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Abstract: This study presents an analysis of RePair, which is a grammar compression algorithm
known for its simple scheme, while also being practically effective. First, we show that the main
process of RePair, that is, the step by step substitution of the most frequent symbol pairs, works
within the corresponding most frequent maximal repeats. Then, we reveal the relation between
maximal repeats and grammars constructed by RePair. On the basis of this analysis, we further
propose a novel variant of RePair, called MR-RePair, which considers the one-time substitution of
the most frequent maximal repeats instead of the consecutive substitution of the most frequent pairs.
The results of the experiments comparing the size of constructed grammars and execution time of
RePair and MR-RePair on several text corpora demonstrate that MR-RePair constructs more compact
grammars than RePair does, especially for highly repetitive texts.

Keywords: lossless data compression; RePair; maximal repeat

1. Introduction

Grammar compression is one of the lossless data compression methods. For a given text, grammar
compression constructs a small size context free grammar that derives only the given text. While
the problem of constructing the smallest such grammar for a given text is known to be NP-hard [1],
several approximation algorithms have been proposed. One of them is RePair [2], which is an off-line
grammar compression algorithm. Despite its simple scheme, RePair is known for its high compression
in practice [3–5], and hence, it has been comprehensively studied. Some examples of studies on
the RePair algorithm include its extension to an online algorithm [6], practical working time/space
improvements [7,8], applications to various fields [3,9,10], and theoretical analysis of generated
grammar sizes [1,11,12].
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In the field of text processing, the repetitiveness of a text is considered an important property.
Furthermore, it has been suggested that the extent of the repetitiveness of a given text directly relates
to the number of maximal repeats in the text. Belazzougui et al. [13] demonstrated theoretical relations
between the number of extensions of maximal repeats and famous other properties of text such as
the number of factors in the Lempel–Ziv parsing and the number of runs in the Burrows–Wheeler
transform. Also, several text indexing data structures, whose sizes are bounded by the number of
extensions of maximal repeats, have been proposed in the literature [14–16].

In this study, we analyzed the properties of RePair, focusing on their relationship to maximal
repeats. Although RePair has been extensively studied, to the best of our knowledge, no previous
study has associated RePair with maximal repeats. Furthermore, we propose MR-RePair, which is
a novel grammar compression algorithm based on the property of maximal repeats. Several off-line
grammar compression techniques based on the properties of (non-maximal) repeats have been proposed
previously [17–19]. Recently, Gańczorz and Jeż introduced a heuristic method that improves the practical
compression ratio of RePair in terms of the grammar size [20]. However, none of the previously
proposed methods use the properties of maximal repeats. In this study, we aim to demonstrate that
there is a theoretical guarantee for the size of constructed grammars; under a specific condition, the size
of the grammar constructed by MR-RePair is smaller than or equal to that constructed by RePair. Our
experiments show that MR-RePair constructs smaller grammars compared to RePair. We emphasize that
generating a grammar of small size is of great importance since most, if not all, existing algorithms/data
structures that work on grammar-compressed texts have running time dependent on the grammar sizes
(see e.g., [21–28] and the references therein) and not directly on the encoded sizes.

Contributions: The primary contributions of this study are as follows.

1. We show interesting relations between maximal repeats and grammars constructed by RePair.
2. We propose MR-RePair, which is a novel variant of RePair based on replacing the most frequent

maximal repeats.
3. We implement MR-RePair and experimentally demonstrate that MR-RePair produces smaller

grammars than all tested implementations of RePair. For a highly repetitive text used in the
experiments, MR-RePair decreased the size of the constructed grammar to about 55% of that
of RePair.

The rest of this paper is organized as follows. In Section 2, we introduce basic notations and review
maximal repeats, grammar compression, and RePair. In Section 3, we present an analysis of the properties
of RePair and demonstrate its relationship to maximal repeats. The definition and implementation of
MR-RePair and its comparison with RePair are provided in Section 4. In Section 5, we report the
experimental results of comparing RePair and MR-RePair. Finally, in Section 6, we conclude the paper.

A preliminary version of this work was previously and partially presented at the Data Compression
Conference (DCC 2019) [29]. Compared to the preliminary version, the additional and extended parts
of this paper are as follows.

1. We discuss how the sizes of generated grammars differ depending on the implementation of
RePair, and prove that a lower bound of the maximum difference of the sizes is 1

6 (
√

6n + 1 + 13)
(Definition 1 and Theorem 3).

2. We describe Naïve-MR-RePair, which is a naïve version of our MR-RePair. Furthermore, we
prove that there is the case where the grammar size of Naïve-MR-RePair becomes larger than that
of RePair in logarithmic order of the length of input string (Theorem 4).

3. We performed our experiment again following the advice of a DCC reviewer.
4. For some of the lemmas we omitted the proofs in the previous version, in this version, we show

them all.
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2. Preliminaries

In this section, we provide some notations and definitions to be used in the following sections.
In addition, we recall grammar compression and review the RePair.

2.1. Basic Notations and Terms

Let Σ be an alphabet, that is, an ordered finite set of symbols. An element T = t1 · · · tn of Σ∗ is
called a string or a text, where |T| = n denotes its length. Let ε be an empty string of length 0, that is,
|ε| = 0. Let Σ+ = Σ∗\{ε} and T = t1 · · · tn ∈ Σn be any text of length n. If T = usw with u, s, w ∈ Σ∗,
then s is called a substring of T. Let T[i..j] = ti · · · tj for any 1 ≤ i ≤ j ≤ n denote a substring of T
beginning at i and ending at j in T, and let T[i] = ti denote the ith symbol of T. For a finite set S of texts,
text T is said to be a superstring of S if T contains all texts of S as substrings. Let #occ(s) denote the
frequency of s, i.e., the number of occurrences of s in a text as a substring. If there exists an isomorphism
from an alphabet Σ to another alphabet Σ̂, texts Σ∗ and Σ̂∗ are said to be isomorphic for Σ and Σ̂.

2.2. Maximal Repeats

Let s be a substring of text T. If the frequency of s is greater than 1, s is called a repeat. A left (or right)
extension of s is any substring of T in a form of ws (or sw), where w ∈ Σ∗. We define s as a left (or right)
maximal if left (or right) extensions of s occur a strictly less number of times in T than s. Accordingly, s
is a maximal repeat of T if s is both left and right maximal. In this paper, we only consider strings with
a length of more than 1 as maximal repeats. For example, substring abra of T = abracadabra is a
maximal repeat, whereas br is not.

2.3. Grammar Compression

A context free grammar (CFG or simply grammar) G is defined as a four-tuple G = {V, Σ, S, R},
where V denotes an ordered finite set of variables, Σ denotes an ordered finite alphabet, R denotes
a finite set of binary relations called production rules (or rules) between V and (V ∪ Σ)∗, and S ∈ V
denotes a special variable called start variable. A production rule refers to the situation, where a variable
is substituted and written in a form of v→ w, with v ∈ V and w ∈ (V ∪ Σ)∗. Let X, Y ∈ (V ∪ Σ)∗. If
there are xl , x, xr, y ∈ (V ∪ Σ)∗ such that X = xl xxr, Y = xlyxr, and x → y ∈ R, we write X ⇒ Y, and
denote the reflexive transitive closure of⇒ as ∗⇒. Let val(v) be a string derived from v, i.e., v ∗⇒ val(v).
We define grammar Ĝ = {V̂, Σ̂, Ŝ, R̂} as a subgrammar of G if V̂ ⊆ V, Σ̂ ⊆ (V ∪ Σ), and R̂ ⊆ R.

Given a text T, grammar compression is a method for lossless text data compression that constructs
a restricted CFG uniquely deriving the text T. For G to be deterministic, a production rule for each
variable v ∈ V must be unique. In what follows, we assume that every grammar is deterministic
and each production rule is vi → expri, where expri is an expression either expri = a (a ∈ Σ) or
expri = vj1 vj2 · · · vjn (i > jk for all 1 ≤ k ≤ jn).

For estimating the effectiveness of compression, we use the size of the constructed grammar,
which is defined as the total length of the right-hand side of all production rules of the grammar.

2.4. RePair

RePair is a grammar compression algorithm proposed by Larsson and Moffat [2]. For input text
T, let G = {V, Σ, S, R} be the grammar constructed by RePair. Then, the RePair procedure can be
described with the following steps:

Step 1. Replace each symbol a ∈ Σ with a new variable va and add va → a to R.
Step 2. Find the most frequent pair p in T.
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Step 3. Replace every occurrence (or, as many occurrences as possible, when p is a pair consisting of
the same symbol) of p with a new variable v, and then, add v→ p to R.
Step 4. Re-evaluate the frequencies of pairs for the updated text generated in Step 3. If the maximum
frequency is 1, add S→ (current text) to R, and terminate. Otherwise, return to Step 2.

Figure 1 illustrates an example of the grammar generation process of RePair.

a b r a c a d a b r a
vα → α (α = a, b, r, c, d) va vb vr va vc va vd va vb vr va

v1 → vavb v1 vr va vc va vd v1 vr va
v2 → v1vr v2 va vc va vd v2 va
v3 → v2va v3 vc va vd v3

S→ v3vcvavdv3 S

Figure 1. An example of the grammar generation process of RePair for the text abracadabra. The generated
grammar is {{va, vb, vr, vc, vd, v1, v2, v3, S}, {a, b, r, c, d}, S, {va → a, vb → b, vr → r, vc → c, vd →
d, v1 → vavb, v2 → v1vc, v3 → v2vd, S→ v3vcvavdv3}} with a size of 16.

Lemma 1 ([2]). RePair works in O(n) expected time and 5n + 4k2 + 4k′ + d
√

n + 1e − 1 words of space,
where n is the length of the source text, k denotes the cardinality of the source alphabet, and k′ denotes the
cardinality of the final dictionary.

3. Analysis of RePair

This section presents an analysis of RePair with respect to its relationship to maximal repeats and
introduces an important concept, called MR-order.

3.1. RePair and Maximal Repeats

The following theorem describes an essential property of RePair, that is, RePair recursively replaces
the most frequent maximal repeats.

Theorem 1. Let T be a given text, assuming that every most frequent maximal repeat of T does not appear with
overlaps with itself. Let f be the frequency of the most frequent pairs of T, and t be a text obtained after all pairs
with frequency f in T are replaced by variables. Then, there is a text s such that s is obtained after all maximal
repeats with frequency f in T are replaced by variables, and s and t are isomorphic to each other.

We need two lemmas and a corollary to prove Theorem 1. The following lemma shows a fundamental
relation between the most frequent maximal repeats and the most frequent pairs in a text.

Lemma 2. A pair p of variables is most frequent in a text T if and only if p occurs once in exactly one of the
most frequent maximal repeats of T.

Proof. (⇒) Let r be a most frequent maximal repeat containing p as a substring. It is clear that p
can only occur once in r, since otherwise, #occ(p) > #occ(r) would hold, implying the existence
of a frequent maximal repeat that is more frequent than r, contradicting the assumption that r is
most frequent. Suppose that there exists a different most frequent maximal repeat r′ containing p as
a substring. Similarly, p occurs only once in r′. Furthermore, since r and r′ can be obtained by left
and right extensions to p, #occ(r) = #occ(r′) = #occ(p), and any occurrence of p is contained in an
occurrence of both r and r′. Since r′ cannot be a substring of r, there exists a string w that is a superstring
of r and r′, such that #occ(w) = #occ(r) = #occ(r′) = #occ(p). However, this contradicts that r and r′

are maximal repeats.
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(⇐) Let r be the most frequent maximal repeat such that p occurs once in it. By definition, #occ(r) =
#occ(p). If p is not the most frequent symbol pair in T, there exists a pair p′ in T such that #occ(p′) >
#occ(p) = #occ(r). However, this implies that there is a maximal repeat r′ with #occ(r′) = #occ(p′) >
#occ(r), contradicting that r is most frequent.

The following corollary is derived directly from Lemma 2.

Corollary 1. For a given text, the frequency of the most frequent pairs and that of the most frequent maximal
repeats are the same.

The following lemma shows an important property of the most frequent maximal repeats.

Lemma 3. The length of the overlap between any two occurrences of most frequent maximal repeats is at most 1.

Proof. Let xw and wy be the most frequent maximal repeats that have an overlapping occurrence xwy,
where x, y, w ∈ Σ+. If we assume that |w| ≥ 2, since xw and wy are most frequent maximal repeats, it
holds that #occ(w) = #occ(xw) = #occ(wy), i.e., every occurrence of w is preceded by x and followed
by y. This implies that #occ(xwy) = #occ(xw) = #occ(wy) as well, but contradicts that xw and wy are
maximal repeats.

Theorem 1 can now be proved based on the above lemmas and corollary.

Proof of Theorem 1. According to Corollary 1, the frequency of the most frequent maximal repeats in
T is f . Let p be one of the most frequent pairs in T. According to Lemma 2, there is a unique maximal
repeat that is most frequent and contains p once. We denote such maximal repeat as r. Let us assume
that there is a substring zxpyw in T, where z, w ∈ Σ, x, y ∈ Σ∗, and xpy = r. We denote r[1] and r[|r|]
as ẋ and ẏ, respectively. There are the following two cases to consider:
(i) #occ(zẋ) < f and #occ(ẏw) < f . If |r| = 2, the replacement of p directly corresponds to the replacement
of the most frequent maximal repeat, since p = r. If |r| > 2, after p is replaced with a variable v, r is
changed to xvy. This occurs f times in the updated text, and according to Lemma 2, the frequency of
every pair occurring in xvy is still f . Because the maximum frequency of pairs does not increase, f is
still the maximum frequency. Therefore, we replace all pairs contained in xvy in the following steps,
whereas zẋ and ẏw are not replaced. This holds for every occurrence of p, implying that replacing the
most frequent pairs while the maximum frequency does not change, corresponds to replacing all pairs
(old and new) contained in the most frequent maximal repeats of the same frequency until they are
replaced by a single variable. Then, s can be generated by replacing r.
(ii) #occ(zẋ) = f or #occ(ẏw) = f . We consider the case where #occ(zẋ) = f . Note that #occ(zxpy) < f
according to the assumption that xpy is a maximal repeat. Suppose RePair replaces zẋ by a variable
v before p is replaced. Note that according to Lemma 2, there is a maximal repeat occurring f times
and including zẋ once (we denote the maximal repeat as r′), and r′ 6= r by assumption. According to
Lemma 3, the length of the overlap of r and r′ is at most 1, and then, only ẋ is a symbol present in
both r and r′. After that, xpy = r is no longer the most frequent maximal repeat because some of its
occurrences are changed to vr[2..|r|]. However, r[2..|r|] still occurs f times in the updated text. Since
#occ(zxpy) < f and #occ(xpy) = f , #occ(vr[2]) < f and r[2..|r|] is a maximal repeat. Then, r[2..|r|]
will become a variable in subsequent steps, similarly to (i). Here, r′ would also become a variable.
Thus, we can generate s by first replacing r′ and then replacing r[2..|r|]. Similarly, this holds for ẏw
when #occ(ẏw) = f and #occ(zẋ) = #occ(ẏw) = f .

3.2. MR-Order

According to Theorem 1, if there is just one most frequent maximal repeat in the current text, then
RePair replaces its all occurrences step by step. However, a problem arises if there are two or more
most frequent maximal repeats, with some of them overlapping. In this case, the selection order of
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pairs (of course, they are most frequent) affects the priority of maximal repeats. We call this order of
selecting (summarizing) maximal repeats as the maximal repeat selection order (or simply MR-order).
Note that, the selection order of pairs actually depends on the implementation of RePair.

For instance, consider the text abcdeabccde, where abc and cde are the most frequent maximal
repeats occurring twice. There are two MR-orders, depending on which of the two maximal repeats abc
or cde is given priority. The results of the replacement using RePair with the MR-order are (i) xyxcx
with variables x and y such that x ∗⇒ abc and y ∗⇒ de, and (ii) zwzcw with variables z and w such that
z ∗⇒ ab and w ∗⇒ cde. More precisely, there are 12 possible ways in which RePair can compress the
text, with the following generated rule sets:

1. {v1 → ab, v2 → v1c, v3 → de, S→ v2v3v2cv3},
2. {v1 → ab, v2 → de, v3 → v1c, S→ v3v2v3cv2},
3. {v1 → bc, v2 → av1, v3 → de, S→ v2v3v2cv3},
4. {v1 → bc, v2 → de, v3 → av1, S→ v3v2v3cv2},
5. {v1 → ed, v2 → ab, v3 → v2c, S→ v3v1v3cv1},
6. {v1 → ed, v2 → bc, v3 → av2, S→ v3v1v3cv1},
7. {v1 → ab, v2 → cd, v3 → v2e, S→ v1v3v1cv3},
8. {v1 → ab, v2 → de, v3 → cv2, S→ v1v3v1cv3},
9. {v1 → cd, v2 → ab, v3 → v1e, S→ v2v3v2cv3},

10. {v1 → cd, v2 → v1e, v3 → ab, S→ v3v2v3cv2},
11. {v1 → ed, v2 → ab, v3 → cv1, S→ v2v3v2cv3},
12. {v1 → ed, v2 → cv1, v3 → ab, S→ v3v2v3cv2}.

Here, 1–6 have the same MR-order because abc precedes cde in all of them. At the same time,
7–12 have the same MR-order for the same reason: cde precedes abc.

If there are several distinct most frequent pairs with overlaps, RePair constructs grammars with different
sizes according to the selection order of the pairs. For example, consider the text bcxdabcyabzdabvbcuda.
There are three most frequent pairs, namely, ab, bc, and da, occurring three times each. If RePair takes
ab first, the rule set of the generated grammar may become {v1 → ab, v2 → bc, v3 → dv1, S →
v2xv3cyv1zv3vv2uda} and its size is 19. If RePair takes da first, the rule set of the generated grammar
may become {v1 → da, v2 → bc, S→ v2xv1v2yabzv1bvv2uv1} and its size is 18.

Remark 1. If there are several distinct pairs with the same maximum frequency, the size of the grammar
generated by RePair depends on their replacement order.

However, the following theorem states that the MR-order rather than the replacement order of
pairs determines the size of the grammar generated by RePair.

Theorem 2. The sizes of grammars generated by RePair are the same if they are generated in the same MR-order.

Proof. Let T be a variable sequence appearing in the grammar generation process of RePair and f be
the maximum frequency of pairs in T. Suppose that T′ is a variable sequence generated after RePair
replaces every pair occurring f times. According to Theorem 1, all generated T′ are isomorphic to one
another, then the length of all of them is the same, regardless of the replacement order of pairs. Let r1 be
the most frequent maximal repeats of T with r1 preceding all other maximal repeats in this MR-order.
As a result, r1 is converted into a variable, and according to Lemma 2, all pairs included in r1 are
distinct. Then, the size of the subgrammar which exactly derives r1 is 2(|r1| − 1) + 1 = 2|r1| − 1. This
holds for the next prioritized maximal repeat (we denote it as r2) with the following slight difference:
the pattern actually replaced would be a substring of r2 excluding its beginning or end if there are
occurrences of overlap with r1. However, these strings are common in the same MR-order. Then, the
sizes of generated subgrammars are the same, regardless of the order of selecting pairs. Similarly, this
holds for all most frequent maximal repeats and every maximum frequency of pairs through the entire
process of RePair.
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3.3. Greatest Size Difference of RePair

We consider the problem of determining the greatest size difference between possible outcomes
of RePair.

Definition 1 (Greatest size difference). Let g and g′ be the sizes of any two possible grammars that can be
generated by RePair for a given text. Then, the greatest size difference of RePair (GSDRP) is max(|g− g′|).

A lower bound of the GSDRP can be established according to the following theorem.

Theorem 3. Given a text with a length of n, a lower bound of GSDRP is 1
6 (
√

6n + 1 + 13).

Proof. Let B, L, and R be strings such that

B = l1xyr1l2xyr2 · · · lf−1xyrf−1lf xyrf ,

L = ♦l1x♦l2x · · · ♦lf x,

R = ♦yr1♦yr2 · · · ♦yrf ,

where x, y, l1, . . . , l f , r1, . . . , r f denote distinct symbols, and each occurrence of ♦ denotes a distinct
symbol. Consider text T = BL f−1R f−1. Here, xy, l1x, · · · , l f x, yr1, · · · , yrf are the most frequent
maximal repeats with a frequency f in T. Let G and G′ be grammars generated by RePair for T in
different MR-order, such that (i) xy precedes all other maximal repeats and (ii) xy follows all other
maximal repeats, respectively. We denote the sizes of G and G′ as g and g′, respectively.

First, we consider G and how RePair generates it. The first rule generated by the replacement
is v1 → xy considering the MR-order. After the replacement, L and R remain unchanged, whereas B
becomes the following text:

B1 = l1v1r1l2v1r2 · · · lf−1v1rf−1lf v1rf .

Each pair in B1 occurs only once in the entire text B1L f−1R f−1. This means that B1 can never be shortened
from the current length of 3 f . In the remaining steps, lix and yri (for i = 1, · · · , f ) are replaced. L and R
are changed to texts with a length of 2 f each. Hence, the following holds:

g = 3 f + 2 · 2 f + 2(1 + 2 f ) = 11 f + 2. (1)

Next, we consider G′ and how RePair generates it. According to their MR-order, l1x, · · · , l f x,
yr1, · · · , yrf are replaced before xy is selected. They do not overlap with each other, and after they are
replaced, xy does not occur in the generated text. Therefore, there are 2 f rules in G′ deriving lix and
yri (for i = 1, · · · , f ), whereas the rule deriving xy is absent. L and R are changed to texts with a length
of 2 f each, and B is changed to a text with a length 2 f . Hence, the following holds:

g′ = 2 f + 2 · 2 f + 2 · 2 f = 10 f . (2)

Let us denote the length of the original text T = BL f−1R f−1 by n. Then, the following holds:

n = 4 f + 2(3 f )( f − 1) = 6 f 2 − 2 f .

Therefore,

f =
1
6
(
√

6n + 1 + 1) (3)
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holds. According to Equations (1)–(3),

g− g′ = 11 f + 2− 10 f = f + 2

=
1
6
(
√

6n + 1 + 13)

holds and the theorem follows.

4. MR-RePair

The main strategy of the proposed method is to recursively replace the most frequent maximal
repeats instead of the most frequent pairs.

In this section, we first explain the naïve version of our method called Naïve-MR-RePair. Although
it can have a bad performance in certain cases, it is simple and helpful in understanding our main
result. Then, we describe the proposed MR-RePair.

4.1. Naïve-MR-RePair

Definition 2 (Naïve-MR-RePair). For an input text T, let G = {V, Σ, S, R} be the grammar generated by
Naïve-MR-RePair. Naïve-MR-RePair constructs G through the following steps:

Step 1. Replace each symbol a ∈ Σ with a new variable va and add va → a to R.
Step 2. Find the most frequent maximal repeat r in T.
Step 3. Replace every occurrence (or as many occurrences as possible, when there are overlaps) of r in T with a
new variable v and then add v→ r to R.
Step 4. Re-evaluate the frequencies of maximal repeats for the updated text generated in Step 3. If the maximum
frequency is 1, add S→ (current text) to R and terminate. Otherwise, return to Step 2.

We can easily extend the concept of the MR-order to Naïve-MR-RePair.
Figure 2 illustrates an example of the grammar generation process of Naïve-MR-RePair. Figures 1 and 2

explain why the strategy of using maximal repeats is more effective compared to that using pairs.
When compressing the text vavbvrvavcvavdvavbvrva, both RePair and Naïve-MR-RePair generate
subgrammars deriving the most frequent maximal repeat vavbvrva. The rule set of the subgrammar
generated by RePair is {v1 → vavb, v2 → v1vr, v3 → v2va} with a size of 6. At the same time, the rule
set of the subgrammar generated by Naïve-MR-RePair is {v1 → vavbvrva} with a size of 4.

a b r a c a d a b r a
vα → α (α = a, b, r, c, d) va vb vr va vc va vd va vb vr va

v1 → vavbvrva v1 vc va vd v1
S→ v1vcvavdv1 S

Figure 2. An example of the grammar generation process of Naïve-MR-RePair for the text abracadabra.
The generated grammar is {{va, vb, vr, vc, vd, v1, S}, {a, b, r, c, d}, S, {va → a, vb → b, vr → r, vc →
c, vd → d, v1 → vavbvrva, S→ v1vcvavdv1}} with a size of 14.

However, the following theorem indicates that the size of the grammar generated by Naïve-MR-RePair
is larger than that generated by RePair in certain cases, even when they work in the same MR-order.
Roughly speaking, this is caused by the overlaps of maximal repeats. When there is an occurrence
of the most frequent maximal repeat that overlaps with its occurrence, little difference would arise
in grammar constructing processes of RePair and Naïve-MR-RePair from the view point of maximal
repeats, that is, the targeted maximal repeats would vary in RePair and in Naïve-MR-RePair (RePair
replaces the targeted maximal repeat step by step and Naïve-MR-RePair replaces it at once). Indeed,
if maximal repeats are carefully embedded in a text for increasing the difference, the case presented in
the following theorem occurs.
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Theorem 4. Given a text T with a length of n, let grp and gnmr be the sizes of the grammars generated by
RePair and Naïve-MR-RePair for T, respectively, assuming that RePair and Naïve-MR-RePair work in the
same MR-order. Then, there is a case when gnmr = grp + Ω(log n) holds. (We show a concrete example of this
theorem in Appendix A.)

Proof. Let Grp = {Vrp, Σrp, Srp, Rrp} and Gnmr = {Vnmr, Σnmr, Snmr, Rnmr} be the grammars generated
by RePair and Naïve-MR-RePair, respectively. Let T′ be the text generated just after Step 1 of RePair
or Naïve-MR-RePair (the Step 1 is common in both algorithms), that is, T′ = v1 · · · vn such that vi ∈
Vrp ∩ Vnmr and vi → T[i] ∈ Rrp ∩ Rnmr (for i = 1, · · · , n), and Ĝrp = {V̂rp, Σ̂rp, Ŝrp, R̂rp} (or Ĝnmr =

{V̂nmr, Σ̂nmr, Ŝnmr, R̂nmr}) be a subgrammar of Grp (or Gnmr) deriving T′. Let T′ = (uw)2m+1−1u, where
u ∈ Vrp ∩Vnmr, w ∈ (Vrp ∩Vnmr)+ such that uwu is the most frequent maximal repeat of T′, and m ∈ N+.
Note that 2m+1 − 1 = ∑m

i=0 2i. Here R̂rp and R̂nmr are defined as follows:

R̂rp: Assume that xi ∈ V̂rp for 1 ≤ i ≤ m and yj ∈ V̂rp ∪ Σ̂rp for 1 ≤ j ≤ |w|, then R̂rp consists of

• |w| rules yj → ylyr with val(y|w|) = uw,
• one rule x1 → y|w|y|w| and log2 b2m+1− 1c− 1 = m− 1 rules xi → xi−1xi−1 for 2 ≤ i ≤ m, and
• one rule Ŝrp → xmxm−1 · · · x1y|w|.

R̂nmr: Assume that d = |V̂nmr| = |R̂nmr| and zi ∈ V̂nmr for 1 ≤ i ≤ d, then R̂nmr consists of

• one rule z1 → uwu, and
• d− 1 rules zi → zi−1wzi−1 for 2 ≤ i ≤ d and zd = Ŝnmr.

Let ĝrp and ĝnmr be the sizes of Ĝrp and Ĝnmr, respectively. Then, the following holds:

ĝrp = 2|w|+ 2m + (m + 2) = 3m + 2|w|+ 2, (4)

ĝnmr = |w|+ 2 + (|w|+ 2)(d− 1) = (|w|+ 2)d. (5)

Here, with regard to the length of T′, we have

n = (2(2m − 1) + 1)(|w|+ 1) + 1, and

n = (2d − 1)|w|+ 2d.

From these, d = m + 1 holds. Hence, according to Equations (4) and (5), the following holds:

ĝnmr − ĝrp = (m− 1)(|w| − 1)− 1.

Therefore, ĝnmr > ĝrp holds for some (m, |w|), and the proposition holds.

4.2. MR-RePair

The grammar size of Naïve-MR-RePair becomes larger than that of RePair as shown in Theorem 4
because Naïve-MR-RePair cannot replace all occurrences of most frequent maximal repeats if it overlaps
with another occurrence of itself. In the remainder of this section, we describe MR-RePair, which is an
improved version of Naïve-MR-RePair.

Definition 3 (MR-RePair). For an input text T, let G = {V, Σ, S, R} be the grammar generated by MR-RePair.
MR-RePair constructs T through the following steps:

Step 1. Replace each symbol a ∈ Σ with a new variable va and add va → a to R.
Step 2. Find the most frequent maximal repeat r in T.
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Step 3. Check if |r| > 2 and r[1] = r[|r|], and if so, use r[1..|r| − 1] instead of r in Step 4.
Step 4. Replace every occurrence of r with a new variable v and then add v→ r to R.
Step 5. Re-evaluate the frequencies of maximal repeats for the updated text generated in Step 4. If the maximum
frequency is 1, add S→ (current text) to R and terminate. Otherwise, return to Step 2.

We can easily extend the concept of the MR-order to MR-RePair. We do not care if it uses r[2..|r|]
in Step 3, instead of r[1..|r| − 1]. MR-RePair can replace all occurrences of r even if it overlaps with
itself in some occurrences since, according to Lemma 3, the length of the overlaps of the most frequent
maximal repeats is at most 1. If r[1] = r[|r|] but r does not overlap with itself, then vr[|r|] becomes the
most frequent maximal repeat after r[1..|r| − 1] is replaced by v and vr[|r|] is replaced immediately.
Similar to RePair, MR-RePair still cannot replace all of them if |r| = 2.

Figure 3 illustrates an example of the grammar generation process of MR-RePair. Although the
size of the grammar generated by MR-RePair as shown in Figure 3 is larger than that generated by
Naïve-MR-RePair as shown in Figure 2, it is still smaller than that generated by RePair as shown in Figure 1.

Theorem 5. Assume that RePair and MR-RePair work based on the same MR-order for a given text. Let grp and
gmr be the sizes of the grammars generated by RePair and MR-RePair, respectively. Then, 1

2 grp < gmr ≤ grp holds.

a b r a c a d a b r a
vα → α (α = a, b, r, c, d) va vb vr va vc va vd va vb vr va

v1 → vavbvr v1 va vc va vd v1 va
v2 → v1va v2 vc va vd v2

S→ v2vcvavdv2 S

Figure 3. An example of the grammar generation process of MR-RePair for the text abracadabra.
The generated grammar is {{va, vb, vr, vc, vd, v1, S}, {a, b, r, c, d}, S, {va → a, vb → b, vr → r, vc →
c, vd → d, v1 → vavbvr, v2 → v1va, S→ v2vcvavdv2}} with a size of 15.

Proof. Assume that Grp = {Vrp, Σrp, Srp, Rrp} and Gmr = {Vmr, Σmr, Smr, Rmr} are grammars generated
by RePair and MR-RePair, respectively, for a given text T with a length of n. Let T′ be the text generated
just after Step 1 of RePair or Naïve-MR-RePair (the Step 1 is common in both algorithms), that is,
T′ = v1 · · · vn such that vi ∈ Vrp ∩Vmr and vi → T[i] ∈ Rrp ∩ Rmr (for i = 1, · · · , n).

Let f1 be the maximum frequency of the maximal repeats in T′. According to Corollary 1, the
maximum frequency of the pairs in T′ is also f1. Let Ĝ( f1)

rp (or Ĝ( f1)
mr ) be a subgrammar of Grp (or Gmr)

generated while RePair (or MR-RePair) replaces pairs (or maximal repeats) with the frequency f1,
ĝ( f1)

rp (or ĝ( f1)
mr ) be the size of this subgrammar, and T( f1)

rp (or T( f1)
mr ) be the updated text after all pairs

(or maximal repeats) with the frequency f1 are replaced. Let r( f1)
1 , · · · , r( f1)

m1 be maximal repeats with

frequency f1 in T′ assuming that they are prioritized in this order by the MR-order. Let l( f1)
i (for

i = 1, · · · , m1) be the length of the longest substring of r( f1)
i such that there are variables that derive

the substring in both Ĝ( f1)
rp and Ĝ( f1)

mr . Note that this substring is common to RePair and MR-RePair,

and each l( f1)
i is at least 2. Since RePair replaces such substring step by step and MR-RePair replaces it

at once, the following holds:

ĝ( f1)
rp =

m1

∑
i=1

2(l( f1)
i − 1) , (6)

ĝ( f1)
mr =

m1

∑
i=1

l( f1)
i . (7)
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From these,

ĝ( f1)
rp − ĝ( f1)

mr = 2
m1

∑
i=1

l( f1)
i − 2m1 −

m1

∑
i=1

l( f1)
i

=
m1

∑
i=1

l( f1)
i − 2m1

≥ 2m1 − 2m1 = 0 (∵ li ≥ 2 holds for each i).

Hence,

ĝ( f1)
mr ≤ ĝ( f1)

rp (8)

holds. According to Equation (6),

ĝ( f1)
rp = 2

m1

∑
i=1

l( f1)
i − 2m1

= 2ĝ( f1)
mr − 2m1 (by Equation (7)).

Hence,

1
2

ĝ( f1)
rp < ĝ( f1)

mr (9)

holds. Therefore, according to Equations (8) and (9),

1
2

ĝ( f1)
rp < ĝ( f1)

mr ≤ ĝ( f1)
rp (10)

holds. The updated texts T( f1)
rp and T( f1)

mr are isomorphic for Vrp and Vmr. Let f2 be the maximum frequency

of the maximal repeats in T( f1)
rp (and T( f1)

mr ). Then, a similar analysis holds for Ĝ( f2)
rp and Ĝ( f2)

mr . Hence,
1
2 ĝ( f2)

rp < ĝ( f2)
mr ≤ ĝ( f2)

rp holds similarly to Equation (10), and the updated texts T( f2)
rp and T( f2)

mr are isomorphic.

Inductively, for every maximum frequency of maximal repeats fi, 1
2 ĝ( fi)

rp < ĝ( fi)
mr ≤ ĝ( fi)

rp holds and the

updated texts T( fi)
rp and T( fi)

mr are isomorphic. Let k be a natural number such that fk > 1 and fk+1 = 1, that
is, k is the number of times that the maximum frequency decreases through the entire process of RePair
and MR-RePair. Then,

grp =
k

∑
j=1

ĝ
( f j)
rp + |Σ|+ |T( fk)

rp |

=
k

∑
j=1

mj

∑
i=1

2(l
( f j)

i − 1) + |Σ|+ |T( fk)
rp | , and (11)

gmr =
k

∑
j=1

ĝ
( f j)
mr + |Σ|+ |T( fk)

mr |

=
k

∑
j=1

mj

∑
i=1

l
( f j)

i + |Σ|+ |T( fk)
mr | (12)

hold. Recall that each symbol a ∈ Σ is replaced with a new variable in the first step both in RePair
and in MR-RePair. |Σ| is the size of the subgrammar consisting of the rules generated in the first step.
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Since every l
( f j)

i ≥ 2 and |T( fk)
rp | = |T( fk)

mr |, 1
2 grp < gmr ≤ grp follows Equations (11) and (12), and thus,

the proposition holds. gmr = grp holds when every length l
( f j)

i is 2.

However, when the MR-orders of RePair and MR-RePair are different, then the grammar generated
by MR-RePair can be larger than that generated by RePair, as the following theorem indicates:

Theorem 6. Unless the MR-order of RePair and MR-RePair are the same, there is a case where the size of the
grammar generated by MR-RePair becomes larger than that generated by RePair.

Proof. We show a concrete example of the case stated in the proposition. Consider text abcxabcyab
czcxcxcycyczcz. There are four most-frequent maximal repeats, abc, cx, cy, and cz. Let A and B
be two different MR-orders such that A prioritizes the maximal repeats in order of abc, cx, cy, cz
and B prioritizes the maximal repeats in order of cx, cy, cz, abc, respectively. MR-RePair working
in A generates a grammar whose rules are {va → a, vb → b, vc → c, vx → x, vy → y, vz → z, v1 →
vavbvc, v2 → vcvx, v3 → vcvy, v4 → vcvz, S→ v1xv1yv1zv2v2v3v3v4v4}, where S is the start variable.
Meanwhile, RePair working in B generates a grammar whose rules are {va → a, vb → b, vc → c, vx → x,
vy → y, vz → z, v1 → vcvx, v2 → vcvy, v3 → vcvz, v4 → vavb, S → v4v1v4v2v4v3v1v1v2v2v3v3},
where S is the start variable. The size of the grammar generated by MR-RePair working in A is 27,
whereas the size of that generated by RePair working in B is 26.

While Theorem 6 indicates that the grammar can be larger in MR-RePair than in RePair, in Section 5
we demonstrate that MR-RePair outperforms RePair in practice.

We can implement MR-RePair by extending the original implementation of RePair stated in [2]
and holding the same complexity.

Theorem 7. Let G = {V, Σ, S, R} be the grammar generated by MR-RePair for a given text with a length of n.
Then, MR-RePair works in O(n) expected time and 5n + 4k2 + 4k′ + d

√
n + 1e − 1 word space, where k and

k′ denote the cardinalities of Σ and V, respectively.

Proof. Compared to RePair, the additional operations performed by MR-RePair are (i) extending
the selected pair to left and right until it becomes a maximal repeat and (ii) checking and excluding
either the beginning or the end of the obtained maximal repeat if they are the same. These additional
operations can be realized using the same data structures as those employed in RePair. Then, the space
complexity of MR-RePair follows Lemma 1.

We can clearly execute operation (ii) in a constant time. Hence, we consider how the time complexity
is affected by operation (i). Let l be the length of the maximal repeat containing the focused pair,
as well as f be the frequency of the pair. Then, O( f l) more time is required for MR-RePair to check the
left- and right-extensions for all occurrences of the focused pair compared to RePair. However, the
length of the entire text is shortened by at least f (l − 1) by the replacement. Therefore, MR-RePair
works in O(n) expected time according to possible counts of the replacement through all of the steps
of the algorithm.

Remark 2. We can convert a grammar of RePair to that of MR-RePair by repeating the following transform:
If a variable v appears only once on the right-hand side of other rules, the rule can be removed for v, and the
one occurrence of v can be replaced with the right-hand side of the removed rule. However, the time and space
complexity stated in Theorem 7 cannot be achieved in this manner, since additional operations and memory for
searching and storing such variables are required.
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5. Experiments

We implemented and conducted some comparative experiments. In particular, we compared the
sizes of constructed grammars and execution times of the proposed MR-RePair, several existing RePair
implementations, and Re-PairImp (https://bitbucket.org/IguanaBen/repairimproved), which was
recently proposed in [20] as an improvement of RePair.

As stated in Remark 1, the MR-order affects the size of a constructed grammar. In practice, the
MR-order varies depending on the implementation of the priority queue that manages pairs. For
this reason, we used four different implementations of RePair in the comparative analysis, and they
were implemented by Maruyama (https://code.google.com/archive/p/re-pair/), Navarro (https:
//www.dcc.uchile.cl/~gnavarro/software/index.html), Prezza (https://github.com/nicolaprezza/
Re-Pair) [7], and Wan (https://github.com/rwanwork/Re-Pair); we ran it with level 0 (no heuristic
option), respectively.

Table 1 lists the details of the texts that we used in the experiments. In particular, we employed
three texts as highly repetitive texts: one is a randomly generated text (rand77.txt), and the other two
are a Fibonacci string (fib41) and a German text (einstein.de.txt) selected from the Repetitive Corpus of
the Pizza&Chili Corpus (http://pizzachili.dcc.uchile.cl/repcorpus.html). The randomly generated
text, rand77.txt, consists of alphanumeric symbols and some special symbols. It was generated by
concatenating 32 copies of a block that includes 1024 random strings of length 64 each, i.e., the size
of the randomly generated text is 64× 1024× 32 = 2, 097, 152 byte. In addition, we used three texts
(E.coli, bible.txt, and world192.txt) selected from the Large Corpus (http://corpus.canterbury.ac.nz/
descriptions/#large) to consider a real-data case. We executed each program seven times for each
text and measured the elapsed CPU time only for the grammar generation process. We calculated the
average time across five results, excluding the minimum and maximum values among the seven runs.
The experiments were run on a computer equipped with an Intel(R) Core i7-8700 3.2–4.6 GHz 6core,
32GB RAM, and using Ubuntu 16.04. All of the programs were compiled using gcc version 7.4 with
the “-O3” option.

Table 1. Text files used in our experiments.

Text Size (bytes) |Σ| Content

rand77.txt 2,097,152 77 32 copies of 1024 random patterns with a length of 64
fib41 267,914,296 2 Fibonacci string from the Pizza&Chili Corpus
einstein.de.txt 92,758,441 117 Edit history of the Wikipedia for Albert Einstein
E.coli 4,638,690 4 Complete genome of the E. Coli bacterium
bible.txt 4,047,392 63 The King James version of the bible
world192.txt 2,473,400 94 The CIA world fact book

Table 2 summarizes the experimental results. Unfortunately, Re-PairImp was unable to process
fib41 in our experimental environment because of a lack of memory. Here, we excluded the number of
rules generating a single terminal symbol from the number of rules since they are the same between
RePair and MR-RePair. As shown in the table, the sizes of grammars constructed by each RePair
implementation differ from each other for all texts except fib41. In any case, MR-RePair is not inferior
to RePair in terms of the size of grammars while in Theorem 6 we show that the grammar can be larger
in MR-RePair than in RePair if their MR-orders are different. For rand77.txt, the number of rules and
size of the grammars for MR-RePair decreased to about 11% and 55% of those for RePair, respectively.
Long maximal repeats occur more frequently in rand77.txt than in other texts and we consider this is a
main reason of the remarkable effectiveness of MR-RePair for the text.

For einstein.de.txt, the number of rules and size of the grammar decreased to about 44% and 72%
of those for RePair, respectively. By contrast, it turned out that the effect of the improvement was
limited for the texts from the Large Corpus, which are not highly repetitive. Note that fib41 does not
contain any maximal repeats longer than 2 without overlaps. Therefore, MR-RePair generated the

https://bitbucket.org/IguanaBen/repairimproved
https://code.google.com/archive/p/re-pair/
https://www.dcc.uchile.cl/~gnavarro/software/index.html
https://www.dcc.uchile.cl/~gnavarro/software/index.html
https://github.com/nicolaprezza/Re-Pair
https://github.com/nicolaprezza/Re-Pair
https://github.com/rwanwork/Re-Pair
http://pizzachili.dcc.uchile.cl/repcorpus.html
http://corpus.canterbury.ac.nz/descriptions/#large
http://corpus.canterbury.ac.nz/descriptions/#large


Algorithms 2020, 13, 103 14 of 18

same rules as RePair in this case. It should be also be noted that MR-RePair runs at a speed comparable
to the fastest implementation of RePair.

Table 2. Sizes of generated grammars and execution times of the considered algorithms. Each cell in the
table represents the number of generated rules, total lengths of the right side of all of the rules except for
the start variable, length of the right side of the start variable, and the total grammar size in the order
from the top row. The total grammar size presented in the fourth row is the total of the values presented
in the second row and the third row. The fifth row separated by a line represents the execution time for
compression in seconds. The best results are highlighted in bold.

Text File RePair Re-Pair MR-
Maruyama Navarro Prezza Wan Imp RePair

rand77.txt Rules 41,651 41,642 41,632 41,675 41,661 4,492
Total length 83,302 83,284 83,264 83,350 83,322 46,143
Start variable 9 2 7 2 2 9
Grammar size 83,311 83,286 83,271 83,352 83,324 46,152

Execution time 0.22 0.34 2.94 0.94 2.48 0.20

fib41 Rules 38 38 38 38 - 38
Total length 76 76 76 76 - 76
Start variable 3 3 3 3 - 3
Grammar size 79 79 79 79 - 79

Execution time 9.99 14.38 48.85 85.39 - 14.88

einstein.de.txt Rules 49,968 49,949 50,218 50,057 49,933 21,787
Total length 99,936 99,898 100,436 100,114 99,866 71,709
Start variable 12,734 12,665 13,419 12,610 12,672 12,683
Grammar size 112,670 112,563 113,855 112,724 112,538 84,392

Execution time 9.04 13.74 136.49 40.24 213.73 9.73

E.coli Rules 66,664 66,757 66,660 67,368 66,739 62,363
Total length 133,328 133,514 133,320 134,736 133,478 129,138
Start variable 651,875 649,660 650,538 652,664 650,209 650,174
Grammar size 785,203 783,174 783,858 787,400 783,687 779,312

Execution time 0.52 0.65 9.82 2.00 11.29 0.58

bible.txt Rules 81,193 81,169 80,999 81,229 81,282 72,082
Total length 162,386 162,338 161,998 162,458 162,564 153,266
Start variable 386,514 386,381 386,992 386,094 385,989 386,516
Grammar size 548,900 548,719 548,990 548,552 548,553 539,782

Execution time 0.51 0.65 8.41 1.85 11.32 0.57

world192.txt Rules 55,552 55,798 55,409 55,473 55,437 48,601
Total length 111,104 111,596 110,812 110,946 110,874 104,060
Start variable 213,131 213,962 213,245 212,647 212,857 212,940
Grammar size 324,235 325,558 324,057 323,593 323,731 317,000

Execution time 0.32 0.55 4.92 1.09 6.81 0.36

6. Conclusions

In this study, we analyzed the process of RePair and revealed that the RePair algorithm replaces
the most frequent pairs step by step within their corresponding most frequent maximal repeats. On the
basis of this analysis, we designed MR-RePair, a novel variant of RePair. Instead of consecutively
substituting the most frequent pairs, MR-RePair performs one-time substitution of the most frequent
maximal repeats. Furthermore, we implemented MR-RePair and compared the sizes of its constructed
grammars to those of the grammars constructed by several implementations of RePair. Through the
experiments, we confirmed the effectiveness of MR-RePair especially for highly repetitive texts.
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We defined the greatest size difference of any two possible grammars that can be generated by RePair
for a given text, naming it GSDRP. We demonstrated that a lower bound of GSDRP is 1

6(
√

6n + 1+ 13) for
a given text of length n. We left improving the lower bound and showing an upper bound of GSDRP
as our future work.

We estimated the effectiveness of the compression using the size of the generated grammars instead
of the length of the output bits. Reducing the grammar size has important implications since the majority
of the existing text algorithms applied to grammar-compressed texts, including grammar-based self
indexes [21,22], edit distance computation [23], q-gram mining [24,25], and pattern matching [26–28],
have time/space complexities that are dependent on the input grammar size. For instance, the compressed
indexes proposed by Claude and Navarro [21,22] can be directly built on MR-RePair grammar-compressed
texts. Algorithms specifically designed for straight-line programs (SLPs), which are text compressions
with grammars in Chomsky normal form, can also be easily modified to work on grammars that are
not in Chomsky normal form similar to MR-RePair grammars. Hence, MR-RePair serves as a base for
practical improvements of these algorithms.

From the viewpoint of storing data more compactly, developing a method for encoding constructed
grammars is another important issue. Implementing an efficient encoding method for MR-RePair is
one of our future tasks.
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Appendix A

Figures A1–A3 are provided to help in understanding the proof of Theorem 4.
Let Grp, Gnmr, and Gmr be the grammars generated by RePair, Naïve-MR-RePair, and MR-RePair,

respectively. For a given text T = a1 · · · an (ai ∈ Σ, 1 ≤ i ≤ n) of length |T| = n, let grp, gnmr, and gmr

be the sizes of Grp, Gnmr, and Gmr, respectively. Let us assume that T = (aw)2(2m−1)+1a, where w ∈ Σ+

such that awa is the most frequent maximal repeat of T and m ∈ N+. Then, according to the proof of
Theorem 4, gnmr > grp holds for some m and w such that (m− 1)(|w| − 1) > 1.

Figure A1 illustrates a specific example of the grammar generation process of RePair and Grp for
T = (abcd)7a with m = 2 and |w| = 3. The size grp is 18 in this example. Figure A2 illustrates an
example of the process of Naïve-MR-RePair and Gnmr for the same T. It can be noticed from the figures
that the size gnmr is 19, and thus gnmr > grp holds. As shown in Figure A2, Naïve-MR-RePair may fail
to extract repetitive patterns in particular cases (such as abcd of (abcd)7a in the running example).
However, this problem can be solved using MR-RePair. Figure A3 illustrates an example of the process
of MR-RePair and Gmr for the same T = (abcd)7a. The size gmr is 16, which is smaller than grp = 18.
Although the most frequent maximal repeat at the second replacement step is vavbvcvdva, MR-RePair
replaces vavbvcvd with a new variable v1, providing the additional Step 3 in Definition 3.
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a b c d a b c d a b c d a b c d a b c d a b c d a b c d a

vα → α (α = a, b, c, d) va vb vc vd va vb vc vd va vb vc vd va vb vc vd va vb vc vd va vb vc vd va vb vc vd va
y1 → vavb y1 vc vd y1 vc vd y1 vc vd y1 vc vd y1 vc vd y1 vc vd y1 vc vd va
y2 → y1vc y2 vd y2 vd y2 vd y2 vd y2 vd y2 vd y2 vd va
y3 → y2vd y3 y3 y3 y3 y3 y3 y3 va
x1 → y3y3 x1 x1 x1 y3 va
x2 → x1x1 x2 x1 y3 va

Ŝrp → x2x1y3va Ŝrp

Figure A1. Grammar generation process of RePair and its generated grammar for the text (abcd)7a. The grammar size is 18.

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a

vα → α (α = a, b, c, d) va vb vc vd va vb vc vd va vb vc vd va vb vc vd va vb vc vd va vb vc vd va vb vc vd va
z1 → vavbvcvdva z1 vb vc vd z1 vb vc vd z1 vb vc vd z1
z2 → z1vbvcvdz1 z2 vb vc vd z2

Ŝnmr → z2vbvcvdz2 Ŝnmr

Figure A2. Grammar generation process of Naïve-MR-RePair and its generated grammar for the text (abcd)7a. The grammar size is 19.

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a

vα → α (α = a, b, c, d) va vb vc vd va vb vc vd va vb vc vd va vb vc vd va vb vc vd va vb vc vd va vb vc vd va
v1 → vavbvcvd v1 v1 v1 v1 v1 v1 v1 va
v2 → v1v1 v2 v2 v2 v1 va
v3 → v2v2 v3 v2 v1 va

Ŝmr → v3v2v1va Ŝmr

Figure A3. Grammar generation process of MR-RePair and its generated grammar for the text (abcd)7a. The grammar size is 16.
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27. Jeż, A. Faster Fully Compressed Pattern Matching by Recompression. ACM Trans. Algorithms 2015, 11, 20:1–20:43.
[CrossRef]

28. Bille, P.; Cording, P.H.; Gørtz, I.L. Compressed Subsequence Matching and Packed Tree Coloring. Algorithmica
2017, 77, 336–348. [CrossRef]

29. Furuya, I.; Takagi, T.; Nakashima, Y.; Inenaga, S.; Bannai, H.; Kida, T. MR-RePair: Grammar Compression
based on Maximal Repeats. In Proceedings of the Data Compression Conference (DCC 2019), Snowbird, UT,
USA, 26–29 March 2019; pp. 508–517.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-642-34109-0_19
http://dx.doi.org/10.1016/j.jda.2012.07.006
http://dx.doi.org/10.1016/j.tcs.2014.07.010
http://dx.doi.org/10.1016/j.tcs.2015.01.019
http://dx.doi.org/10.1145/2631920
http://dx.doi.org/10.1007/s00453-015-0068-9
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Basic Notations and Terms
	Maximal Repeats
	Grammar Compression
	RePair

	Analysis of RePair
	RePair and Maximal Repeats
	MR-Order
	Greatest Size Difference of RePair

	MR-RePair
	Naïve-MR-RePair
	MR-RePair

	Experiments
	Conclusions
	
	References

