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Abstract: Big data and artificial intelligence are currently two of the most important and
trending pieces for innovation and predictive analytics in healthcare, leading the digital healthcare
transformation. Keralty organization is already working on developing an intelligent big data analytic
platform based on machine learning and data integration principles. We discuss how this platform
is the new pillar for the organization to improve population health management, value-based care,
and new upcoming challenges in healthcare. The benefits of using this new data platform for
community and population health include better healthcare outcomes, improvement of clinical
operations, reducing costs of care, and generation of accurate medical information. Several machine
learning algorithms implemented by the authors can use the large standardized datasets integrated
into the platform to improve the effectiveness of public health interventions, improving diagnosis,
and clinical decision support. The data integrated into the platform come from Electronic Health
Records (EHR), Hospital Information Systems (HIS), Radiology Information Systems (RIS), and
Laboratory Information Systems (LIS), as well as data generated by public health platforms, mobile
data, social media, and clinical web portals. This massive volume of data is integrated using big data
techniques for storage, retrieval, processing, and transformation. This paper presents the design of
a digital health platform in a healthcare organization in Colombia to integrate operational, clinical,
and business data repositories with advanced analytics to improve the decision-making process for
population health management.

Keywords: decision support systems; population health management; big data; machine learning;
deep learning; personalized patient care

1. Introduction

Colombia’s health system is formed by the public sector and the private sector. The general social
security system has two plans, contributory and subsidized. The contributory regime covers salaried
workers, pensioners, and independent workers, with the subsidized plan covering anyone who cannot
pay. Enrollment coverage increased from 96.6% in 2014 to 97.6% in 2015 [1].

The National Health Authority’s primary purpose in Colombia is to improve the quality of
healthcare and strengthening supervision, surveillance, and control of the health system. The 2015
Statutory Health Law No. 1751 places the responsibility for guaranteeing the right to health with the
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health system and recognizes health as a fundamental social right and makes it the state’s responsibility
to pursue an approach in health promotion and disease prevention [2].

The health sector in Colombia supports all initiatives for implementing new technologies to
prevent cardiovascular diseases, disabilities, and high-cost hospitalization cases [3]. There is a
remarkable need to improve the prediction of the risk of conditions for the population through the
integration and unification of massive volumes of data and the implementation of effective advance
analytic solutions to improve the decision-making process and population health management in
Colombia’s population [4].

Keralty organization is formed by a group of insurance and health services companies with a
global presence, which together develops an integral health model, whose purpose is to produce
health and well-being to people throughout their lives. The organization is committed to keeping its
users healthy and autonomous, focusing on prevention, identification, and management of health
risks, control, and care of disease and dependency [5]. The organization is a leader in Colombia by
providing integrated health services and is recognized for their human, scientific, technical, and ethical
approach [6].

This paper presents how we can obtain value from a large volume of heterogeneous data generated
by different data sources in healthcare, and the architecture implemented. The development of
proper advanced data analytics methods such as machine learning and big data analytics to perform
meaningful real-time analysis on the data to predict clinical complications before it happens and to
support the decision-making process are challenging but much needed to handle the complexity of the
data-driven problems we are currently facing.

1.1. Related Work

Several initiatives in Europe, Asia, and North America aim to develop healthcare digital platforms
with collaborative access tools to allow the exchange and sharing of information and knowledge
wherever and whenever needed throughout the attention process. This type of frameworks and
architectures will allow maximum quality and efficiency for patient’s care, and to provide appropriate
attention to the patient’s condition and risks.

Castilla and Leon, for example, implemented a digitalization of health services as a tool to increase
the efficiency of the services and increase the security in the attention to patient [7]. A healthcare
cyber-physical system assisted by cloud and big data is being developed in the department of computer
science at Pace University in New York [8]. This system consists of a data integration layer, a data
management layer, and a data-analytics service layer to improve the functioning of the healthcare
system. In France, a group of researchers implemented a wearable knowledge as a service platform
to cleverly manage heterogeneous data coming from wearable devices to assist the physicians in
supervising the patient health [9]. Another interesting work was presented at the International
Conference on Computational Intelligence and Data Science (ICCIDS 2018). The authors proposed
a hybrid four-layer healthcare model to improve disease diagnostic [10]. In India, a centralized
architecture for an end to end integration of healthcare systems deployed in the cloud environment
was developed using fog computing [11].

Medical organizations are investing more and more in developing a healthcare platform that
integrates data, applications, business processes, and user interfaces to gain knowledge and useful
insights for clinical decisions, drug recommendation systems, and better disease diagnoses. Some other
examples of big data applications in healthcare can be found in healthcare monitoring, where data
captured from wearable devices can assist providers in managing symptoms of patients online and
adjust their prescriptions [12]. An analytical platform called “MedAware” has been developed to detect
errors in medical prescriptions and clinical errors, reducing the hospital admission and readmission in
real-time [13]. In the healthcare prediction field, a healthcare system called “Gemini (Generalizable
Medical Information analysis and Integration system)” was developed to collect, process, and analyze
large volumes of clinical data and apply machine learning algorithms for performing predictive
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analytics [14]. Other platforms have been implemented for genomics data analytics to generate
predictions based on DNA molecular changes and mutations [15]. Another type of healthcare platform
is related to the healthcare knowledge system, defined as the combination of clinical data and physician
expertise to support clinical decision-making and diagnosis [16].

1.2. Why Big Data and Machine Learning?

Big data and machine learning are redefining healthcare goals for the future. Healthcare data
are impacting the way disease research is performed, and the level of complexity in population
health management is increasing as the traditional fee for service approach is transformed into the
value-based care model [17,18].

Population health management is basically the aggregation of patient health data from multiple
data sources, and the analysis and transformation into actionable insights to generate informed
decisions to improve clinical and financial outcomes [19].

Big data technologies will allow us to bring large volumes of structured and unstructured data
from disparate data sources into a data repository to be examined and analyzed. Machine learning
models will assist in discovering insights from complex datasets with capabilities such as finding
unseen patterns, making new predictions, and analyzing trends on health data. Machine learning is
being used in a variety of clinical domains with the analysis of hundreds of clinical parameters resulting
in effective and efficient models to improve the outcomes and quality of medical care models [20].

The implementation of this platform shows the enormous potential in using big data to
individualize medical treatment, the opportunity for improving the lives of the patients, delivering
better medical care, and reduced waste at an operational level [21]. Other chances for big data in
healthcare for Keralty organization are:

• A physician would know before prescribing whether the patient is at high-risk to become
dependent and different treatment plans can be selected based on this information.

• Psychosocial and clinical medical data could inform about the development of a chronic illness
that can be properly diagnosed.

• The organization can use big data to understand how they are performing, the opportunities to
improve clinical care, and their capacity to redesign care delivery to their patients.

• Using the platform’s analytics component to improve the quality of care and patient experience at
the lowest possible cost is core to the organization.

• Capturing streaming data and wearable data can provide to healthcare providers real-time
insights about a patient’s health that will allow them to improve their decision-making process
for treatment and medication.

• Big data analysis can help the organization to deliver information that is evidence-based and can
improve the efficiency, understanding, and implementation of the best practices associated with
any disease.

In addition to the big data technologies used to build the platform, another essential component
is the advanced analytic module of the platform. This module contains several machine learning
algorithms to support clinical diagnosis. However, the organization should feel confident in these
models and how they can be applied to specific use cases. These first models will alert providers to
changes in high-risk conditions such as sepsis and hypertensive patients.

The main objective of this paper is to present the developed platform and its components to
allow Keralty organization to derive better and more actionable insights from their data, i.e., to derive
meaningful information from all these data in a way that allows them to improve care and lower
costs needed for value-based reimbursement and business objectives while providing the highest
quality care for population health management [22]. The goal is to be aligned with the triple aim
framework developed by the Institute for Healthcare Improvement that describes an approach to
optimizing healthcare system performance.The implementation of this platform intends to resolve
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several problems in health services to assist patients and their families in managing their health by
providing better access to healthcare services [23].

2. Proposed Digital Health Platform

Keralty organization currently have several information systems such as Health Information
Systems (HIS), Lab Information Systems (LIS), Radiology Information Systems (RIS), Enterprise
Resource Planning (ERP), and Customer Relationship Management (CRM), among others, in their
ambulatory care centers, hospitals, and home care, which support their integrated health model.
The information from these systems was not consolidated on a single platform, and its access and
availability generated an operative load, which obstructs all health management processes and the
support of clinical decisions for physicians. Consequently, we proposed the design and implementation
of a healthcare, clinical, and business data repository with advanced analytic capabilities to consume
machine learning prediction models to improve the decision-making process and population health
management at the organization. The digital health platform conceptual framework is shown
in Figure 1.

Figure 1. Conceptual Framework—Keralty Health Portal.

The implementation of the platform was an ambitious project that required integrating health
information from disparate sources, building numerous technological and functional components,
and the definition of IT management processes robust enough to support interoperability with other
systems. The digital health information platform included patient-related data, Electronic Health
Records (EHR), diagnostic reports, prescriptions, medical images, pharmacy records, research data,
operational data, financial data, and human resources data.

This project was innovative and pioneered the designing and building of a comprehensive
health digital platform for a healthcare organization in Colombia, with the patient being at the center
of it and all of its information aggregated and summarized based on the standardized enterprise
data repository. This information can be accessed quickly and intuitively when and where it is
needed, hiding all technical complexity and providing longitudinal process management tools,
as well as tools for decision support for professionals. The difference of this platform with other
implementations was the development of a medical portal with a patient 360 view that uses data
from the enterprise data repository to generate real-time early warning scores, patient surveillance,
open API for hospitals integration, prediction of health risk patterns, high-risk markers, co-morbidity
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detection to predict critical diseases, early diagnosis of diseases, treatment comparison with medical
guidelines, and measurement of efficiency of specific drugs to provide the best quality of care.

The Digital Healthcare platform architecture can ingest data from over 50 different source
systems at the granular level, including claims, clinical, financial, administrative, wearables, genomics,
and socioeconomic data. Few platforms today can integrate that many heterogeneous data sources
successfully. The platform can consume machine learning models on-demand without the need for
further development. The data logic models are on top of the raw data and can be accessed, reused,
and updated through open APIs without the need for clinical and business logic changes. The platform
was able to integrate successfully structured and unstructured data. It is commonly seen that this type
of platforms in the market is built to either integrate structured data or unstructured but few cases
successfully integrate both. Open microservices APIs were created for operations such as authorization,
identity management, interoperability, and data pipeline management. These microservices enable the
development of third-party applications to interoperate with the platform.

2.1. Platform Architecture

The initial approach was to build a big data processing pipeline with a Microsoft Azure
lambda architecture to support real-time and batch analytics. This approach is shown in Figure 2.
This architecture has different mechanisms to consume data depending on the source and timing
needed to generate insights. In addition, with this approach, we can have professionals with different
skills working in parallel to build the platform.

Figure 2. Azure Big Data and Machine Learning Lambda Architecture.

The architecture contains a batch layer, a real-time layer, and a serving layer. The batch layer is in
charge of persistent storage and is able to scale horizontally. The real-time layer process streaming data
and performs dynamic computation. The serving layer query data on the repositories and consume
the prediction models.

From the infrastructure point of view, the platform offers the flexibility of being implemented
in a hybrid environment, namely the cloud and the local data processing center, through the use of
virtualization techniques, containers, and load balancing systems. The design of the infrastructure was
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prepared to provide a flexible set of resources that can be used on-demand and based on the specific
workload requirements. The infrastructure deployment relied heavily on automation to provide
fluid operations.

2.2. Data Repository

An enterprise-wide staging repository for the big data analytics platform was considered. The data
lake allows capturing data of any volume, type, and ingestion speed in one single place for storing
heterogeneous data. This staging area included capabilities such as security, scalability, reliability,
and availability. The data can be passed, processed directly from the staging area, or can be ingested to
an enterprise data warehouse for historical load, preparation, and serve for BI and machine learning
needs. This data warehouse repository has a scale-out architecture and massively parallel processing
(MPP) engine.

Data models were developed to cover clinical, social, and healthcare program domains.
Each model performs validations and processing on the data received, decoupling the processing
and administration of the data from the source. These data models can also be extended to store
additional attributes specific to the implementation, allowing these models to subscribe to certain
types of messages, using the mapping and filtering options provided by the data processing pipelines.
Once these subscriptions are created, the model will be loaded with all relevant messages to those who
are subscribed and stored in the data lake.

For data storage, the data are loaded into a data warehouse with a daily refresh. This healthcare
data repository contains a highly normalized data model for fast and efficient querying and analysis.
This repository is read-only.

2.3. Integration and Interoperability

The platform provides a mechanism to integrate data from heterogeneous sources, define
workflows to ingest data from different data stores, and transform and process data to data stores
to be consumed by BI applications. A cloud-based data integration service is used to create these
data-driven workflows and orchestrate all automation, transformation, and data movement in the
platform. The main tasks this integration service should perform are: creation and scheduling of
data pipelines to ingest data from different data sources, processing and transformation of the data,
and store data in data stores such as data lakes or data warehouses.

Azure Data Factory automates and orchestrates the entire data integration process from end
to end in the platform. We built the ETL (extract, transform, and load) pipelines with this Azure
component. The data are extracted from the source locations, transformed from its source format to
the target Azure data lake’s schema, and loaded into Azure data lake and the data warehouse, where
they can be used for analytics and reporting. Azure Data Factory defines control flows that execute
various tasks in the transform and load process.

We used the mechanism called mapping data flows, combining control flows and data flows to
build the data transformations with an easy-to-use visual user interface. These data flows are then
executed as activities within Azure Data Factory pipelines. Data Factory is certified by HIPAA (Health
Insurance Portability and Accountability Act), which protects the data while they are in use with
Azure. In the data flow, we created transformation streams where we define the source data and create
the graph with the transformations, schema operations such as derived column, aggregate, surrogate
keys and selects, and the output settings.

2.4. Data Security and Privacy Model

In terms of security, the platform guarantees authentication, access control, and encryption
capabilities. The security mechanisms of the platform can provide protection, alert monitoring,
and support the OAuth 2.0 protocol for authentication with REST interfaces. ACLs are enabled on
folders, subfolders, and files. The platform also provides encryption mechanisms to protect the data.
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All these capabilities are accompanied by the implementation of enterprise security policies and
regulatory compliance requirements.

2.5. Stream Analytics

The platform can handle mission-critical real-time data and offer end to end streaming pipelines
with continuous integration and continuous delivery (CI-CD) services. Other capabilities such as
in-memory processing, data encryption, and support of international security standards including
HIPAA (Health Insurance Portability and Accountability Act), HITRUST (Health Information Trust
Alliance), and GDPR (General Data Protection Regulation).

2.6. Advanced Analytics

The analytic data component consists of two areas: The first area is the BI models we develop for
tactical, operational, and strategic decisions. The second area comprehends several prediction models
that need to be developed. Currently, there are two prediction models developed by the authors of this
paper to support population health management, specifically the diagnosis of sepsis and hypertension
prediction [24,25]. These insights assist providers in the detection and tracking of chronic diseases.
The machine learning component is used to build, test, consume, and deploy predictive analytic models
on-demand and as requested for the organization. The platform provides self-service dashboards and
visualizations that use data from the repositories to drive the decision-making process. The machine
learning application layer is one of the essential layers of this platform.

Once the data are integrated, aggregated, and normalized in the system, the platform offers a
tool to provide knowledge management through the business intelligence interface providing data
analysis, design, and training of machine learning models, as well as development and management
of results-based care indicators or population health management. The platform provides a tool where
clinicians, researchers, and scientists can mine the data and get valuable information.

Machine learning models can be trained and customized in preconfigured data domains, allowing
the storage of the results for future use. Data researchers and scientists can develop advanced tools
to obtain information and value of the data stored in the solution, taking advantage of the model
design, training, and validation component. We briefly present the predictive models implemented in
the platforms.

• Machine Learning Classification for a Hypertensive Population: This prediction model
evaluates the association between gender, race, BMI (Body Mass Index), age, smoking, kidney
disease, and diabetes using logistic regression. Data were collected from NHANES datasets from
2007 to 2016 to train and test the model, a dataset of 19,709 samples with (83%) non-hypertensive
individuals and (17%) hypertensive individuals. The results show a sensitivity of 77%, a specificity
of 68%, precision on the positive predicted value of 32% in the test sample, and a calculated AUC
of 0.73 (95% CI [0.70–0.76]). The model used to estimate the probability that a person will belong
to the hypertensive or non-hypertensive class is:

p =
e(β0+β1gender+β2age+β3race+β4bmi+β5kidney+β6smoke+β7diabetes)

1 + e(β0+β1gender+β2age+β3race+β4bmi+β5kidney+β6smoke+β7diabetes)

We used the logistic regression classification model in this experiment to evaluate the importance
of the risk factor variables and their relationship with the prevalence of hypertension among a
nationally representative sample of adults ≥20 years in the United States (n = 19,759). The distribution
of the samples by hypertensive patients, gender, and race is shown in Table 1.
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Table 1. Number of samples by hypertensive class, gender, and race.

Hypertension, Adults 20 and over—2007–2016

Class Gender Race n

Non Hypertensive

Female

Mexican American 1269

Non-Hispanic Black 1674

Non-Hispanic White 3674

Other Hispanic 951

Other Race—Including Multi-Racial 864

Male

Mexican American 1255

Non-Hispanic Black 1599

Non-Hispanic White 3714

Other Hispanic 774

Other Race—Including Multi-Racial 843

Hypertensive

Female

Mexican American 205

Non-Hispanic Black 420

Non-Hispanic White 662

Other Hispanic 149

Other Race—Including Multi-Racial 114

Male

Mexican American 214

Non-Hispanic Black 478

Non-Hispanic White 670

Other Hispanic 138

Other Race—Including Multi-Racial 132

Total 19,799

We computed chi-square test between each independent variable and the dependent variable to
indicate the strength of evidence that there is some association between the variables. Chi-square was
selected due to the categorical form of the data used in the model, and it is considered one of the best
methods to estimate the dependency between the class and the features when the feature can take a
fixed number of possible values that belong to a group or nominal category.

Table 2 shows the p-value for each variable; the null hypothesis is reject for any p ≤ 0.05,
while the null hypothesis is not rejected when p > 0.05. p-values for the variables GENDER,
BMIRANGE_1, BMIRANGE_3, and KIDNEY_2 are not statistically significant at 0.05 alpha level;
the clinical importance of these variables in the model for interpretation allows us to include them. We
ran the model with and without the variables, and there were no significant changes in the accuracy
score, positive predicted value rate, and true positive rate.

The training dataset was derived from a random sampling of 70% (13,831) of the extracted study
population and the test sampling the remaining 30% (5928) to evaluate the model on the ground-truth
that was never used for training. We ran the logistic regression model on the entire dataset to verify
the accuracy score of the model.
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Table 2. Chi2 test and p-value for the independent variables.

Chi-Squared between Each Indicator Variable and the Baseline for the Model

Feature Description Dummy p-Value Score

GENDER Male GENDER_1 0.1416446 2.160001
Female GENDER_2 0.1450268 2.123795

AGERANGE

20–30 AGERANGE_1 0.0000001 560.890568
31–40 AGERANGE_2 0.0000001 299.675698
41–50 AGERANGE_3 0.0000001 98.221463
51–60 AGERANGE_4 0.0000035 21.520345
61–70 AGERANGE_5 0.0000001 342.879412
71–80 AGERANGE_6 0.0000001 1037.137074

RACE

Mexican American RACE_1 0.0067797 7.330429
Other Hispanic RACE_2 0.0275756 4.854409

Non-Hispanic White RACE_3 0.0455912 3.996636
Non-Hispanic Black RACE_4 0.0000001 91.264812

Other Race RACE_5 0.0000278 17.562718

BMIRANGE

Underweight = <18.5 BMIRANGE_1 0.6730361 0.178071
Normal weight = 18.5–24.9 BMIRANGE_2 0.000033 17.234712

Overweight = 25–29.9 BMIRANGE_3 0.9174572 0.010741
Obesity = BMI of 30 or greater BMIRANGE_4 0.0006362 11.666854

KIDNEY Yes KIDNEY_1 0.0000001 58.963059
No KIDNEY_2 0.1872889 1.738816

SMOKE Yes SMOKE_1 0.0021759 9.394891
No SMOKE_2 0.0053461 7.758468

DIABETES
Yes DIABETES_1 0.0000001 217.214128
No DIABETES_2 0.0000001 39.351672

Borderline DIABETES_3 0.0000051 20.798905

The Logistic Regression model uses the logit function to express the relationship of the risk
factors as:

logit(p) = ln(
p

1 − p
) = β0 + β1X1 + β2X2 + ... + βiXi

The probability of success can be expressed as:

p =
e(β0+β1X1+β2X2+...+βiXi)

1 + e(β0+β1X1+β2X2+...+βiXi)

where p is the predicted probability of having hypertension, Xi are the risk factors or independent
variables, and βi are the coefficients that are estimated by using the method of maximum likelihood
and allow us to calculate the odds that, for every unit increase in Xi, the odds of having hypertension
changes by eβ.

• A neural network approach to predict early neonatal sepsis: We developed a non-invasive
neural network classification model for early neonatal sepsis detection. The data used in this
study are from Crecer’s Hospital center in Cartagena-Colombia. A dataset of 555 neonates with
(66%) of negative cases and (34%) of positive cases was used to train and test the model. The study
results show a sensitivity of 80.32%, a specificity of 90.4%, precision on the positive predicted
value of 83.1% in the test, sample and a calculated area under the curve of 0.925 (95% Confidence
Interval [91.4–93.06]). The neural network architecture can be seen in Figure 3.
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Figure 3. Multilayer Perceptron Architecture.

Table 3 shows the parameters of the architecture. Labels X1–X7 are informative only, and the
input size is 27 variables.

Table 3. Model architecture parameters.

Model Architecture Parameters

Parameter Value

Input Dimension 27
Num Output classes 2
Num Hidden Layers 3
Hidden Layer1 Dimension 674
Activation Func Layer1 Relu
Hidden Layer2 Dimension 336
Activation Func Layer2 Relu
Hidden Layer3 Dimension 168
Activation Func Layer3 Relu
Minibatch size 8
Num samples to train 388
Num minibatches to train 48
Loss Function cross entropy with softmax
Eval Error Classification error
Learner for parameters momentum sgd
Eval Metrics Confusion Matrix, AUC

The model used an anonymous dataset from a private medical institution in Cartagena, Colombia,
from 2016 to 2017. Demographic, laboratory data, blood pressure, and body measures data were part
of the dataset. This dataset includes cases of live newborns of ages inferior to 72 h with a diagnosis of
early neonatal sepsis by clinical criteria and laboratory blood cultures. Control cases were part of the
dataset including all newborns healthy by clinical diagnosis and who returned healthy for a follow up
at 72 h.

This retrospective study includes 186 cases and 368 controls based on a case-control relationship of
1:2 with a 95% trust factor and power of 80%. Bivariate analysis and logistic regression were performed
to detect the variables associated with early sepsis, and the statistical significance was considered at
the alpha level of 0.05.
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This model considered nine sociodemographic, fourteen obstetric, nine neonatal, and four
maternal infectious related pathology variables. Table 4 shows the quantitative sociodemographic
variables, Table 5 shows the qualitative sociodemographic variables, Table 6 shows the quantitative
neonatal variables, Table 7 shows the qualitative neonatal variables, Table 8 shows the quantitative
obstetric variables, Table 9 shows the qualitative obstetric variables, and Table 10 shows the qualitative
maternal infections of the cases and controls.

A bivariate chi-square test with correction was performed to the qualitative variables to find a
statistical association between the independent variable and the possibility to develop early neonatal
sepsis. For continuous variables, the Mann–Whitney U test was performed. From this statistical
analysis, it is essential to show that we did not find significant statistical evidence for the variables
age, start of marital status at younger than 18 years old, gender, APGAR (Appearance, Pulse, Grimace,
Activity, and Respiration) value less than 7 after 1 and 5 min, the number of pregnancies, and the
type of birth. Prenatal control is not associated with the case of sepsis; however, assisting to five
prenatal controls are associated with the protection to avoid the appearance of early neonatal sepsis.
There was no evidence with the variables IUGR (Intrauterine Growth Restriction) background and
multiple pregnancies. Twenty-seven (27) variables were selected as input variables for our artificial
neural network architecture.

Table 4. Quantitative sociodemographic variables in cases (186) and controls (369).

Quantitative Socio Demographic Variable
Cases Controls

Mean Median SD RIQ Mean Median SD RIQ p-Value

Age 23.93 23.5 4.99 20–26 24.22 23 6.19 19–28 0.793

Onset of sexual activity 16.06 16 0.945 15–17 15.6 16 0.971 15–16 0.0001

Table 5. Qualitative sociodemographic variables in cases (186) and controls (369).

Qualitative Socio Demographic Variable Categories
Cases Controls

X2 p-Value
N % N %

Teen Mother Yes 15 8.1 69 18.7 10.88 0.001No 171 91.9 300 81.3

Health Regimen Government 183 98.4 349 94.6 4.51 0.041Commercial 3 1.6 20 5.4

Origin Rural 42 22.6 5 1.4 71.87 0.00001Urban 144 77.4 364 98.6

Marital Status Married or in common law married 128 68.8 101 27.4 87.64 0.00001Single, divorced or widow 58 31.2 268 72.6

Level of education Elementary School 86 46.2 80 21.7 35.57 0.00001High School 100 53.8 289 78.3

Start of Marital status life younger than 18 yo Yes 178 95.7 357 96.7 0.39 0.531No 8 4.3 12 3.3

Start of Marital status life younger than 16 yo Yes 47 25.3 147 39.8 11.54 0.001No 139 74.7 222 60.2

Table 6. Quantitative Neonatal variables in cases (186) and controls (369).

Quantitative Neonatal Variable
Cases Controls

Mean Median SD RIQ Mean Median SD RIQ p-Value

New born weight in grams 2639.9 2768.5 546.5 2500–3020 3202.4 3224 412.1 2950–3500 0.0001

APGAR after 1 min of birth 7.73 8.0 0.611 8.0 8.09 8.0 0.598 8.0 0.0001
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Table 7. Qualitative Neonatal variables in cases (186) and controls (369).

Qualitative Neonatal Variable Categories
Cases Controls

X2 p-Value
N % N %

Premature Yes 100 53.8 25 6.8 156.4 0.0001No 86 46.2 344 93.2

Gender Male 109 58.6 202 54.7 0.748 1.672Female 77 41.4 167 45.3

Less than 1500 grams Yes 11 5.9 2 0.5 15.6 0.00001No 175 94.1 367 99.5

Less than 2500 grams Yes 44 23.7 9 2.4 64.44 0.00001No 142 76.3 360 97.6

APGAR less than 7 after 1 min of birth Yes 2 1.1 3 0.8 0.095 0.999No 184 98.9 366 99.2

APGAR less than 7 after 5 min Yes 4 2.2 9 2.4 0.045 0.999No 182 97.8 360 97.6

Respiratory distress Yes 89 47.8 27 7.3 122.8 0.0001No 97 52.2 342 92.7

Table 8. Quantitative Obstetric variables in cases (186) and controls (369).

Quantitative Obstetric Variable
Cases Controls

Mean Median SD RIQ Mean Median SD RIQ p-Value

Gestational age at the time of birth 35.6 36.0 3.47 34–39 38.4 39.0 1.62 38–39 0.0001

Number of prenatal controls 4.08 5.0 1.83 3.75–5.0 4.32 5.0 1.83 4–5.0 0.002

Number of pregnacies 1.77 1.0 1.15 1.0–2.0 1.6 1.0 1.15 1–2.0 0.076

Number of births 1.04 1.0 1.03 0–1 0.7 1.0 1.03 0–1 0.0001

Numbers of C-sections 0.65 1.0 0.68 0–1 0.76 1.0 0.68 0–1 0.029

Table 9. Qualitative Obstetric variables in cases (186) and controls (369).

Qualitative Obstetric Variable Categories
Cases Controls

X2 p-Value
N % N %

Type of birth Vaginal 98 52.7 162 43.9 3.833 0.05C-Section 88 47.3 207 56.1

IUGR Background Yes 5 2.7 13 3.5 0.275 0.6No 181 97.3 356 96.5

Assistance for prenatal control Yes 165 88.7 318 86.2 0.702 0.402No 21 11.3 51 13.8

Assistance for at least 4 prenatal control Yes 140 75.3 301 81.6 3.01 0.083No 46 24.7 68 18.4

Assistance for at least 5 prenatal control Yes 105 56.5 254 68.8 8.301 0.004No 81 43.5 115 31.2

Premature rupture of membrane with more than 18 hours Yes 95 51.1 17 4.6 165.7 0.00001No 91 48.9 352 95.4

Chorioamnionitis Yes 23 12.4 3 0.8 36.96 0.00001No 163 87.6 366 99.2

Premature membrane rupture with more than 6 hours Yes 161 86.6 194 52.6 61.96 0.0001No 25 13.4 175 47.4

Multiple Pregnacies Yes 2 1.1 10 2.7 0.39 0.353No 184 98.9 359 97.3
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Table 10. Qualitative maternal infections variables in cases (186) and controls (369).

Qualitative Maternal Infections Variables Categories
Cases Controls

X2 p-Value
N % N %

Maternal Fever Yes 67 36.0 40 10.8 50.38 0.0001No 119 64.0 329 89.2

Yeast Infections Yes 31 16.7 15 4.1 25.83 0.0001No 155 83.3 354 95.9

Sexualy transmitted disease history Yes 27 14.5 7 1.9 34.24 0.0001No 159 85.5 362 98.1

Urinary Tract Infections Yes 11 5.9 9 2.4 4.29 0.0381No 175 94.1 360 97.6

In terms of computational timing, It is difficult to evaluate the complexity and timing of a
machine learning algorithm. However, based on the algorithmic complexity, we can measure the time
performance in terms of its training time complexity using big O notation because the classification
time of the models can vary depending on the stress in the computational performance and power.
In terms of timing, the classification prediction with the trained models is less than 1 s. The time
complexity of the logistic regression could be expressed as O(( f + 1)csE), where f is the number of
features (+1 because of bias), c is the number of possible outputs, s is the number of samples, and E is
the number of epochs to run. For the neural network approach, O(pnl1 + nl1nl2 + . . . ), where p is the
number of features and nli is the number of neurons at layer i in a neural network [26].

3. Actual Platform Benefits

The implementation of the platform became the digital healthcare ecosystem for the organization.
The organization can populate workflow information systems with critical decision-making insights,
accurate and reliable healthcare data that significantly increased the value of the healthcare outcome to
patients and care providers. This platform delivers significant benefits to the organization, such as
physicians having an intelligent application that can be configured to their preferences and optimized
to their disciplines, patients receiving more personalized care, an improvement in healthcare workflow
and patient care, and personalized care for physicians and patients.

We describe in the following subsections several use cases that effectively present the change and
digital transformation of the organization with the implementation of the platform.

3.1. Reduce Total Cost of Care for Care Coordination

With a robust data analytic component, the organization was able to prioritize opportunities for
improvement and to improve the way care is coordinated and delivered throughout its network of
hospitals and medical facilities. The results include a considerable increase in financial results in just
six months.

The organization uses the platform to generate timely, meaningful, and actionable data to drive
change and improve the quality of care for patients. The organization uses the data for risk-stratification
of the network’s population, prioritization of the care coordination activities, and prevention activity’s
interventions. Risk stratification was completed for all patients, enabling care managers to identify
individuals at various risk levels for unnecessary services and high-cost utilization, improving patient
outcomes and experience. The analytical component also reduces unnecessary visits, facilitates access
to specialty care and community-based services, and achieves healthcare outcomes. Other benefits
include 3% increase in the detection of high-risk patients with primary care, 20% increase in the
number of patients with ongoing care managed, and 10% percent reduction in emergency department
utilization per member among care managed patients.
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3.2. Self-Service Analytic

As described in this paper, the healthcare platform combines and standardizes data across different
source systems to provide actionable insights in a single platform. The platform integrates data from
different sources, such as claims data, cost data, financial data, clinical data, and other patient data.
With self-service analytics, the organization increases the number of users accessing the analytic
component, improving data visibility and providing actionable insights to improve patient outcomes.

3.3. Reduce Deaths from Sepsis

The organization improved sepsis mortality rates and improving care outcomes by using the
advanced analytic component of the platform. Sepsis impacts almost 1.7 million adults in the U.S.
and is responsible for nearly 270,000 annual deaths. One-third of all hospital deaths are patients with
sepsis [27]. The machine learning prediction model used in the platform was developed by one of the
authors of this paper, as described before. It is still too early to mention the results of the utilization of
this feature. However, the goal of the organization is to reduce its sepsis mortality rate, the costs of the
creation of its sepsis care transformation team, and the implementation of an evidence-based sepsis
care practice.

3.4. Discussion and Limitations

The digital health platform helps Keralty organization with closing the gaps between multiple
datasets, improving clinical benefits, improving patient’s lives, supporting better decision-making to
manage larger populations, and improving overall health outcomes. However, the need for algorithms
with high accuracy in medical diagnosis is still a challenge that needs to be improved precisely and
efficiently [28]. The increasing complexity of building end-to-end platforms to integrate disparate
systems and to apply machine learning techniques in specific areas such as computer vision, natural
language processing, reinforcement learning, and other generalized methods present many challenges
when forming the interdisciplinary team needed and the set of technological components used for the
implementation.

Some challenges should be considered in the design and implementation of machine learning
projects for healthcare. One of the most critical challenges requires algorithms that can answer causal
questions. These questions are beyond classical machine learning algorithms because they require a
formal model of interventions [29]. To address this type of question from the analytical component
of the platform, we need to learn from data differently and to gain knowledge in causal models to
understand how machine learning algorithms need to be trained. Another challenge is to create reliable
outcomes from heterogeneous data sources with the participation of SME (Subject Matter Experts) who
understand the disease; the machine learning predictive accuracy and correct clinical interpretation
depend on the criteria and context of the disease. Providers and machine learning engineers should
work together on model interpretability and applicability. Machine learning implementation is not an
easy task; the selection of predictive features and optimization of hyperparameters is another challenge
that needs to be mastered to implement models that provide useful insights [30]. The success and
meaningful use of these algorithms, and their integration into the platform depends on the accuracy of
the models and their interpretability.

4. Results of Advanced Analytics

After training and testing the logistic regression model for predicting hypertension, we generated
some evaluation metrics to evaluate the classifier. Table 11 shows the confusion matrix with the
classification results, include the true positive value (730), true negative value (3407), false negative
(216), and false positive value (1575). The classification report in Table 12 shows the calculated
precision and sensitivity.
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Table 11. Confusion matrix.

Predicted

Non-Hypertensive Hypertensive

True Non-Hypertensive 3407 1575
Hypertensive 216 730

Table 12. Classification report.

Classification Report

Precision Recall f1-Score Support

Non-Hypertensive 0.94 0.68 0.79 4982
Hypertensive 0.32 0.77 0.45 946

avg/total 0.84 0.7 0.74 5928

The test sampling of 5928 contains 4982 (84%) non-hypertensive and 946 (16%) hypertensive
patients. The model shows a sensitivity of 730/946 = 77% and a specificity of 3407/4982 = 68%.
The precision of the model was 730/2305 = 32% and the negative predicted value 3407/3623 = 94%.
The false negative rate of the model was 216/946 = 22%. The model was better at identifying individuals
who will not develop hypertension than those who will develop hypertension.

For the neural network approach to predict early neonatal sepsis, Table 13 shows the confusion
matrix with the classification results of actual class label vs. the predicted ones, including the true
positive value (49), true negative value (95), false negative (12), and false positive value (10).

Table 13. Confusion matrix.

Predicted

Non-Sepsis Sepsis

True Non-Sepsis 95 10
Sepsis 12 49

The classification report in Table 14 shows the precision and sensitivity. The sensitivity of the
model is moderately acceptable due to the imbalanced testing dataset, and there is still a high number
of false negatives.

Table 14. Classification report.

Classification Report

True Positive False Negative Precision Accuracy

49 12 0.83 0.867

False Positive True Negative Recall f1-score

10 95 0.803 0.817

Positive Label: 1 Negative Label: 0

A sensitivity of 80.3% and a specificity of 90.4% show that the model might be useful for detecting
positive cases, and the true negative rate shows that the model is also efficient at identifying negative
cases. The high precision value of 83.1% and the AUC of 0.925 confirm the adequacy of the model
as a preliminary screening tool. The percentage of positive cases shows that the model works better
than random guessing and the conditional probability of negative test results is considerably low.
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The accuracy of 86.74% shows that the model correctly identifies negative cases and positive cases
based on the characteristics of the dataset and the small number of cases examined.

5. Comparison with Other Platforms

A review of several healthcare platforms shows that the architecture presented in this paper
covers all the categories from integration, interoperability, security care, and advanced analytics.
Generally, other implementations only focused on one specific area, as shown in Table 15 and taken
from the International Conference on Computational Intelligence and Data Science (ICCIDS 2018) and
a healthcare frameworks review proposed in the Journal of King Saud University [31].

Table 15. Comparison of healthcare big data platforms.

Author and Year Patient
Centric

Predictive
Analysis

Real Time
Monitoring

Improve
Treatment Interoperability Workflow

and Rules
Pop

Health
Patient

360
Our Health Platform Yes Yes Yes Yes Yes Yes Yes Yes

Raghupathi et al.
(2014) [32] Yes No Yes Yes Partial No Partial No

Patel et al. (2016) [33] Yes Yes Yes Yes Partial Partial Yes No

Chawla et al.
(2013) [34] Yes Yes No Yes Partial Partial Yes No

Abinaya et al.
(2015) [35] Partial Yes Partial Yes Yes Partial No No

Balladini et al.
(2015) [36] Yes No Yes Yes Partial Yes No No

Belle et al. (2015) [37] Partial No Yes Yes Partial Yes No No

Mezghani et al.
(2015) Partial No Yes Yes Yes Partial No No

Chen et al. (2017) [38] Yes Partial Yes Yes Yes Partial Yes No

We designed and implemented a healthcare platform using big data technologies with actionable
insights to augment human decision-making at the organization impacting the population’s health,
public health, and to capture social determinants of health. This platform comprehends all the
features we use in the comparison. Raghupathi et al. reported a conceptual architecture to present
big data analytic outlines in healthcare with no predictive analytic capabilities and no patient 360
view. Patel et al. designed a big data architecture platform to improve data aggregation in the
healthcare industry and to provide a reduction in healthcare cost, predicting analytic, preventive care,
and drug discovery capabilities but without patient 360 view capabilities. Chawla et al. presented
a patient-centric healthcare framework—Collaborative Assessment and Recommendation Engine
(CARE)—to improve patient-centric treatment and diagnosis without real-time monitoring and 360
view capabilities. Abinaya et al. implemented a fascinating e-Health service application for diagnosing
heart diseases. Balladini et al. designed a real-time architecture of big data for Francisco Lopez Lima
Hospital in Argentina to process physiological data. This platform did not include predictive analytic
and patient 360 view. Belle et al. implemented a genomic data processing platform that provides image
analytic and signal processing of psychological data. Mezghani et al. designed a big data platform for
integrating heterogeneous wearable data in healthcare for real-time monitoring and diagnosis. Lastly,
Chen et al. presented a real-time big data platform to improve communication and collaboration
between patients and providers, increasing the quality of care that clinical teams can provide.

6. Conclusions and Future Work

This paper provides details of an optimized and secure healthcare platform that revolutionizes the
healthcare industry in Colombia by providing better information to patients and care teams. The use
of this technology reduces the costs associated with healthcare.

The proposed digital health platform allows us to address population health challenges,
to understand better patient’s health, and to find hidden patterns that traditional data analytics fail to
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find. The organization can use unified patient-generated data, financial data, and socioeconomic data
to detect patterns and to discover a group of patients who share similar health behavior. The analysis
of clinical and non-clinical data allows predicting patient’s health with better accuracy. The platform
also allows better health discoveries and actions based on treatment history for individuals and groups
of patients.

Keralty organization recognized that better care coordination was required for patients receiving
care. The organization wanted to improve quality outcomes, provider engagement and recruitment,
and its own economic health. To meet these objectives, the organization focuses on clinician
engagement and organizational alignment, ensuring widespread access to meaningful, actionable data,
and the use of the healthcare analytics platform to inform decisions and drive improvement. Keralty
believes the use of machine learning will be one of the most important, life-saving technologies ever
introduced to the organization. We believe the opportunities are virtually limitless for the platform to
improve and accelerate clinical, workflow, and financial outcomes.

More future work needs to be done on the platform to continue improving all the benefits for the
entire organization. Tools for performing knowledge discovery process will be added to the ecosystem.
The organization is planning to start the implementation of prescriptive analytics models to assist the
organization in making smarter decisions in population health management. The architecture team
will look at the possibility of implementing Map/Reduce-based computations for processing data
with high scalability and to execute low latency and high concurrency analytical queries on top of
Hadoop clusters.
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