardinality of set

The sample standard granules with a 0.5 radius, derived from decision systems from Table 1
look as follows,
g0.5(u1) = {u1, u2, u3, u4, u8, u9, u13, }, g0.5(u2) = {u1, u2, u3, u8, u11, u12, u14, }
g0.5(u3) = {u1, u2, u3, u4, u8, u12, u13, }, g0.5(u4) = {u1, u3, u4, u5, u8, u10, u12, u14, }
g0.5(u5) = {u4, u5, u6, u7, u9, u10, u13, }, g0.5(u6) = {u5, u6, u7, u9, u10, u11, u14, }
g0.5(u7) = {u5, u6, u7, u9, u11, u12, u13, }, g0.5(u8) = {u1, u2, u3, u4, u8, u9, u10, u11, u12, u14, }
g0.5(u9) = {u1, u5, u6, u7, u8, u9, u10, u11, u13, }, g0.5(u10) = {u4, u5, u6, u8, u9, u10, u11, u13, u14, }
g0.5(u11) = {u2, u6, u7, u8, u9, u10, u11, u12, u14, }, g0.5(u12) = {u2, u3, u4, u7, u8, u11, u12, u14, }
g0.5(u13) = {u1, u3, u5, u7, u9, u10, u13, }, g0.5(u14) = {u2, u4, u6, u8, u10, u11, u12, u14, }

The process of granulation can be tuned with help from the triangular part of granular
indiscernibility matrix [cij](i,j=1)|U|, where

cij =

{
1, if

|IND(ui ,uj)|
|A| ≥ rgran, i < j
0, otherwise

This matrix for rgran = 0.5 is in Table 2.

Table 2. Triangular indiscernibility matrix for standard granulation (i < j), derived from Table 1

cij = 1, i f |IND(ui ,uj)|
|A| ≥ 0.5 0, otherwise.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14

u1 1 1 1 1 0 0 0 1 1 0 0 0 1 0
u2 1 1 0 0 0 0 1 0 0 1 1 0 1
u3 1 1 0 0 0 1 0 0 0 1 1 0
u4 1 1 0 0 1 0 1 0 1 0 1
u5 1 1 1 0 1 1 0 0 1 0
u6 1 1 0 1 1 1 0 0 1
u7 1 0 1 0 1 1 1 0
u8 1 1 1 1 1 0 1
u9 1 1 1 0 1 0
u10 1 1 0 1 1
u11 1 1 0 1
u12 1 0 1
u13 1 0
u14 1

Reading the matrix line–wise, we read granules off.
In the next step, we have chosen the random granules to cover the universe of training objects

from the Table 1. Our choice is the set.
The U is covered, when, in the set of chosen granules, each object of U appears at least once.

The granular reflection of the set Table 1 for the radius 0.5 is in Table 3.
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Table 3. Standard granular reflection of the exemplary training system from Table 1, in radius 0.5,
5 attributes, 4 objects; MV is Majority Voting procedure (the most frequent descriptors create a granular
reflection).

Day Outlook Temperature Humidity Wind Play.golf

MV(g0.5(u1)) Sunny Hot High Weak Yes
MV(g0.5(u4)) Rainy Mild High Weak Yes
MV(g0.5(u5)) Rainy Cool Normal Weak Yes
MV(g0.5(u14)) Rainy Mild High Strong No

Random coverage of training systems is as follows,
Cover(Utrn) = {g0.5(u1), g0.5(u4), g0.5(u5), g0.5(u14), }

The granular reflection is created by application of majority voting inside selected granules.
Ties are resolved randomly.

2.2. Concept Dependent Granulation

A concept–dependent (cd) granule gcd
rgran(u) of the radius rgran about u is defined as follows:

v ∈ gcd
rgran(u) if and only if µ(v, u, rgran) and (d(u) = d(v)) (3)

Toy Example

For the decision system from Table 1, we have found concept-dependent granules. For the granulation
radius rgran = 0.25, the granular concept–dependent indiscernibility matrix (gcdm)—see Table 4—is

ccd
ij =

{
1, i f

|IND(ui ,uj)|
|A| ≥ 0.25, d(ui) = d(uj), i < j

0, otherwise

Table 4. Triangular indiscernibility matrix for concept-dependent granule generation (i < j),
derived from Table 1.

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14

u1 1 1 0 0 0 0 0 1 0 0 0 0 0 1
u2 1 0 0 0 1 0 1 0 0 0 0 0 1
u3 1 1 1 0 1 0 1 1 0 1 1 0
u4 1 1 0 0 0 1 1 1 1 1 0
u5 1 0 1 0 1 1 1 0 1 0
u6 1 0 0 0 0 0 0 0 1
u7 1 0 1 1 1 1 1 0
u8 1 0 0 0 0 0 1
u9 1 1 1 0 1 0
u10 1 1 1 1 0
u11 1 1 1 0
u12 1 1 0
u13 1 0
u14 1

hence, the granules in this case are
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Assuming that grgran(ui) = {uj ∈ Utrn :
|IND(ui, uj)|

|A| ≥ rgran, d(ui) = d(uj)}

IND(ui, uj) = {a ∈ A; a(ui) = a(uj)}, Utrn is the universe of training objects,

and |X| is the cardinality of set

The sample concept-dependent granules with a 0.25 radius, derived from decision systems
from Table 1 look as follows,
gcd

0.25(u1) = {u1, u2, u8, u14, }, gcd
0.25(u2) = {u1, u2, u6, u8, u14, }

gcd
0.25(u3) = {u3, u4, u5, u7, u9, u10, u12, u13, }, gcd

0.25(u4) = {u3, u4, u5, u9, u10, u11, u12, u13, }
gcd

0.25(u5) = {u3, u4, u5, u7, u9, u10, u11, u13, }, gcd
0.25(u6) = {u2, u6, u14, }

gcd
0.25(u7) = {u3, u5, u7, u9, u10, u11, u12, u13, }, gcd

0.25(u8) = {u1, u2, u8, u14, }
gcd

0.25(u9) = {u3, u4, u5, u7, u9, u10, u11, u13, }, gcd
0.25(u10) = {u3, u4, u5, u7, u9, u10, u11, u12, u13, }

gcd
0.25(u11) = {u4, u5, u7, u9, u10, u11, u12, u13, }, gcd

0.25(u12) = {u3, u4, u7, u10, u11, u12, u13, }
gcd

0.25(u13) = {u3, u4, u5, u7, u9, u10, u11, u12, u13, }, gcd
0.25(u14) = {u1, u2, u6, u8, u14, }

Random coverage of training systems is as follows, Cover(Utrn) = {gcd
0.25(u13), gcd

0.25(u14), }

The concept-dependent granular reflection of decision system from Table 1 is in Table 5.

Table 5. Concept-dependent granular reflection of the exemplary training system from Table 1,
in radius 0.25, 5 attributes, 2 objects; MV is Majority Voting procedure (the most frequent descriptors
create a granular reflection).

Day Outlook Temperature Humidity Wind Play.golf

MV(gcd
0.25(u13)) Overcast Mild Normal Weak Yes

MV(gcd
0.25(u14)) Sunny Hot High Strong No

2.3. Homogeneous Granulation

The homogeneous granules are defined based on standard and concept dependent granules
previously defined,

ghomogeneous
rgran (u) = {v ∈ U : |gcd

rgran(u)| − |grgran(u)| == 0}

f or minimal rgran f ul f ills the equation
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Toy Example

Consider the training decision system from Table 1.

Homogeneous granules for all training objects:
g1(u1) = (u1), g0.75(u2) = (u1, u2), g1(u3) = (u3), g1(u4) = (u4), g1(u5) = (u5), g1(u6) = (u6),
g1(u7) = (u7), g1(u8) = (u8), g0.75(u9) = (u5, u9), g0.75(u10) = (u4, u5, u10), g0.75(u11) = (u11),
g1(u12) = (u12), g0.75(u13) = (u3, u13), g1(u14) = (u14).

Randomly selected coverage granules,
g0.75(u2) = (u1, u2),, g1(u4) = (u4), g1(u6) = (u6), g1(u7) = (u7),g1(u8) = (u8),
g0.75(u9) = (u5, u9), g0.75(u10) = (u4, u5, u10), g1(u12) = (u12), g0.75(u13) = (u3, u13),
g1(u14) = (u14).

The granular decision system from the above granules is in Table 6.

Table 6. Homogeneous granular decision system formed from covering granules.

Day Outlook Temperature Humidity Wind Play Golf

MV(g0.75(u2)) Sunny Hot High Weak No
MV(g1(u4)) Rainy Mild High Weak Yes
MV(g1(u6)) Rainy Cool Normal Strong No
MV(g1(u7)) Overcast Cool Normal Strong Yes
MV(g1(u8)) Sunny Mild High Weak No

MV(g0.75(u9)) Rainy Cool Normal Weak Yes
MV(g0.75(u10)) Rainy Mild Normal Weak Yes
MV(g1(u12)) Overcast Mild High Strong Yes

MV(g0.75(u13)) Overcast Hot High Weak Yes
MV(g1(u14)) Rainy Mild High Strong No

2.4. Layered Granulation

Layered granulation leads to a sequence of granular reflections of decreasing sizes, which stabilizes
after a finite number of steps; usually, about five steps are sufficient. Another development that may be
stressed here is the heuristic rule for finding the optimal granulation radius giving the highest accuracy.

the optimal granulation radius is located around the value which yields the maximal decrease in size of the
granular reflection between the first and the second granulation layers—see [30].

Toy Example

Exemplary multiple granulation of Quinlan’s data set [36], see Table 1, for the granulation radius
of 0.5 and layers l0, l1, ... runs as follows.

For the decision system from Table 1, granules in the first layer are (rgran = 0.5):

gcd
0.5,l1

(u1) = {u1, u2, u8}, gcd
0.5,l1

(u2) = {u1, u2, u8, u14}, gcd
0.5,l1

(u3) = {u3, u4, u12, u13},
gcd

0.5,l1
(u4) = {u3, u4, u5, u10, u12}, gcd

0.5,l1
(u5) = {u4, u5, u7, u9, u10, u13}, gcd

0.5,l1
(u6) = {u6, u14},

gcd
0.5,l1

(u7) = {u5, u7, u9, u11, u12, u13}, gcd
0.5,l1

(u8) = {u1, u2, u8, u14},
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gcd
0.5,l1

(u9) = {u5, u7, u9, u10, u11, u13}, gcd
0.5,l1

(u10) = {u4, u5, u9, u10, u11, u13},
gcd

0.5,l1
(u11) = {u7, u9, u10, u11, u12}, gcd

0.5,l1
(u12) = {u3, u4, u7, u11, u12},

gcd
0.5,l1

(u13) = {u3, u5, u7, u9, u10, u13}, gcd
0.5,l1

(u14) = {u2, u6, u8, u14}.

Covering process of Ul0 with usage of order–preserving strategy yields us the covering:

Ul0,Cover ← ∅,
Step1 gcd

0.5,l1
(u1)→ Ul0,Cover, Ul0,Cover = {u1, u2, u8},

Step2 gcd
0.5,l1

(u2)→ Ul0,Cover, Ul0,Cover = {u1, u2, u8, u14},
Step3 gcd

0.5,l1
(u3)→ Ul0,Cover, Ul0,Cover = {u1, u2, u3, u4, u8, u12, u13, u14},

Step4 gcd
0.5,l1

(u4)→ Ul0,Cover, Ul0,Cover = {u1, u2, u3, u4, u5, u8, u10, u12, u13, u14},
Step5 gcd

0.5,l1
(u5)→ Ul0,Cover, Ul0,Cover = {u1, u2, u3, u4, u5, u7, u8, u9, u10, u12, u13, u14},

Step6 gcd
0.5,l1

(u6)→ Ul0,Cover, Ul0,Cover = {u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u12, u13, u14},
Step7 gcd

0.5,l1
(u7)→ Ul0,Cover, Ul0,Cover = Ul0 .

The granular reflection of (Ul0 , A, d) based on granules from Ul0,Cover, with use of Majority Voting,
where ties are resolved according to the ordering of granules are shown in Table 7.

Table 7. The decision system (Ul1 , A, d).

Day Outlook Temperature Humidity Wind Play Golf

MV(gcd
0.5,l1

(u1)) Sunny Hot High Weak No
MV(gcd

0.5,l1
(u2)) Sunny Hot High Weak No

MV(gcd
0.5,l1

(u3)) Overcast Mild High Weak Yes
MV(gcd

0.5,l1
(u4)) Rainy Mild High Weak Yes

MV(gcd
0.5,l1

(u5)) Rainy Cool Normal Weak Yes
MV(gcd

0.5,l1
(u6)) Rainy Cool Normal Strong No

MV(gcd
0.5,l1

(u7)) Overcast Cool Normal Strong Yes

Exemplary granular reflection formation based on Majority Voting looks as follows. In case, e.g.,
of the granule gcd

0.5,l1
(u1), we have

MV(gcd
0.5,l1(u1)) =


Sunny Hot High Weak

Sunny Hot High Strong
Sunny Mild High Weak

 = Sunny Hot High Weak

Treating all other granules in the same way, we obtain the granular reflection (Ul1 , A, d) shown in
Table 7.

Granulation performed in the same manner with the granular reflection (Ul1 , A, d) from Table 7
yields the granule set in the second layer.

gcd
0.5,l2

(MV(gcd
0.5,l1

(u1))) = {MV(gcd
0.5,l1

(u1)), MV(gcd
0.5,l1

(u2))}
gcd

0.5,l2
(MV(gcd

0.5,l1
(u2))) = {MV(gcd

0.5,l1
(u1)), MV(gcd

0.5,l1
(u2))}

gcd
0.5,l2

(MV(gcd
0.5,l1

(u3))) = {MV(gcd
0.5,l1

(u3)), MV(gcd
0.5,l1

(u4))}
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gcd
0.5,l2

(MV(gcd
0.5,l1

(u4))) = {MV(gcd
0.5,l1

(u3)), MV(gcd
0.5,l1

(u4)), MV(gcd
0.5,l1

(u5))}
gcd

0.5,l2
(MV(gcd

0.5,l1
(u5))) = {MV(gcd

0.5,l1
(u4)), MV(gcd

0.5,l1
(u5)), MV(gcd

0.5,l1
(u7))}

gcd
0.5,l2

(MV(gcd
0.5,l1

(u6))) = {MV(gcd
0.5,l1

(u6))}
gcd

0.5,l2
(MV(gcd

0.5,l1
(u7))) = {MV(gcd

0.5,l1
(u5)), MV(gcd

0.5,l1
(u7))}

The covering process of Ul1,Cover runs in the following steps:

Step1 gcd
0.5,l2

(MV(gcd
0.5,l1

(u1)))→ Ul1,Cover, Step2 gcd
0.5,l2

(MV(gcd
0.5,l1

(u2))) 6→ Ul1,Cover,

Step3 gcd
0.5,l2

(MV(gcd
0.5,l1

(u3)))→ Ul1,Cover, Step4 gcd
0.5,l2

(MV(gcd
0.5,l1

(u4)))→ Ul1,Cover,

Step5 gcd
0.5,l2

(MV(gcd
0.5,l1

(u5)))→ Ul1,Cover, Step6 gcd
0.5,l2

(MV(gcd
0.5,l1

(u6)))→ Ul1,Cover,
Ul1,Cover = Ul1

Applying Majority Voting to granules in Ul1 , we obtain the second granular reflection shown in
Table 8.

Table 8. The decision system (Ul2 , A, d), temp1 = MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u1)))), temp2 =
MV(gcd

0.5,l2
(MV(gcd

0.5,l1
(u3)))), temp3 = MV(gcd

0.5,l2
(MV(gcd

0.5,l1
(u4)))), temp4 = MV(gcd

0.5,l2
(MV(gcd

0.5,l1
(u5)))),

temp5 = MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u6)))).

Day Outlook Temperature Humidity Wind Play Golf

temp1 Sunny Hot High Weak No
temp2 Overcast Mild High Weak Yes
temp3 Rainy Mild High Weak Yes
temp4 Rainy Cool Normal Weak Yes
temp5 Rainy Cool Normal Strong No

The third layer of granulation based on system (Ul2 , A, d) from Table 8 is as follows:

gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u1))))) = {MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u1))))}
gcd

0.5,l3
(MV(gcd

0.5,l2
(MV(gcd

0.5,l1
(u3))))) =

{MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u3)))), MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u4))))}
gcd

0.5,l3
(MV(gcd

0.5,l2
(MV(gcd

0.5,l1
(u4))))) =

= {MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u3)))), MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u4)))), MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u5))))}
gcd

0.5,l3
(MV(gcd

0.5,l2
(MV(gcd

0.5,l1
(u5))))) =

{MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u4)))), MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u5))))}
gcd

0.5,l3
(MV(gcd

0.5,l2
(MV(gcd

0.5,l1
(u6))))) = {MV(gcd

0.5,l2
(MV(gcd

0.5,l1
(u6))))}

Covering process for the third layer is as follows:

Step1 gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u1)))))→ Ul2,Cover,

Step2 gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u3)))))→ Ul2,Cover,

Step3 gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u4)))))→ Ul2,Cover,

Step4 gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u5))))) 6→ Ul2,Cover,

Step5 gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u6)))))→ Ul2,Cover, Ul2,Cover = Ul2
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Using Majority voting, we get the third layer of granular reflections shown in Table 9.

Table 9. The decision system (Ul3 , A, d), temp1 = MV(gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u1)))))), temp2 =

MV(gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u3)))))), temp3 = MV(gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u4)))))), temp4 =

MV(gcd
0.5,l3

(MV(gcd
0.5,l2

(MV(gcd
0.5,l1

(u6)))))).

Day Outlook Temperature Humidity Wind Play Golf

temp1 Sunny Hot High Weak No
temp2 Overcast Mild High Weak Yes
temp3 Rainy Mild High Weak Yes
temp4 Rainy Cool Normal Strong No

2.5. Epsilon Variants

These methods are designed for numerical data; we can use, for instance, ε-normalized Hamming
metric, which, for given ε, is defined as

dH,ε(u, v) = |{a ∈ A :
abs(a(u)− a(v))

maxa −mina
> ε}|, (4)

where abs is absolute value,
The methods work analogously to variants for symbolic data; thus, we show only exemplary

definition without toy examples.

2.5.1. ε–Modification of the Standard Rough Inclusion

Given a parameter ε valued in the unit interval [0, 1], we define the set

INDε(u, v) = {a ∈ A : dist(a(u), a(v)) ≤ ε}, (5)

and we set

µε(v, u, r)⇔ |INDε(u, v)|
|A| ≥ r (6)

Epsilon variant of homogeneous granulation can be defined as follows.

2.6. Epsilon Homogeneous Granulation

The method is defined in the following way:

gε,homogeneous
ru = {v ∈ U : |gε−cd

ru | − |gε
ru | == 0}, f or minimal ru f ul f ills the equation

where gε,cd
ru (u) = {v ∈ U :

|INDε(u, v)|
|A| ≤ ru AND d(u) == d(v)}

and gε
ru(u) = {v ∈ U :

|INDε(u, v)|
|A| ≤ ru}, ru = { 0

|A| ,
1
|A| , ...,

|A|
|A| }

INDε(u, v) = {a ∈ A :
abs(a(u)− a(v))

maxa −mina
≤ ε}

where maxa, mina are the maximal and minimal attribute values for a ∈ A in the original data set.
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3. A Sample of the Experimental Work Results

In this section, we show the exemplary results for our selected techniques, to show its
effectiveness in the context of reducing training data size. For the sake of simplicity, we have
chosen the k-NN classifier as a base. We carried out experiments on selected data from the
UCI repository [37]—see Table 10. In Tables 11–20 and Figure 1, we have the results for Cross
Validation 5 method.

Let us move on to the discussion of selected detailed results, starting from description of the results
for the Australian Credit data set. The result for Standard (SG) and Concept-dependent granulation
(CDG) is in Table 11, where, in case of SG for radius 0.5, we have reduction in training size of around
90 percent preserving classification accuracy in the range of 84.7 percent. For the CDG variant, we have
reduction in training size of about 99.5 percent for radius 0.071, where the exhaustive rule set is
reduced in 99.9 percent and accuracy of classification is around 77 percent. The results are comparable,
but the concept-dependent variant shows a more stable classification as the radius increases. In case of
Homogeneous granulation, see Table 15, we have accuracy equal to 0.835 with a 48 percent reduction of
training size. The sample of results for exemplary epsilon variant—ε Homogeneous Granulation—is in
Table 20, where we have reduction in training size about 50 percent, with accuracy of 0.842. The layered
granulation process is visible in Table 16, where the basic method is concept-dependent granulation
and the result is similar to a single concept-dependent variant. In the case of Car data set, see Table 12,
the concept-dependent variant works best giving accuracy of 0.864, with a reduction in training size
of around 73 percent. For a Hepatitis data set, concept-dependent also works best, for radius 0.474,
the accuracy is equal to 0.875, with a 90 percent reduction in training size. In addition, finally,
the spectacular result is obtained for Heart Disease data set, where with 99 percent reduction in
training size, we have obtained for concept-dependent and standard granulation the accuracy 0.8.
The results for homogeneous variants are shown in Tables 15 and 20. The best result we have achieved
on the tested data are a reduction of 62 percent in the number of objects with full classification efficiency.
Allow us to summarize the results obtained in this section. The internal knowledge from the original
training decision systems—measured by ability for classification—seems to be preserved in each
mentioned case (the accuracy of classification is fully comparable with nil case, without reduction).
Both techniques, standard granulation and concept-dependent, prove to be comparable. In the
concept-dependent variant, we observe a higher classification stability with an increasing radius.
Another advantage of the concept-dependent variant is the creation of granular reflection, which from
the smallest radii contain patterns from all decision-making classes. The multiple variant does not
produce spectacular results, but, according to our previous research, see [30]—it allows us to look for
the optimal granulation radii. Our research shows that the radius for which the reduction of objects
between the first and second layer is greatest is close to the optimal one in most tested systems. In this
way, the optimum granulation radius can be estimated without classification tests. The last group of
tested techniques are recently discovered homogeneous methods, which work dynamically on every
data and do not require estimation of optimal parameters. It is obvious that the effectiveness of our
methods depends to a large extent on the data under investigation.

We do not plan to present an overview of the effectiveness of the whole range of classification
techniques because our aim was to present an example of the effectiveness of approximation methods
for decision-making systems. Let us move on to presenting additional test results for selected
previously used classifiers.
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Table 10. Exemplary decision systems from UCI Machine Learning Repository. Australian credit,
Car Evaluation, Heartdisease, and Hepatitis were used in the comparison of standard and
concept-dependent granulation with a kNN Classifier. Comparing homogeneous variants with a
kNN Classifier, we did not use the car system in the epsilon variant because it is symbolic. We used all
four systems to present the effectiveness with the Classifier. To present the effectiveness with the SVM
classifier, we used a Wisconsin Diagnostic Breast Cancer system [37].

Name Attr No. Obj No. Class No.

Australian-credit 15 690 2
Car Evaluation 7 1728 4
Heartdisease 14 270 2

Hepatitis 20 155 2
Wisconsin Diagnostic Breast Cancer 32 569 2

Table 11. Exemplary result for Standard vs. Concept-Dependent Granulation—5 times Cross
Validation 5; Australian Credit data set; rgran = Granulation radius, AccSG = Accuracy of classification
for Standard Granulation, AccCDG—Accuracy for Concept-Dependent Granulation, SizeSG = Granular
decision system size for Standard Granulation, SizeCDG = Granular decision system size for
Concept-Dependent Granulation.

rgran AccSG SizeSG AccCDG SizeCDG

0.071428 0.444928 2.36 0.773 2.64
0.142857 0.444928 5.12 0.779 3.92
0.214286 0.821739 4.76 0.786 5.36
0.285714 0.84058 4.8 0.804 9.12
0.357143 0.768116 9.4 0.813 16.12
0.428571 0.775362 24.2 0.828 32.44

0.5 0.847826 51.2 0.845 71.64
0.571429 0.818841 133.4 0.838 157.96
0.642857 0.833333 297 0.845 318.96
0.714286 0.811594 455.2 0.854 468.16
0.785714 0.855072 533.2 0.858 535.84
0.857143 0.826087 546.4 0.861 547.2
0.928571 0.826087 547.8 0.863 548.8

1 0.826087 552 0.861 552

Table 12. Exemplary result for Standard vs. Concept-Dependent Granulation—5 times Cross
Validation 5; Car Evaluation data set; rgran = Granulation radius, AccSG = Accuracy of classification for
Standard Granulation, AccCDG—Accuracy for Concept-Dependent Granulation, SizeSG = Granular
decision system size for Standard Granulation, SizeCDG = Granular decision system size for
Concept-Dependent Granulation.

rgran AccSG SizeSG AccCDG SizeCDG

0.167 0.388988 8.08 0.396 8.32
0.333 0.456468 17.16 0.539 16.96
0.500 0.495127 38.84 0.681 38.2
0.667 0.546064 106.24 0.804 107.04
0.833 0.611924 368.76 0.864 371.64
1.000 0.359964 1382.4 0.944 1382.4
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Table 13. Exemplary result for Standard vs. Concept-Dependent Granulation—5 times Cross
Validation 5; Heart Disease data set; rgran = Granulation radius, AccSG = Accuracy of classification for
Standard Granulation, AccCDG—Accuracy for Concept-Dependent Granulation, SizeSG = Granular
decision system size for Standard Granulation, SizeCDG = Granular decision system size for
Concept-Dependent Granulation.

rgran AccSG SizeSG AccCDG SizeCDG

0.0769231 0.555556 1.2 0.804 2.2
0.153846 0.444444 2.4 0.798 2.96
0.230769 0.555556 3.2 0.799 5.12
0.307692 0.777778 6.2 0.803 8.84
0.384615 0.759259 11 0.819 16.76
0.461538 0.833333 27 0.819 34.08
0.538462 0.814815 58.4 0.824 71.68
0.615385 0.814815 118 0.817 126.56
0.692308 0.796296 177.8 0.827 180.92
0.769231 0.814815 209.8 0.822 210
0.846154 0.814815 216 0.826 216
0.923077 0.814815 216 0.826 216

1 0.814815 216 0.826 216

Table 14. Exemplary result for Standard vs. Concept-Dependent Granulation—5 times Cross
Validation 5; Hepatitis data set; rgran = Granulation radius, AccSG = Accuracy of classification for
Standard Granulation, AccCDG—Accuracy for Concept-Dependent Granulation, SizeSG = Granular
decision system size for Standard Granulation, SizeCDG = Granular decision system size for
Concept-Dependent Granulation.

rgran AccSG SizeSG AccCDG SizeCDG

0.053 0.807742 2 0.803 2
0.105 0.807742 2 0.803 2
0.158 0.807742 2 0.803 2.04
0.211 0.807742 2.12 0.804 2.28
0.263 0.809032 2.72 0.806 2.68
0.316 0.811612 3.48 0.814 3.68
0.368 0.812902 5.2 0.83 5.24
0.421 0.832258 7.16 0.854 7.56
0.474 0.847742 11.28 0.875 11.6
0.526 0.815484 18.56 0.876 18.88
0.579 0.812902 29.8 0.881 31.08
0.632 0.832259 46.36 0.893 46.4
0.684 0.83871 69.6 0.877 69.64
0.737 0.83871 90.08 0.888 89.64
0.789 0.854194 109.68 0.892 109.8
0.842 0.854194 116.96 0.892 116.8
0.895 0.854194 121 0.895 121
0.947 0.854194 121.96 0.895 122
1.000 0.854194 124 0.895 124
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Table 15. Exemplary result for Homogeneous Granulation—5 times Cross Validation 5; k − NN
classifier; D1 = Australian-credit, D2 = Car Evaluation, D5 = Heartdisease, D6 = Hepatitis data
set; Acc = average accuracy, GS = granular decision system size, TRN_size = training set size,
TRN_red = reduction in object number in training size, Radii_range = spectrum of radii.

Data Set Acc GS TRN_size TRN_red Radii_range

D1 0.835 286.52 552 48.1% r ≥ 0.5
D2 0.797 728.5 1382 47.3% r ≥ 0.667
D5 0.833 120.5 216 44.2% r ≥ 0.461
D6 0.88 46.16 124 62.8% r ≥ 0.579

Table 16. CV-5; Result of experiments for multi-layer c-d granulation with use of kNN classifier;
data set Australian credit; rgran = Granulation radius, Acc = Average accuracy for the considered layer,
GranSize The mean size of granular decision system for the considered layer.

Layer1 Layer2 Layer3 Layer4

rgran Acc GranSize Acc GranSize Acc GranSize Acc GranSize

0 0.768 2 0.768 2 0.768 2 0.768 2
0.071 0.772 2 0.772 2 0.772 2 0.772 2
0.143 0.696 2.6 0.774 2 0.774 2 0.774 2
0.214 0.781 5.6 0.775 2 0.775 2 0.775 2
0.286 0.8 6.8 0.797 2 0.797 2 0.797 2
0.357 0.813 16.4 0.78 2 0.78 2 0.78 2
0.429 0.838 29.6 0.704 3.6 0.67 2.2 0.67 2.2
0.5 0.843 68.6 0.729 15.4 0.37 7.4 0.37 7.4

0.571 0.851 154.8 0.799 70.6 0.69 47.4 0.628 43.2
0.643 0.854 313.2 0.841 245.6 0.806 228.8 0.781 225.6
0.714 0.852 468.2 0.854 444.8 0.855 440 0.857 438.6
0.786 0.858 535.6 0.858 535.4 0.858 535.4 0.858 535.4
0.857 0.854 547.4 0.854 547.4 0.854 547.4 0.854 547.4
0.929 0.864 548.8 0.864 548.8 0.864 548.8 0.864 548.8

1 0.855 552 0.855 552 0.855 552 0.855 552

Table 17. CV-5; Result of experiments for multi-layer c-d granulation with use of kNN classifier;
data set Car evaluation; rgran = Granulation radius, Acc = Average accuracy for the considered layer,
TRNsize The mean size of granular decision system for the considered layer.

Layer1 Layer2 Layer3 Layer4

rgran Acc GranSize Acc GranSize Acc GranSize Acc GranSize

0 0.315 4 0.315 4 0.315 4 0.315 4
0.167 0.395 8.6 0.296 4 0.296 4 0.296 4
0.333 0.484 16.4 0.351 6.2 0.326 4.6 0.326 4.6

0.5 0.668 44 0.477 16.2 0.374 9.4 0.296 7
0.667 0.811 102.8 0.723 47.4 0.632 29.8 0.601 25.4
0.833 0.865 370 0.841 199.8 0.832 147.2 0.833 137

1 0.944 1382.4 0.944 1382.4 0.944 1382.4 0.944 1382.4
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Table 18. CV-5; Result of experiments for multi-layer c-d granulation with use of kNN classifier;
data set Heart disease; rgran = Granulation radius, Acc = Average accuracy for the considered layer,
TRNsize The mean size of granular decision system for the considered layer.

Layer1 Layer2 Layer3 Layer4

rgran Acc GranSize Acc GranSize Acc GranSize Acc GranSize

0 0.811 2 0.811 2 0.811 2 0.811 2
0.077 0.793 2 0.793 2 0.793 2 0.793 2
0.154 0.811 3 0.811 2 0.811 2 0.811 2
0.231 0.796 3.2 0.759 2 0.759 2 0.759 2
0.308 0.804 6.8 0.781 2 0.781 2 0.781 2
0.385 0.807 17 0.763 2.2 0.763 2 0.763 2
0.462 0.833 35.6 0.737 6.6 0.681 4 0.693 3.8
0.538 0.83 69.8 0.778 34.2 0.678 24.6 0.63 23
0.615 0.807 129.4 0.781 100.8 0.667 92.6 0.652 91.4
0.692 0.807 180.2 0.8 172.6 0.804 171 0.804 170.8
0.769 0.83 211 0.826 210.2 0.826 210 0.826 210
0.846 0.83 216 0.83 216 0.83 216 0.83 216
0.923 0.833 216 0.833 216 0.833 216 0.833 216

1 0.837 216 0.837 216 0.837 216 0.837 216

Table 19. CV-5; Result of experiments for multi-layer c-d granulation with use of kNN classifier; data set
Hepatitis; rgran = Granulation radius, Acc = Average accuracy for the considered layer, TRNsize The
mean size of granular decision system for the considered layer.

Layer1 Layer2 Layer3 Layer4

rgran Acc GranSize Acc GranSize Acc GranSize Acc GranSize

0 0.8 2 0.8 2 0.8 2 0.8 2
0.053 0.806 2 0.806 2 0.806 2 0.806 2
0.105 0.813 2 0.813 2 0.813 2 0.813 2
0.158 0.826 2 0.826 2 0.826 2 0.826 2
0.211 0.826 2 0.826 2 0.826 2 0.826 2
0.263 0.813 3 0.813 2 0.813 2 0.813 2
0.316 0.806 2.8 0.806 2 0.806 2 0.806 2
0.368 0.819 7.2 0.819 2 0.819 2 0.819 2
0.421 0.832 6.8 0.806 2 0.806 2 0.806 2
0.474 0.871 12.4 0.8 2.2 0.8 2 0.8 2
0.526 0.877 20.2 0.794 4.8 0.703 2.8 0.703 2.8
0.579 0.865 32.2 0.658 10.6 0.652 7.4 0.652 7.4
0.632 0.884 49.6 0.806 27 0.703 22.4 0.69 21.8
0.684 0.89 67 0.865 54.6 0.865 52.6 0.845 52.2
0.737 0.89 88.4 0.877 79 0.871 77.8 0.871 77.6
0.789 0.91 108.6 0.91 104.4 0.91 103.8 0.91 103.8
0.842 0.903 117.4 0.903 114.6 0.903 114.6 0.903 114.6
0.895 0.89 121 0.89 120.2 0.89 120.2 0.89 120.2
0.947 0.916 122 0.916 122 0.916 122 0.916 122

1 0.89 124 0.89 124 0.89 124 0.89 124
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Table 20. Exemplary result for Epsilon Homogeneous Granulation (ε − HGS)—5 times Cross
Validation 5; k− NN classifier; D1 = Australian-credit, D3 = Heartdisease, D4 = Hepatitis data set;
Acc = average accuracy of classification, HGS_size = granular decision system size, TRN_size = training
set size, HGS_TRN_red = reduction in object number in training set, HG_r_range = spectrum of radii.

Results D1 D3 D4

Acc 0.842 0.831 0.87
HGS_size 274.52 109.4 46.2
TRN_size 552 216 124

HG_TRN_red 50.3% 49.4% 62.7%
HG_r_range ru ≥ 0.65 ru ≥ 0.615 ru ≥ 0.579

Figure 1. Visualization of results for Australian credit.

4. Application of Selected Other Classifiers on Granular Data

In our previous research, we checked the performance of the tens of classifiers; each variant
examined matched well with the granular data. Some of the most interesting results were obtained
for the Naive Bayes classifier (see the results in Chapter 7 of [30]), the SVM technique [38], and Deep
Learning [39]. Examples of results are presented in this section.

In Figure 2, we have the accuracy of the classification of the granular data using the SVM
method with an RBF kernel. We use the ε concept-dependent granulation—see Section 2.5. It is the
result for Wisconsin Diagnostic Breast Cancer data set (see [37]) 569 objects and 32 attributes.
Analyzing Figures 2 and 3, we see that the level of accuracy of the classification is reasonable with a
considerable percentage of the size reduction of granular systems.
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Figure 2. Results of classification accuracy for SVM with RBF kernel, 5× CV5 test, ε concept-dependent
granulation; Wisconsin Diagnostic Breast Cancer data set; Epslilon = is descriptors indiscernibility
ratio, Radius = granulation radius.

Figure 3. Percentage size of granulated data, 5 × CV5 test, ε concept-dependent granulation;
Wisconsin Diagnostic Breast Cancer data set; Epslilon = is descriptors indiscernibility ratio,
Radius = granulation radius.

Considering four variants of classification for the Naive Bayes classifier (for which the parameters
determining the classification are as follows):

1. ParamV1
d=di

= ∑n
m=1 P(bm = am(v)|d = di).

2. ParamV2
d=di

= P(d = di) ∗∑n
m=1 P(bm = am(v)|d = di).

3. ParamV3
d=di

= ∏n
m=1 P(bm = am(v)|d = di).

4. ParamV4
d=di

= P(d = di) ∗∏n
m=1 P(bm = am(v)|d = di).

The results showing the effectiveness of the Naive Bayes classifier can be found in Tables 21–24
(the details can be found in [30]). The most spectacular approximation is for the 0.428571 radius, where,
with an Australian credit data set, accuracy of classification is 0.852, and the average number of objects
is reduced by about 94 percent.
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Table 21. 5 × CV-5; The result of experiments for four variants of the Naive Bayes classifier; data set
Australian credit; concept dependent granulation; rgran = Granulation radius; nil = result for data
without missing values; Acc = Accuracy of classification; GranSize = The size of data set after
granulation in the fixed r.

Acc GranSize

rgran V1 V2 V3 V4 V1 V2 V3 V4

0.0714286 0.789 0.703 0.813 0.788 2.32 2.32 2.52 2.4
0.142857 0.788 0.682 0.812 0.76 3.4 3.84 3.52 3.76
0.214286 0.789 0.707 0.79 0.759 5.2 5.4 5.16 5.32
0.285714 0.806 0.738 0.656 0.628 8.8 9.08 8.56 9.36
0.357143 0.827 0.727 0.692 0.707 16.64 15.16 16.32 16.12
0.428571 0.853 0.772 0.717 0.745 32.84 30.72 32.28 31.28

0.5 0.85 0.814 0.749 0.732 71.56 70.76 71 69.68
0.571429 0.852 0.77 0.725 0.721 157 158.36 157.16 155.92
0.642857 0.857 0.764 0.734 0.732 319 320.4 317.8 318.08
0.714286 0.843 0.83 0.732 0.737 468.56 468.44 467.88 468.28
0.785714 0.843 0.813 0.732 0.739 536.28 536.24 536 536.04
0.857143 0.843 0.799 0.73 0.739 547.36 547.16 547.16 547.28
0.928571 0.843 0.8 0.73 0.739 548.92 548.76 548.72 548.8

1 0.843 0.799 0.729 0.739 552 552 552 552

Table 22. 5× CV-5; The result of experiments for four variants of the Naive Bayes classifier; data set Car
evaluation; concept dependent granulation; rgran = Granulation radius; nil = result for data without
missing values; Acc = Accuracy of classification; GranSize = The size of data set after granulation in the
fixed r.

Acc GranSize

rgran V1 V2 V3 V4 V1 V2 V3 V4

0.166667 0.315 0.653 0.092 0.369 8.12 8.48 7.72 8.52
0.333333 0.357 0.723 0.044 0.118 17.96 17.44 17.36 17.4

0.5 0.383 0.715 0.077 0.32 38.96 38.52 36.72 38.84
0.666667 0.403 0.7 0.108 0.382 105.28 106.12 106.84 107.32
0.833333 0.436 0.7 0.06 0.328 368.88 369.08 369.28 374.68

1 0.451 0.7 0.052 0.196 1382.4 1382.4 1382.4 1382.4

Table 23. 5 × CV-5; The result of experiments for four variants of the Naive Bayes classifier; data set
Heart disease; Concept dependent granulation; rgran = Granulation radius; nil = result for data without
missing values; Acc = Accuracy of classification; GranSize = The size of data set after granulation in the
fixed r.

Acc GranSize

rgran V1 V2 V3 V4 V1 V2 V3 V4

0.0769231 0.801 0.774 0.785 0.793 2.04 2.2 2.12 2.16
0.153846 0.802 0.752 0.773 0.781 2.68 3.08 2.96 2.88
0.230769 0.807 0.736 0.731 0.758 4.56 4.96 4.72 4.56
0.307692 0.802 0.784 0.722 0.735 9.2 8.28 8.52 9
0.384615 0.824 0.806 0.79 0.79 16.6 16.04 16.48 16.72
0.461538 0.823 0.824 0.763 0.753 34.84 34.64 34.36 35.32
0.538462 0.841 0.814 0.722 0.709 69.44 70.2 69.44 70.32
0.615385 0.827 0.814 0.696 0.707 127.24 127.2 126.76 127.8
0.692308 0.83 0.821 0.73 0.727 181.36 181.28 181.28 180.28
0.769231 0.83 0.796 0.738 0.737 210.56 210.12 210.24 210.36
0.846154 0.829 0.776 0.739 0.739 216 216 216 216
0.923077 0.829 0.776 0.739 0.739 216 216 216 216

1 0.829 0.776 0.739 0.739 216 216 216
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Table 24. 5 × CV-5; The result of experiments for four variants of the Naive Bayes classifier; data set
Hepatitis; Concept dependent granulation; rgran = Granulation radius; nil = result for data without
missing values; Acc = Accuracy of classification; GranSize = The size of data set after granulation in the
fixed r.

Acc GranSize

rgran V1 V2 V3 V4 V1 V2 V3 V4

0.0526316 0.839 0.828 0.846 0.821 2 2 2 2
0.105263 0.839 0.828 0.846 0.821 2 2 2 2
0.157895 0.827 0.831 0.846 0.821 2.2 2 2 2
0.210526 0.825 0.831 0.826 0.835 2.4 2.12 2.2 2.36
0.263158 0.826 0.841 0.791 0.844 2.6 2.68 2.68 2.76
0.315789 0.813 0.822 0.76 0.859 3.52 3.36 3.88 3.52
0.368421 0.822 0.836 0.693 0.855 5.32 5.08 4.96 4.68
0.421053 0.827 0.817 0.639 0.823 7.48 7.56 7.4 6.88
0.473684 0.868 0.827 0.761 0.84 11.64 12.16 11.44 11.72
0.526316 0.876 0.806 0.804 0.885 18.28 19.28 18.48 18.12
0.578947 0.871 0.796 0.8 0.863 31.36 30.84 29.8 30.68
0.631579 0.866 0.794 0.766 0.883 46.68 46.4 45.84 47.48
0.684211 0.857 0.794 0.804 0.871 70.28 70.04 69.4 70.2
0.736842 0.852 0.794 0.813 0.879 89.32 90.2 89.6 90.72
0.789474 0.855 0.794 0.83 0.886 109.28 110 109.88 110
0.842105 0.845 0.794 0.843 0.879 116.92 117.04 116.8 117.12
0.894737 0.845 0.794 0.844 0.876 121 121 121 121
0.947368 0.843 0.794 0.845 0.876 122 121.92 121.96 121.96

1 0.841 0.794 0.845 0.876 124 124 124 124

In Table 25, we have presented an example of the result of a deep neural network on the granulated
data—see [39]. It turns out that it learns the internal knowledge of decision-making systems and
maintains a high level of classification effectiveness. In Table 25 and Figure 4, we have the result for
Australian Credit data set, for radius 0.66, with a reduction of 40 percent, and classification efficiency
is around 84 percent.

Table 25. Results for Australian Credit dataset (mean from 10 experiments). Classification based on
learning of deep neural networks–see [39].

Gran_rad No_of_gran_objects Percentage_of_objects Time_to_learn Accuracy
Mean Mean Mean Mean

0.0667 2.0 0.4149 0.36664 0.5646
0.1333 2.0 0.4149 0.3607 0.5337
0.2000 3.4 0.7054 0.3691 0.5423
0.2667 5.1 1.0581 0.3685 0.5154
0.3333 8.2 1.7012 0.3696 0.5192
0.4000 16.0 3.3195 0.3778 0.5577
0.4667 31.6 6.5560 0.3777 0.6236
0.5333 65.3 13.5477 0.3916 0.7764
0.6000 145.3 30.1452 0.4287 0.8125
0.6667 283.8 58.8797 0.7464 0.8399
0.7333 412.9 85.6639 0.8210 0.8534
0.8000 468.8 97.2614 0.8585 0.8587
0.8667 477.9 99.1494 0.8532 0.8553
0.9333 479.3 99.4398 0.8817 0.8553
1.0000 482.0 100.0000 0.8995 0.8562
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Figure 4. Visualization of classification efficiency for ten learning cycles of the neural network taking
into account the percentage reduction of objects.

The additional experimental results presented were to show that our granular techniques
are compatible with various classification methods. In the next section, we discuss the potential
directions of development of granular computing methods, through the prism of the possibilities of
our own methods.

5. Future Directions in Granular Computing Paradigm

Granular computing techniques will undoubtedly play a key role in building artificial intelligence
because intelligent handling of data are based on analyzing its similarity and abstracting from the vast
amount of information available in the environment. One of the problems to be solved is the ability
to use real-time granular computing techniques on large data. The only barrier against using these
methods is scalability problem. To deal with possible scalability problems, the following methods can
be considered: Data sampling method and creation of model based on samples; Decomposition method,
to use the algorithms on the split data and work on them separately; the streaming computing method,
incremental data processing; the mass parallel computing technique on the computer cluster, with the
use of classic ways to compute in parallel, like MPI implementation (Message Passing Interface);
and mass parallel computing methods based on future technologies like quantum calculations.
Without a doubt, deep neural networks is one of the promising fields for using granular computing.
New methods of data preprocessing can be expected to emerge, before feeding it into deep neural
networks. In particular, we mean the use of granular computing in the convolutionary and pooling part
of the convolutional neural networks. The granular structures of the granular computing paradigm
can intuitively be used to build such new network architectures at a time when we have no clear limit
of creating neural network structures. Modeling the world using granular computing is a very natural
process for us, which will undoubtedly play a crucial role in the development of future technologies.

6. Conclusions

In this work, we offer a review of selected recently developed granular computing techniques
dedicated to the approximation of decision systems (from the family of methods proposed by
Polkowski in [22,24]). That is, techniques which, among other things, aim at reducing the size
of data while maintaining their classification efficiency. A very important family of techniques is
dedicated to speeding up decision-making processes. Our approximation techniques reduce the size of
decision systems significantly maintaining the internal knowledge at the same time, which was proven
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in many experimental works. In our research, the main problem for standard, concept dependent,
and layered methods is the need to estimate the optimal granulation radius searching among all
possible ones. The problem has been partially solved for these methods—in the previous works,
we have developed heuristics for searching optimal parameters by a double granulation technique
(see [30]). In our last technique, homogeneous granulation, this problem does not apply because
parameters are automatically set in the process of approximation. Our last method seems to be an
important discovery, as it is immediately applicable, without the need to estimate the parameters,
and it turns out to work very well in all the contexts we have studied. Particularly noteworthy
is its application in the new technique of boosting classification—Ensemble of Random Granular
Reflections [32]. To sum up our work, the presented granulation techniques allow for reducing the
number of exhaustive set of rules by up to 99 percent while maintaining classification efficiency at
the level obtained on the original unreduced data. Such efficiency was obtained, for example, for the
concept-dependent technique using the kNN classifier. On the other hand, our methods achieve a
reduction in the number of objects to more than 90 percent while maintaining classification efficiency
on the original data. We have achieved such results, for example, for standard granulation with the
kNN classification and concept-dependent granulation using the Naive Bayes classifier. As the closest
directions of research on the development of our knowledge granulation methods, we can point out the
work on hybrids with deep neural network learning and Random Forests technique. Another direction
of work is the application in the process of convolution and pooling for the convolutionary neural
networks and development of our proposed Ensemble model based on random granular reflections of
decision systems. In conclusion of this review, we may add that, without any doubt, real-time granular
computing methods will play an important role in creating artificial intelligence. Therefore, it is
worthwhile to develop methods for the approximation of decision systems in order to invest in
research into this prospective paradigm of knowledge.
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on Fuzzy-Logic and Probabilistic Neural Network with Bio-inspired Reinforcement Learning. 2019.
Available online: https://ieeexplore.ieee.org/abstract/document/8895990 (accessed on 13 February 2020).

22. Polkowski, L. Formal granular calculi based on rough inclusions. In Proceedings of the 2005 IEEE Conference
on Granular Computing , Beijing, China, 25–27 July 2005; pp. 57–62.

23. Polkowski, L. Approximate Reasoning by Parts. An Introduction to Rough Mereology; Springer: Berlin, Germany, 2011.
24. Polkowski, L. A model of granular computing with applications. In Proceedings of the 2006 IEEE Conference

on Granular Computing, Atlanta, GA, USA, 10 May 2006; pp. 9–16.
25. Artiemjew, P. Classifiers from Granulated Data Sets: Concept Dependent and Layered Granulation. 2007.

Available online: https://pdfs.semanticscholar.org/e46a/0e41d0833263220680aa1ec7ae9ed3edbb42.pdf#
page=7 (accessed on 13 February 2020).

26. Artiemjew, P.; Ropiak, K.K. On Granular Rough Computing: Handling Missing Values by Means of
Homogeneous Granulation. Computers 2020, 9, 13. [CrossRef]

27. Polkowski, L. Granulation of knowledge in decision systems: The approach based on rough inclusions.
The method and its applications. In Rough Sets and Intelligent Systems Paradigms; Kryszkiewicz, M., Peters, J.F.,
Rybinski, H., Skowron, A., Eds.; Springer: Berlin, Germany, 2007; Volume 4585, pp. 69–79.

28. Polkowski, L. Granulation of Knowledge: Similarity Based Approach in Information and Decision Systems.
In Encyclopedia of Complexity and System Sciences; Meyers, R.A., Ed.; Springer: Berlin, Germany, 2009.

29. Polkowski, L.; Artiemjew, P. On granular rough computing with missing values. In Rough Sets and Intelligent
Systems Paradigms; Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A., Eds.; Springer: Berlin, Germany,
2007; Volume 4585, pp. 271–279.

30. Polkowski, L.; Artiemjew, P. Granular Computing in Decision Approximation - An Application of Rough Mereology;
Springer: Cham, Switzerland, 2015.

31. Polkowski, L.; Artiemjew, P. On granular rough computing: Factoring classifiers through granular structures.
In Rough Sets and Intelligent Systems Paradigms; Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A., Eds.;
Springer: Berlin, Germany, 2007; Volume 4585, pp. 280–290.

32. Artiemjew, P.; Ropiak, K. A Novel Ensemble Model - The Random Granular Reflections. 2018.
Available online: http://ceur-ws.org/Vol-2240/paper17.pdf (accessed on 13 February 2020).

33. Ropiak, K.; Artiemjew, P. Homogenous Granulation and Its Epsilon Variant. Computers 2019, 8, 36. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2019.105930
http://dx.doi.org/10.1016/j.asoc.2014.11.024
http://dx.doi.org/10.3390/a12110223
http://dx.doi.org/10.1016/j.compbiolchem.2019.107187
http://www.ncbi.nlm.nih.gov/pubmed/31923821
http://dx.doi.org/10.1016/j.asoc.2016.05.006
http://dx.doi.org/10.1016/j.knosys.2017.07.023
http://dx.doi.org/10.2166/wst.2020.006
http://www.ncbi.nlm.nih.gov/pubmed/32144220
https://ieeexplore.ieee.org/abstract/document/8895990
https://pdfs.semanticscholar.org/e46a/0e41d0833263220680aa1ec7ae9ed3edbb42.pdf#page=7
https://pdfs.semanticscholar.org/e46a/0e41d0833263220680aa1ec7ae9ed3edbb42.pdf#page=7
http://dx.doi.org/10.3390/computers9010013
http://ceur-ws.org/Vol-2240/paper17.pdf
http://dx.doi.org/10.3390/computers8020036


Algorithms 2020, 13, 79 23 of 23

34. Artiemjew, P. A Review of the Knowledge Granulation Methods: Discrete vs. Continuous Algorithms.
In Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam; Skowron, A., Suraj, Z., Eds.;
Springer: Berlin, Germany, 2013; Volume 43, pp. 41–59.

35. Polkowski, L. Rough Sets; Springer: Berlin, Germany, 2002.
36. Quinlan, J.R. C4.5: Programs for Machine Learning; Elsevier: New York, NY, USA, 2004.
37. University of California, Irvine Machine Learning Repository. Available online: https://archive.ics.uci.edu/

ml/index.php (accessed on 13 February 2020).
38. Szypulski, J.; Artiemjew, P. The Rough Granular Approach to Classifier Synthesis by Means of SVM. In Rough

Sets, Fuzzy Sets, Data Mining, and Granular Computing; Yao, Y., Hu, Q., Yu, H., Grzymala-Busse, J., Eds.;
Springer: Cham, Switzerland, 2015; Volume 9437, pp. 256–263.

39. Ropiak, K.; Artiemjew, P. On a Hybridization of Deep Learning and Rough Set Based Granular Computing.
Algorithms 2020, 13, 63. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://dx.doi.org/10.3390/a13030063
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Granulation Techniques
	Standard Granulation
	Concept Dependent Granulation
	Homogeneous Granulation
	Layered Granulation
	Epsilon Variants
	–Modification of the Standard Rough Inclusion

	Epsilon Homogeneous Granulation

	A Sample of the Experimental Work Results
	Application of Selected Other Classifiers on Granular Data
	Future Directions in Granular Computing Paradigm
	Conclusions
	References

