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Abstract: Finding an optimal combination of features and classifier is still an open problem in the
development of automatic heartbeat classification systems, especially when applications that involve
resource-constrained devices are considered. In this paper, a novel study of the selection of informative
features and the use of a random forest classifier while following the recommendations of the Association
for the Advancement of Medical Instrumentation (AAMI) and an inter-patient division of datasets is
presented. Features were selected using a filter method based on the mutual information ranking criterion
on the training set. Results showed that normalized beat-to-beat (R–R) intervals and features relative to
the width of the ventricular depolarization waves (QRS complex) are the most discriminative among
those considered. The best results achieved on the MIT-BIH Arrhythmia Database were an overall
accuracy of 96.14% and F1-scores of 97.97%, 73.06%, and 90.85% in the classification of normal beats,
supraventricular ectopic beats, and ventricular ectopic beats, respectively. In comparison with other
state-of-the-art approaches tested under similar constraints, this work represents one of the highest
performances reported to date while relying on a very small feature vector.

Keywords: ECG feature selection; heartbeat classification; arrhythmia detection; random forest classifier

1. Introduction

The electrocardiogram (ECG) is the register of electrical potentials, variable over time, produced by
the myocardium during the cardiac cycle. Since its invention at the beginning of the 20th century, the ECG
has played a central role in the diagnosis of cardiac arrhythmias and other heart diseases thanks to its
simplicity and non-invasive nature. In recent years, thanks to the availability of pocket or wearable devices
for single lead ECG recording, it has become possible to perform the acquisition of the ECG signal even
in ambulatory contexts for applications of prevention and risk management. The successful application
and dissemination of such approaches require the development not only of reliable, but also lightweight
algorithms for the automatic detection and classification of signal anomalies in order to reduce the amount
of data and the number of events needed to be sent to the physician for making a proper risk assessment
and giving advice [1].

In this work, we focus our attention on the problem of classifying single heartbeats and separating the
normal electrical activity originated in the sinus node from the ectopic activity originated elsewhere.
According to the standard ANSI/AAMI EC57:1998/(R)2008, the methods that perform heartbeat
classification should at most distinguish between the following classes: normal beats (NB), supraventricular
ectopic beats (SVEB), ventricular ectopic beats (VEB), fusion beats (FB), and unclassifiable or paced beats
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(UB). Though ectopic beats are generally benign and do not represent any immediate health problem,
in prevention and risk management contexts, they become relevant to detect and quantify their frequency.
VEB frequency is especially relevant since it can be used as a predictor of the risk of heart failure and
death [2]. The risk indication of SVEB is less clear though some researchers have found that their frequency
is associated with a greater risk of atrial fibrillation [3].

During the last few decades, the problem of heartbeat classification has been addressed with a plethora
of techniques with mixed results. A recent extensive review of heartbeat classification methods is presented
by Luz et al. [4]. In the continuous search of better solutions, the exploration in recent years has focused on
the implementation of machine learning methods, of which Random Forests (RF) [5] has been one of the
most popular approaches. In RF, a group of classifiers is generated in the form of an ensemble (“forest”)
of decision trees. The classification of an input sample is determined by the majority classification by
the ensemble. RF classifiers can be highly effective [6] and have already been proposed for resource
constrained-devices in real-time biomedical applications [7–10].

One of the first uses of RF for heartbeat classification was reported by Emanet [11] which used the
coefficients given by the Discrete Wavelet Transform (DWT) over the ECG signal as features to train the
RF classifier. More recently, Alickovic and Subasi [12] also proposed the use of RF with the DWT of the
ECG signal but taking a set of different statistical features extracted from the distribution of wavelet
coefficients instead of the coefficient themselves. A similar approach that proposes an extensive use of
the DWT was also recently proposed by Pan et al. [13]. RF was similarly explored by Ganesh Kumar and
Kumaraswamy [14] but with the use of features obtained from the Discrete Cosine Transform (DCT) over
the interbeat interval signal. Mahesh et al. [15] used a mix of time-domain features related to the Heart
Rate Variability (HRV) and frequency-domain features from the DWT to feed RF. An approach for using RF
with a series of time-domain features that includes amplitude differences was proposed by Park et al. [16].
This approach was recently extended to include features resulted from a resampled version of the ECG
signal in a cascade configuration of RF classifiers [17].

All of the approaches mentioned have reported accuracies superior to 98% when tested with the
MIT-BIH Arrhythmia Database, but few of them follow the recommendations of the AAMI in terms of
the type of heartbeat to detect (in particular the classification of SVEB and VEB) and the use of quality
measures in addition to overall accuracy (like sensitivity and positive predictivity) which can be distorted
by the results of the majority class [4]. Even more importantly, none of the works that have reported the
use of RF for heartbeat classification have followed an inter-patient paradigm where the signals used
for the training phase are obtained from different patients respect to those used during the test phase.
As noted elsewhere [4,18], those limitations make it difficult to make fair comparisons between the different
approaches reported in the literature.

In this investigation, we explore the use of RF for performing heartbeat classification while following
the AAMI guidelines and the inter-patient paradigm. The study is also focused on the selection of
a reduced set of features that allows for optimizing the classification performance without implying a high
computational complexity. For this, we consider a feature space composed of several characteristics already
found to be relevant in other studies [16–28] and also introduced some novel considerations for calculating
normalized features. An optimal set of features is identified by using a selection approach based on the
mutual information (MI) ranking criterion [28]. Results confirm that RF are an excellent tool for heartbeat
classification and that few selected features of the ECG are enough to obtain state-of-the-art performance.
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2. Materials and Methods

2.1. Datasets

The ECG signals used in this work were obtained from the online repository of the MIT-BIH
Arrhythmia Database (http://www.physionet.org/physiobank/database/mitdb). The database included
forty-eight 30 min ECG recordings sampled at 360 Hz and collected from two leads. Here, only signals
from the modified limb lead II (MLII) are used. Signals were extracted from the original files using the
native Python waveform-database (WFDB) package (https://github.com/MIT-LCP/wfdb-python) and
resampled at 150 Hz, which is a sampling frequency commonly found in wearables and screening devices.
The 109,494 heartbeats present in the MIT-BIH Arrhythmia Database were relabeled from the original
15 heartbeat types into the five types defined by the AAMI (NB, SVEB, VEB, FB, and UB) as described by
Luz et al. [4].

Training and testing sets are constructed by following a clinically realistic inter-patient paradigm,
where the data used to develop and evaluate the classifier come from different patients. The inter-patient
approach implemented here corresponds to the division proposed by de Chazal et al. [29] and adopted by
others [4] where the four recordings with paced beats are excluded and the remaining 44 recordings are
divided into two datasets each containing 22 recordings. The first set, called DS1, is used for training and
is composed of all heartbeats of records: 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203,
205, 207, 208, 209, 215, 220, 223, and 230. The second set, called DS2, is used for test and is composed of all
heartbeats of records: 100, 103, 105, 11, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231,
232, 233, and 234. The total number of beats on each class using this division is reported in Table 1. Due to
the low number of FB present in the database as well as the very few UB that remain after excluding paced
heartbeats, both types of heartbeats are not considered for classification but are nevertheless included in
the evaluation.

Table 1. Heartbeat distribution by classes of the different divisions used for constructing the train and
test sets. The following classes are considered: normal beats (NB), supraventricular ectopic beats (SVEB),
ventricular ectopic beats (VEB), fusion beats (FB), and unclassifiable or paced beats (UB). FB and UB
classes were not considered in the classification presented in this work but are nevertheless included in the
evaluation.

Dataset NB SVEB VEB FB UB Total

Train (DS1) 45,866 944 3788 415 8 51,021
Test (DS2) 44,259 1837 3221 388 7 49,712

The computer code used for dataset preparation as well as feature extraction and selection, and model
training and validation is available online (see Supplementary Materials).

2.2. Feature Extraction

A total of 85 features are considered in this study. Most of them have already found to be relevant in
other studies including: beat-to-beat (R–R) intervals (used in almost all previous works), discrete wavelet
transform (DWT) coefficients [19,20,25], Hermite basis function (HBF) expansion coefficients [21–25],
higher order statistics (HOS) [25–27], amplitude differences [16,17], Euclidean distances [16,17,25] and
temporal characteristics of the ventricular depolarization waves (QRS complex) [19,28]. We also include
features resulting from the normalization of R–R intervals, amplitude differences, and QRS temporal
characteristics [16,19,28]. Features can be divided into the following groups:

http://www.physionet.org/physiobank/database/mitdb
https://github.com/MIT-LCP/wfdb-python
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• Heart rate related features (3 features): the current R–R interval (RR0) defined by the heartbeat being
classified, the previous R–R interval (RR−1), and the next R–R interval (RR+1). R–R intervals are
calculated from the location of R spikes provided with the database.

• HBF coefficients (15 features): each beat segment, here defined by the samples located 250 ms before
and after each R spike, is decomposed using 3, 4, and 5 Hermite functions as described in [21].
The coefficients obtained from fitting Hermite polynomials of degrees 3, 4, and 5 are calculated using
the function hermfit provided by the Scikit-Learn package for Python [30].

• HOS (10 features): the third-, and fourth-order cumulant functions (kurtosis and skewness,
respectively) for each beat segment are computed. The parameters as defined in [25] are used:
the lag parameters range from −250 ms to 250 ms centered on the R spike and five equally spaced
sample points.

• DWT coefficients (23 features): the DWT of each beat segment is computed using the same parameters
defined in [25]: the Daubechies wavelet function (db1) is used with three levels of decomposition.

• QRS temporal characteristics (4 features): the following temporal characteristics of the QRS complex
are calculated: the total duration of the QRS complex (QRSw), the width of the QRS complex at half
of the peak value (QRSw2), the width of the QRS complex at a quarter of the peak value (QRSw4),
the distance between the peak of the Q wave, and the peak of the S wave (QSd). Figure 1 shows an
illustration of these features in relation to the ECG signal of a normal heartbeat. A detailed description
of the extraction procedure is provided in Appendix A.

• Amplitude differences (8 features): the following amplitude difference features as defined in [16] are
extracted: the amplitude difference between the P and the Q waves (PQa), the amplitude difference
between the Q and the R waves (QRa), the amplitude difference between the R and the S waves (RSa),
the distance between the peak of the P wave and the beginning of the QRS complex (PRd), and the
peak value of each of the considered waves (Ppeak, Qpeak, Rpeak, and Speak). Figure 1 shows an
illustration of these features in relation to the ECG signal of a normal heartbeat. A detailed description
of the extraction procedure is provided in Appendix A.

• Euclidean distances (4 features): the Euclidean distance (sample, amplitude) between the R spike
peak and four points of the beat segment are obtained as described in [25]. These points correspond to
the maximum amplitude value between 250 ms and 139 ms before the R spike, the minimum value
between 42 ms and 14 ms before the R spike, the minimum value between 14 ms and 42 ms after the R
spike, and maximum value between 139 ms and 250 ms after the R spike.

• Normalized heart rate features (6 features): RR0 divided by the average of the last 32 beats
(RR0/avgRR), RR−1 divided by the average of the last 32 R–R intervals (RR−1/avgRR), RR+1 divided
by the average of the last 32 R–R intervals (RR+1/avgRR), RR−1 divided by RR0 (RR−1/RR0), RR+1

divided by RR0 (RR+1/RR0), and the t-statistic of RR0 (tRR0) defined by the difference between RR0

and avgRR divided by the standard deviation of the last 32 R–R intervals.
• Normalized QRS temporal characteristics and amplitude differences (12 features): the same QRS

temporal characteristics and amplitude differences previously specified, except that they are divided
by their average value in the last 32 heartbeats.

For the extraction of features, all the records of the datasets are evaluated sequentially one heartbeat
after another simulating a real-time scenario. For this reason, normalized features use statistics calculated
only from precedent heartbeats instead of statistics over an entire record (patient-wise) as is performed in
related works [24,31]. Since only the features related to RR+1 need a future value, the classification of each
heartbeat can be done once the following beat is detected.
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Figure 1. Illustration of the temporal characteristics and amplitude differences extracted from the cardiac
cycle in a normal electrocardiogram (ECG) and the fiducial points identified in order to obtain them.

2.3. Feature Selection

In order to limit the computational complexity of the solution without compromising the classification
performance, the maximum number of features actually considered for the training phase of this study is
arbitrarily set to ten. This is in line with expert opinions and previous works which have shown that the
number of discriminative features can be very small [19,24,28,32]. For filtering and using only the most
informative features relative to the heartbeat type classes, the mutual information (MI) ranking criterion as
described by Doquire et al. [28] is followed. The function mutual_info_classif provided by the Scikit-Learn
package for Python [30] is used for estimating the MI between each feature and the class labels using the
training set DS1. Table 2 shows the top ten MI ranked features.

Table 2. The ten most informative features ranked according to the mutual information criterion [28]
relative to the NB, SVEB, and VEB classes.

Rank Feature

1 QRSw2 (normalized)
2 QRSw4 (normalized)
3 RR0/avgRR
4 RR+1/RR0
5 QRSw2
6 Fitting coefficient 1 of HBF with degree 4 (HBFd4c1)
7 HBFd4c2
8 QRSw4
9 HBFd4c0

10 RR−1/RR0

2.4. Classification Performance Measures

In order to assess the performance of our heartbeat classification approach and allow the comparison
with other methods found in the literature, the sensitivity (Se), positive predictivity (+P), F1-score (F1),
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and overall accuracy (Acc) of the classification outcome were calculated. The sensitivity, also found
in the literature as recall, refers to the relative number of correct detections of a particular class of
heartbeats. The positive predictive value, also called precision, refers to the relative number of true
positive heartbeats in all detected heartbeats of that class. The F1-score is the harmonic average of the
precision and recall, and here is used to assess the classification performance on each class and compare
it with state-of-the-art methods using a single value. The overall accuracy refers to the relative number
of correctly classified heartbeats considering all classes. Here, the Acc is used to guide feature selection
and model development and as a general indicator of performance. All these performance indicators
are calculated from the classification confusion matrix. Performance measures from the training set are
calculated with “leave-one-patient-out” cross-validation.

2.5. Heartbeat Classification

The Random Forest (RF) algorithm is the method used in this work for the classification of
heartbeats. Briefly, an RF is an ensemble of C trees T1(X), T2(X), ..., TC(X), where X = x1, x2, ..., xm
is an m-dimension vector of inputs. The resulting ensemble produces C outputs Y1 = T1(X), Y2 =

T2(X), ..., Yc = Tc(X). Yc is the prediction value by decision tree number c. The output of all these
randomly generated trees is aggregated to obtain one final prediction Y, which is the average value
of all the trees in the forest. An RF generates C number of decision trees from N number of training
samples. For each tree in the forest, bootstrap sampling (i.e., randomly selecting the number of samples
with replacement) is performed to create a new training set which is then used to fully grow a decision
tree without pruning [33]. In each split of a node of a decision tree, only a small number of m features
(input variables) are randomly selected instead of all of them (this is known as random feature selection).
This process is repeated to create M decision trees in order to form a randomly generated forest.

The training procedure for a randomly generated forest can be summarized as follows:

1. Select a random sample from the training dataset.
2. Grow a tree for each random sample with the following modification: at each node, select the best

split among a randomly selected subset of input variables, which is the tuning parameter of the
random forest algorithm. The tree is fully grown until no further splits are possible and not pruned.

3. Repeat steps 1 and 2 until C such trees are grown.

Here, the RF implementation given by the class RandomForestClassifier of the Scikit-learn package
for Python [30] is used. The number of trees is the only parameter explored and all other parameters are
left with their default values. In order to find an optimum number of trees, classifiers are trained with
an increasing number of trees using the top ten features found in the previous section and the performances
in terms of Acc are observed. The results obtained from “leave-one-patient-out” cross-validation on the
training set DS1 are shown in Figure 2. It can be observed that after 40 trees the performance of classifiers
does not increase and may actually diminish.
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Figure 2. Accuracy obtained from “leave-one-patient-out” cross-validation on the training set DS1 with
random forest classifiers with varying number of trees.

3. Results

Figure 3 shows the classification performance in terms of Acc on the test set DS2 of RF classifiers that
use up to ten MI-ranked features. It can be observed that the highest performance is actually achieved
with just six features (Acc = 96.14%) after which the classification performance reaches a plateau.

Figure 3. Overall accuracy of RF classifiers on test set DS2 with a varying number of mutual information
(MI)-ranked features.



Algorithms 2020, 13, 75 8 of 13

Table 3 shows the confusion matrix obtained with the RF classifier trained with the six most
informative features in the test set DS2 and Table 4 shows the relative performance details.

Table 3. Confusion matrix of obtained on the test set DS2.

Prediction
NB SVEB VEB

Label

NB 43,494 655 67
SVEB 369 1443 25
VEB 383 13 2814
FB 277 0 65
QB 4 2 3

Table 4. Performance details obtained on the test set DS2.

+P Se F1 Acc

NB 97.68% 98.27% 97.97%
96.14%SVEB 68.29% 78.55% 73.06%

VEB 94.62% 87.36% 90.85%

4. Discussion

In this work, the application of RF for recognizing heartbeats using selected time-domain features
extracted from the single-lead ECG signal was investigated following the AAMI guidelines and the
inter-patient paradigm. This probably represents the first known attempt to study the performance of RF
for heartbeat classification following the AAMI guidelines and the inter-patient paradigm.

In the present investigation, a total of 85 features were explored. We implemented all the features
used by Mondéjar-Guerra et al. [25], which is one of the most recent relevant works, and additional
morphological features proposed or based on the works of Mar et al. [19] and Doquire et al. [28]. Unlike the
feature normalization done by Doquire et al. [28] where normalization is done by dividing values by the
patient average (whole record average), in this work, normalization was performed mainly by dividing
values by the average of the most recent beats which is an approach that can be more realistically
implemented in real-time wearable monitors and screening devices. In order to consider more information
about the instantaneous heart rate variation, additional normalizations for R–R intervals were included.
In the case of the previous and next R–R interval (RR−1 and RR+1), the additional normalization consisted
of dividing them by the current R–R interval (RR0). This was introduced in an attempt to include the
timing relationship between successive R waves as considered in the rules proposed by Tsipouras et al. [34].
In the case of the current R–R interval, the additional normalization was the t-statistic (tRR0) which was
introduced in order to include a measure of the number of standard deviations a given interval is from
the average. Since most of these new normalizations appeared in the top ten most informative features
(see Table 2), our results suggest that those newly introduced normalizations for R–R intervals give more
information and are more discriminative for heartbeat classification than values of the R–R intervals alone.

Features were selected using the filter approach with mutual information ranking proposed by
Doquire et al. [28] and only the top ten most informative ones were considered in the experiments.
Results showed that as few as six features were enough to obtain the best performance (see Figure 3).
This agrees with the findings of Doquire et al. [28] and de Lannoy et al. [24] which has shown that the
number of discriminative features in a set is usually small and that removing the less informative ones
can significantly improve the performance of a classifier. In addition to the features based normalized
R–R intervals, most of the features among the top ten most informative are relative to the width of the
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QRS complex peak wave measured at fixed proportions of the peak amplitude. This suggests that those
features are probably a more reliable descriptor of QRS morphology than other features based on fiducial
points defined by low amplitude changes which can be easily masked by the baseline noise.

Table 5 shows a comparison between the results obtained with the test set DS2 in this work and some
of the approaches with the best heartbeat classification performances following the AAMI guidelines
and the inter-patient paradigm reported in the literature. It can be observed that the overall accuracy
reported in the present study is one of the highest ever obtained with the same evaluation methodology
(Acc = 96.14%), almost the same performance reported by Afkhami et al. [35] (Acc = 96.15%), which is the
highest in the literature to the best of our knowledge. Interestingly, though Afkhami et al. propose the use
of a different set of features, basically by introducing the use of a Gaussian mixture model (GMM) based
on the Expectation Maximization (EM) algorithm, they propose a classification method very similar to RF
called Bagging Trees (BT), which is also based on an ensemble of decision trees. RF and BT basically differ
in the way the problem of high variance and instability of single decision trees is approached. While BT
improves variance by averaging/majority selection of outcome from multiple fully grown trees on variants
of training set, RF does the same by random selection of feature-subset for split at each node. Since the RF
approach produces a lower correlation between trees, it can potentially produce better results as observed
by some studies [36]. The results reported by Afkhami et al. were obtained with an ensemble of 100 trees,
whereas the results presented here were obtained with an ensemble of only 40 trees.

Table 5. Comparison of the best results obtained in this work with state-of-the-art approaches.

Work Classifier Type of Features Number of
Features
Used

F1 of
Class
NB

F1 of
Class
SVEB

F1 of
Class
VEB

Acc

Llamedo and
Martinez [32]

LD R–R-intervals,
WT, and time
domain
morphology

8 96.48% 17.16% 83.89% 93%

Huang et al. [31] Ensemble
of SVM +
Threshold

R–R-intervals,
Random
projections

101 97.59% 57.68% 92.37% 93.8%

Afkhami et al. [35] Ensemble
of BDT

R–R-intervals,
HOS, GMM

33 97.89% 88.64% 85.82% 96.15%

Chen et al. [37] SVM R–R-intervals,
DCT Random
projections

33 96.88% 33.37% 77.29% 93.1%

Marinho et al. [38] Naive
Bayes

HOS 4 (65.6%)
*

(0.4%)
*

(84.7%)
*

94.0%

Mondéjar-
Guerra et al. [25]

Ensemble
of SVM

R–R-intervals,
HOS, WT,
and time domain
morphology

45 97.04% 60.74% 94.29% 94.5%

This work RF R–R-intervals,
HBF and
time domain
morphology

6 97.97% 73.06% 90.85% 96.14%

WT: wavelet transform, LD: linear discriminant, HOS: high order statistics, HBF: Hermite basis functions, GMM:
gaussian mixture model, BDT: bootstrap aggregated decision trees, DCT: discrete cosine transform, SVM: support
vector machine. * In [38] +P values nor the confusion matrix are disclosed; therefore, the harmonic mean of the
sensitivity and specificity is reported here instead of F1.
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Since the highest performance detecting SVEB was reported by Afkhami et al. [35], a possible route
for improvement can be to include in our feature selection procedure the GMM-based features proposed by
Afkhami et al. However, given the limitations of the MIT-BIH Arrhythmia Database and the inter-patient
protocol proposed by de Chazal et al. [29], the performance in the detection of SVEB of the proposed
approach as well as many others should not be taken as definitive. For this, more research considering
additional databases is needed.

Given that normalized features seem to be very discriminative, another interesting path for future
investigation can be to further explore the effect of different types of normalization in the feature ranking
and classification performance. In particular, it can be worth exploring to consider a larger number of beats
for calculating the averages. As noted before, some previous works implemented record-wise (patient-wise)
normalization [24,28,31], but this implies using information of many future beats for classifying any given
one which may not be realistically implemented in ambulatory screening and real-time applications.
Only past information should be used for those cases. However, if several minutes of previous activity
are needed in order to calculate normalized features, the effective number of analyzed beats of current
datasets may be substantially reduced.

5. Conclusions

In this study, time-domain features extracted from the single-lead ECG were objectively selected by
their information content, and the heartbeat classification performance using RF was fairly evaluated
by following the AAMI guidelines and the inter-patient paradigm. Normalized features relative to R–R
intervals and to the width of the main wave of the QRS complex were found to be the most discriminative
characteristics for the classification task. The best results were obtained with the top six most informative
features and a 40-trees RF classifier. The evaluation on the MIT-BIH Arrhythmia Database resulted
in an overall accuracy was 96.14% with specific F1-scores of 97.97%, 73.06%, and 90.85% for the NB,
SVEB, and VEB classes, respectively. In comparison with state-of-the-art approaches evaluated on similar
conditions, our results represent one of the highest performances obtained to date. Results not only
confirm that RF are an excellent tool for heartbeat classification but also that relatively few characteristics
are enough to obtain state-of-the-art performance.

Supplementary Materials: The following are available online at https://github.com/crs4/rf-ecg-heartbeat-
classification: computer code used for dataset preparation, feature extraction and selection, and model training
and validation.
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Appendix A. Extraction of QRS Temporal Characteristics and Amplitude Differences

The extraction of features is implemented as follows. The R spike annotations provided with
the MIT-BIH Arrhythmia Database are used as a marker to separate and identify the beats. At each
beat location, a segment of 640 ms of signal (96 samples) is considered, 373 ms before the annotation
(56 samples), and 267 ms (40 samples) after it. The mean of the signal segment is subtracted from each
sample in order to remove the baseline. The absolute maximum value of the signal 100 ms before and
after the annotation (QRSmax) is considered as a reference point. Though such value usually corresponds

https://github.com/crs4/rf-ecg-heartbeat-classification
https://github.com/crs4/rf-ecg-heartbeat-classification
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to the database R spike annotation and the peak of the R wave in typical normal heartbeats, this is
not always the case because the QRS may have a complex morphology and fall into one of the broad
categories of the standard nomenclature where the R wave is not the one with the highest amplitude [39].
Therefore, only if QRSmax is positive is it immediately marked as the peak of the R wave (Rpeak).
Starting from QRSmax, ten fiducial points are identified: the two locations where the signal reaches half
the value of QRSmax (QRSmax/2a, b), the two locations where the signal reaches a quarter of the value of
QRSmax (QRSmax/4a, b), the peak value of the R wave (Rpeak), the peak value of the Q wave (Qpeak),
the peak value of the S wave (Speak), the beginning of the QRS complex (QRSstart), the end of the QRS
complex (QRSend), and the peak value of the P wave (Ppeak). Many of the mentioned fiducial points are
individuated by looking for the inflection points in the signal and identifying the locations where the
signal first derivative changes direction. For this, a two-point numerical differentiation is applied to the
signal. The procedure for identifying the fiducial points can be described with the following steps:

1. Assume that Qpeak, Rpeak, Speak, and Ppeak equal zero and that the corresponding waves are
not present.

2. If QRSmax is positive, then make Rpeak equal to QRSmax.
3. Look backward from QRSmax and evaluate the signal and its inflection points in this way:

(a) Make QRSmax/2a equal to the first location where the signal goes below half of QRSmax.
(b) Make QRSmax/4a equal to the first location where the signal goes below a quarter of QRSmax.
(c) If the first inflection point is negative and Rpeak is not zero, then Qpeak equals the value at

such point.
(d) If the first inflection point is positive or zero and Rpeak is not zero, then it is marked as QRSstart,

and Qpeak is considered zero.
(e) If the first inflection point is positive and Rpeak is zero, then make Rpeak equal to the value at

such point and make Speak equal to QRS max.
(f) If the second inflection point is negative, Qpeak is zero, and QRSmax is positive, then make

Qpeak equal to the value at such point.
(g) If Qpeak is not zero and the signal crosses zero, then the first non-negative point is marked as

QRSstart.
(h) If the second inflection point is positive or zero and QRSstart has not been found yet, then it is

marked as QRSstart.
4. Look forward from QRSmax and evaluate the signal and its inflection points in this way:

(a) Make QRSmax/2b equal to the first location where the signal goes below half of QRSmax.
(b) Make QRSmax/4b equal to the first location where the signal goes below a quarter of QRSmax.
(c) If the first inflection point is negative and Rpeak is not zero, then make Speak equal to the value

at such point.
(d) If Speak is not zero and the signal cross zero, then the first non-negative point is marked as

QRSend.
(e) If the second inflection point is positive or zero and QRSend has not been found yet, then it is

marked as QRSend.

5. Find the maximum value of the signal in the segment that goes between 233 ms (35 samples) and
67 ms (10 samples) before QRSstart. If such value is greater than three times, the standard deviation
of the signal during the 67 ms preceding the segment in consideration, and its position corresponds
to an inflection point in the signal, then make Ppeak equal to such a value.

Once the fiducial points are identified, all the features can be easily computed from the differences
between the values or locations of the relative fiducial points (see Figure 1).
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