
algorithms

Article

A New Way to Store Simple Text Files

Marcin Lawnik * , Artur Pełka and Adrian Kapczyński
Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44-100 Gliwice, Poland;
artur260@op.pl (A.P.); adriank@polsl.pl (A.K.)
* Correspondence: marcin.lawnik@polsl.pl

Received: 24 March 2020; Accepted: 20 April 2020; Published: 22 April 2020
����������
�������

Abstract: In the era of ubiquitous digitization, the Internet of Things (IoT), information plays a vital
role. All types of data are collected, and some of this data are stored as text files. An important
aspect—regardless of the type of data—is related to file storage, especially the amount of disk space
that is required. The less space is used on storing data sets, the lower is the cost of this service. Another
important aspect of storing data warehouses in the form of files is the cost of data transmission needed
for file transfer and its processing. Moreover, the data that are stored should be minimally protected
against access and reading by other entities. The aspects mentioned above are particularly important
for large data sets like Big Data. Considering the above criteria, i.e., minimizing storage space, data
transfer, ensuring minimum security, the main goal of the article was to show the new way of storing
text files. This article presents a method that converts data from text files like txt, json, html, py to
images (image files) in png format. Taking into account such criteria as the output size of the file, the
results obtained for the test files confirm that presented method enables to reduce the need for disk
space, as well as to hide data in an image file. The described method can be used for texts saved in
extended ASCII and UTF-8 coding.

Keywords: Big Data; text file; png image; compression; steganography

1. Introduction

The amount of information we deal with in the present world is enormous. Evidence of this is the
growing interest in so-called Big Data, i.e., large data sets for which traditional methods of analysis
and processing are ineffective [1]. Often, those data are of a different type: text, graphic, etc., and come
from various sources, e.g., social media [2] or machine data [3]. Regardless of the nature of the data
and its belonging to the Big Data, the storage method plays a critical role. Some of these data are stored
on private disks or servers, and some use cloud services (e.g., Google Drive, Dropbox, or Microsoft
OneDrive). In the case of cloud solutions or those where we do not have direct supervision over
our data, there is a risk of loss or modification of stored data [4]. Of course, the service provider
is responsible for these issues; however, relying solely on this may prove to be deceptive, which
is confirmed by information from time to time about data leaks or internet portals defacement [5].
For this reason, it is worth hiding or encrypting data that are confidential. Confidentiality can be
provided by the use of steganography as well as cryptography. Steganography allows to hide data in
such a way that their presence cannot be detected by humans [6]. Unlike steganography, cryptography
transforms the output in such a way that its content is not hidden [7,8].

Big Data, due to its features, i.e., volume, variety, and velocity, requires different storage than
classical databases. These data require a set of servers working as a parallel system to store and to access
the data for further processing. NoSQL is the type of database that is characterized as non-relational,
distributed, and scalable, thus making them suitable for Big Data applications. There are more features
of NoSQL databases, including easy replication, schema-free, and BASE, which are precisely described
in [9].

Algorithms 2020, 13, 101; doi:10.3390/a13040101 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0002-0235-0878
https://orcid.org/0000-0002-9299-1467
http://www.mdpi.com/1999-4893/13/4/101?type=check_update&version=1
http://dx.doi.org/10.3390/a13040101
http://www.mdpi.com/journal/algorithms


Algorithms 2020, 13, 101 2 of 12

Big Data storage can be placed within Big Data value chain [10] on the fourth level, after data
acquisition, data analysis, and data curation and naturally before data usage. The review of the current
state-of-the-art of data storage technologies brings the following types of storage systems:

• Distributed File Systems, e.g., [11],
• NoSQL Databases, e.g., [12],
• Big Data querying platforms, e.g., [13],
• NewSQL Databases, e.g., [14,15].

Big Data storage systems can be characterized by specifying both strengths and weaknesses,
which were presented in [16]. Among the advantages, there is the support of heterogeneous structured
data, simultaneous accessibility, and high fault tolerance. On the other hand, there are some
weaknesses, for example, the lack of compliance with ACID set of properties that guarantee database
transactions reliability (ACID stands for Atomicity, Consistency, Isolation, and Durability).

In case of large distributed file systems, it is essential to consider the size of the stored file, as well
as its security attributes. One of the compression methods can be applied to reduce the size of the file.
At the same time, one of the critical security attributes, namely confidentiality, can be set by the use of
cryptography or steganography.

The main contribution of this article is to presents a method of storing text data to ensure their
compression as well as to hide their content directly. It involves changing the data format from text
to graphic data with the extension png. By appropriate transformation, the content of the text file
is transformed into the file png, the content of which looks like a random string. To the best of our
knowledge, no one has proposed such a solution before.

The article is divided into four parts. The first part consists of an introduction and an overview of
related works. In the next section, the method of converting text files to the png graphic format was
presented. Later, an example of the application of the specified method has been discussed. The last
part of the article consists of a summary and a list of references.

1.1. Related Work

1.1.1. Compression

Another problem related to storing data on external platforms is the volume that they occupy.
It is especially important in the case of huge data volumes, which we deal with within the context of
Big Data [16]. The smaller the data set is, the faster it will be processed, and the cost of the storage
service provided is lower. This cost includes not only the cost of disk space but also the cost associated
with the data transfer process. For this reason, stored data should be compressed, which will optimize
costs. The compression used should be lossless, i.e., the data after decompression should have the
same content as the data before compression [17]. Examples of file types that accomplish this task
include png [18] (for image files) or zip [19], which is a solution for all file types.

1.1.2. Steganography of the Text

Discussed method concerns (among other issues) steganography of the text. In the literature,
one can find many works on this subject, e.g., [20–27]. Most of them use large amounts of
non-confidential information (media) to be able to hide in a piece of the confidential message.

In [20], a technique that uses reflection symmetry of the English alphabets was used for this
purpose. Thanks to horizontal or vertical symmetry of the alphabet characters, the corresponding bits
of the confidential message are hidden, creating appropriately modified text. In turn, Reference [21]
developed a method of hiding text using the omega network. This method consists of generating a
word from a dictionary that contains two letters coupled using an omega network with one letter
of messages to hide. Yet another method of hiding text is in [22]. It uses Huffman coding in such a



Algorithms 2020, 13, 101 3 of 12

way that a secret message is attached to the received codes. In [23], a multi-keywords carrier-free
text steganography method based on the part of speech tagging is discussed. The work [24], in turn,
presents coverless plain text steganography based on the parity of Chinese characters’ stroke number.
On the other hand, in [25], the authors showed how to hide a secret message in the formatting (e.g.,
color) of workbook files xls. In [26] a method of hiding text in a properly constructed number system is
presented. Besides, email-based text steganography is presented in [27]. The method relies on hiding
the secret data within several email addresses.

Another approach is to hide text in a format other than text, e.g., in image files. The basic way
that uses images to hide a confidential message is called LSB (Least Significant Bit) method [28]. It uses
the least significant bits of the pixel RGB color components to enter the bits of a confidential message.

1.2. Graphic Format png

The PNG (Portable Network Graphics) file format is a raster image file format that also provides
lossless compression of image data. It allows saving data in two variants: RGB (24-bit palette) and
RGBA (32-bit palette). Compression was provided by the LZ77 algorithm [29] and Huffman coding [30].
Besides, just before compression, there is a new stage called filtering. It consists of preparing data for
the best compression. This is done by applying a combination of filters that simplifies data for faster
data writing. An example of pixel structure of the file png is presented on Figure 1. The png format
itself is not patented and is free. More about it can be found, among others, in the specification [18].

Figure 1. Representation of structure of pixel in png image.

2. Method

2.1. Variant 1: Text Encoded in Extended Ascii

The method of replacing a text file with a png file requires that each character in the text file be
saved using 8-bit encoding. This means that some content (encoding other than 8 bits) cannot be
directly converted to the format png. This is because the RGB color components of the png file are
values in the 0–255 range, i.e., saved in 8 bits. However, the occurrence of an inappropriate character
(outside the range: 0–255) should not affect the further processing of the file. This character will be—of
course—incorrectly encoded, and one will not be able to regain its correct value.

The method of converting a text file saved with extended ASCII encoding into an image file png
can be described by the following steps:

1. The text file is loaded into the buffer.
2. The following are added to its content: ETX, filename with the extension, ETX, where ETX means

end of text and is encoded with an ASCII code of 3.
3. The image size (height and width) is calculated using the formula

size =

⌈√
len
3

⌉
, (1)

where len is the length of text from step 2 and d·emeans the ceiling function.



Algorithms 2020, 13, 101 4 of 12

4. If the length of the text is less than
3size2, (2)

the content is appended with random values, so that it is exactly (2).
5. A two-dimensional array Tsize×size is created, with elements consisting of 3-element tuples.
6. Text characters are converted to 8-bit numbers (according to Extended ASCII encoding) and

divided into 3-fold tuples. The next tuples are saved as the next elements of the two-dimension
array T.

7. The two-dimensional array of tuples T is treated as a pixel array and saved to the format png.
Writing to png is possible using ready–made programming tools, like Python library called
Pillow [31].

8. (optional) The filename is the abbreviation obtained from the filename using the selected hash
algorithm, e.g., SHA3 [32].

The above method of converting a text file into a graphic png is reversible. Replacement of the file
with png extension with text file can be described by the following steps:

1. The following pixels of the graphic file are loaded to get values representing the data of the text
file until a pixel with an RGB color component equal to 3 is found.

2. The RGB components of the loaded pixels are perceived as consecutive ASCII characters and
saved in a text file.

3. The next pixels are read to get the values of ASCII characters representing the name and file
extension, to come across another RGB component value of 3.

2.2. Variant 2: Utf8 Coded Text

If the characters in the file fall outside the extended ASCII encoding range, the UTF-8 encoding
can be used. This means that significant changes must be made to the algorithm of writing and reading
from Section 2.1. Besides, as in the variant with ASCII coding, if a character occurs outside of the
UTF-8 range, one will get the same situation, i.e., the character will be incorrectly processed, and its
original value cannot be restored. In this variant, the compression of the resulting file, which we had
in the case of extended ASCII encoding, is not always preserved.

The method of converting a text file saved with UTF-8 encoding into an image file png can be
described by the following steps:

1. The text file is loaded into the buffer.
2. The following are added to its content: ETX, filename with the extension, ETX, where ETX means

end of text and is encoded with an ASCII code of 3.
3. The image size (height and width) is calculated using the formula

size =

⌈√
2
3

len

⌉
, (3)

where len is the length of text from step 2 and d·emeans the ceiling function.
4. If the length of the text is less than

3
2

size2, (4)

the content is appended with random values to be exactly (4).
5. A two-dimensional array Tsize×size is created, with elements consisting of 3-element tuples.
6. Text characters ti are converted to numbers from 0–65,535 (according to UTF-8 encoding).
7. Each of the values of ti is stored in a positional system with a basis of 256 according to the

equation:
ti = ai · 256 + bi, (5)

where ai and bi are the coefficients for writing the number ti in a system based on 256.



Algorithms 2020, 13, 101 5 of 12

8. The values ai and bi are written in tuples of length 3. The next tuples are saved as the next
elements of the two-dimension array T.

9. The two-dimensional array of tuples T is treated as a pixel array and saved to the format png.
Writing to png is possible using ready-made programming tools such as Python library called
Pillow [31].

10. (optional) The filename is the abbreviation obtained from the filename using the selected hash
algorithm, e.g., SHA3 [32].

The above method of converting a text file into a graphic png is reversible. The following steps can
describe the replacement of the file with png extension with a text file:

1. The following pixels of the graphic file are loaded in order to get values representing the data of
the text file until a pixel with an RGB color component equal to 3 is found.

2. From the RGB components of the pixels every two values marked as ai and bi are consecutive
taken. These values are the coefficients of the number ti written in a numerical system based on
256, i.e.,

ti = ai · 256 + bi. (6)

3. The values of ti are perceived as subsequent UTF-8 characters and saved in a text file.
4. The next pixels are read to come across another RGB component value of 3, and as in step 2,

the next every two values marked as ai and bi are used to compute ti values with (6). The resulting
string is the name and extension of the text file.

3. Analysis And Discussions

3.1. Limitations

The method of replacing text with the graphic file png consists of saving the text characters to
the RGB values of individual pixels. Therefore, some file formats, such as the doc extension, cannot
be directly processed with it. This is because the addition to the text content itself also includes the
formatting of individual elements. Among others, the following formats can be directly used with
this method: .txt, .tex, .js, .html, .json (also .ipynb), .py, .css. Note, that there are also some problems one
may encounter while trying to read files with doc file format. They require specialized libraries for this
purpose, e.g., textract [33].

Besides, the conversion of a text file into a graphic file is possible for text files encoded with
extended ASCII and UTF-8 characters. In these cases, there are some differences in the way of saving
and reading the pixels of the output image file.

3.2. Case Study

The proposed method converts any text file encoded using extended ASCII or UTF-8 format to the
png file format. Thus, different formats are reduced to one. In fact, this effect can be seen as desirable
when viewed from the point of large volume data sets.

The following files were selected for processing using the proposed method-as well as for
further analysis:

1. data1.txt: a text file containing some English text encoded in extended ASCII
2. data2.txt: a text file containing some Polish text encoded in UTF-8
3. data3.txt: a text file containing 106 random digits
4. data4.json: a text file in the format json containing the code of the .ipynb version of python.py file
5. python.py: Python file which content is the source code published on Github platform
6. latex.tex: the file containing the latex source code of this article



Algorithms 2020, 13, 101 6 of 12

All of the presented algorithms have been implemented in the Python programming language.
The source code responsible for the conversion (file with text content into a graphic format) has been
shown on the Github platform. The URL to the source code repository can be found in Appendix A.
The analysis of the time of changing the text format into an image in the png format was made on a
personal computer with:

A Microsoft Windows 10 equipped with an Intel(R) Core(TM) i7-8565U CPU and 16 GB of RAM;
B Linux Ubuntu 18.04.4 LTS equipped with Intel(R) Core(TM) 2 Duo T7200 CPU and 2 GB of RAM;
C MacOS Catalina 10.15.3 equipped with Intel(R) i7-3667U CPU and 8 GB of RAM.

Figures 2 and 3 show the results of application of proposed method in variant 1 (extended ASCII
coding) and variant 2 (UTF-8 coding) for test file data1.txt.

Figure 2. Result for file data1.txt with variant 1 (extended ASCII coding).

Figure 3. Result for file data1.txt with variant 2 (UTF-8 coding).

3.3. Compression

The basic measure determining the degree of compression is the Compression Ratio, which is
described by the following equation [17]:

Compression Ratio (CR) =
size of the output stream
size of the input stream

. (7)



Algorithms 2020, 13, 101 7 of 12

The smaller the CR value, the less disk space the compressed file takes. The results for selected
files with different extensions are provided in the Tables 1 and 2.

Table 1. Results for selected test files using variant 1 of the method (extended ASCII coding). The list
of columns includes filename, size of the text file, PC specification identifier, size of the png file, CR,
average time needed to create the png file and standard deviation of the time. The script has been run
100 times.

File Text File Size (B) PC png Size (B) CR Avg Time (s) std Time (s)

data1.txt 184,401
A 156,621 0.8493 0.0836 0.0014
B 156,630 0.8493 0.2687 0.0052
C 156,625 0.8493 0.1749 0.0127

data3.txt 1,091,008
A 569,894 0.5223 0.5565 0.0083
B 569,898 0.5223 1.6488 0.0183
C 569,858 0.5223 1.6279 0.7378

data4.json 12,563
A 9614 0.7652 0.0065 0.0010
B 9615 0.7653 0.0196 0.0016
C 9618 0.7655 0.0130 0.0017

python.py 8740
A 7197 0.8234 0.0044 0.0001
B 7199 0.8236 0.0126 0.0012
C 7197 0.8234 0.0077 0.0009

latex.tex 38,153
A 32,006 0.8388 0.0194 0.0012
B 31,986 0.8383 0.0674 0.0023
C 31,985 0.8383 0.0467 0.0044

Table 2. Results for selected test files using variant 2 of the method (UTF-8 coding). The list of columns
includes filename, size of the text file, PC specification identifier, size of the png file, CR, average time
needed to create the png file and standard deviation of the time. The script has been run 100 times.

File Text File Size (B) PC png Size (B) CR Avg Time (s) std Time (s)

data1.txt 184,401
A 194,749 1.0561 0.2804 0.0047
B 194,761 1.0561 0.5984 0.0088
C 194,734 1.0560 0.3804 0.0504

data2.txt 252,640
A 196,413 0.7774 0.3885 0.0057
B 196,400 0.7773 0.8292 0.0158
C 196,394 0.7773 0.5325 0.0696

data3.txt 1,091,008
A 588,732 0.5396 1.6277 0.1736
B 588,751 0.5396 3.7014 0.0328
C 588,741 0.5396 2.2655 0.1097

data4.json 12,563
A 9990 0.7951 0.0169 0.0024
B 10,008 0.7966 0.0469 0.0031
C 10,015 0.7971 0.0281 0.0028

python.py 8740
A 7162 0.8194 0.0112 0.0007
B 7163 0.8195 0.0282 0.0023
C 7159 0.8191 0.0178 0.0015

latex.tex 38,153
A 30,668 0.8038 0.0507 0.0044
B 30,684 0.8042 0.1345 0.0081
C 30,676 0.8040 0.0786 0.0053

The resulting values show that the corresponding png images have significantly smaller sizes
(in the case of extended ASCII files and most test files in UTF-8 coding), which means savings in
the necessary disk space. This is due to the way the png format works, i.e., the content is lossless
compressed. As it can be noticed, the results obtained are worse than for other compression methods
(see Table 3). However, in the case of the data3.txt test file, which consists of digits only, the CR
compression value does not reflect that much. This case of the test file is similar in construction to Big
Data. Nevertheless, those compression methods do not allow to hide the content of the file, which is
discussed in Section 3.5.



Algorithms 2020, 13, 101 8 of 12

Table 3. Results for selected test files using different file compressing methods. The list of columns
includes filename, size of the text file, compression method, size of the compressed file and CR.

File Text File Size (B) Compression Method Compressed File Size (B) CR

data1.txt 184,401
zip 70,990 0.3849
bz2 60,433 0.3277
gz 74,393 0.4034

data2.txt 252,640
zip 99,364 0.3933
bz2 81,066 0.2298
gz 103,412 0.4093

data3.txt 1,091,008
zip 479,335 0.4393
bz2 458,533 0.4202
gz 499,474 0.4578

data4.json 12,563
zip 2567 0.2043
bz2 2518 0.2004
gz 2512 0.1999

python.py 8740
zip 2202 0.2519
bz2 2221 0.2541
gz 2128 0.2434

latex.tex 38,153
zip 12,684 0.3324
bz2 12,609 0.3304
gz 13,184 0.3455

3.4. Application in Data Transfer

This method can be used to reduce the amount of data transfer needed to perform operations.
Using a png file format instead of a text file format, will allow to limit the amount of data needed to be
sent and downloaded from the server. When storing files on the Internet, one can use various pricing
plans that have a specific amount of storage space. Using this method will save space needed to store
this file, by resulting compression, which will have consequences: saving money or saving disk space
that can be used for subsequent files.

3.5. Application in Steganography

The presented method, apart from compression, also allows hiding the contents of a text file.
The following is because the content of processed files in the format png looks random at first glance.
This is confirmed by the sample Figures 2 and 3. A secondary observer is not able to directly extract
the content contained in the image. Of course, if the graphic file is created as described in the article,
then it may try to read it using the reversed method. It should be noted that the reverse method,
i.e., the transition from image to text, is fully reversible. Thus, its effectiveness is 100%. However,
the proper determination of the method of image hiding or encryption (in the case when the file was
found to be an encrypted image) does not have to be so simple, which suggests a large number of
algorithms addressing this issue, e.g., [34–39]. Table 4 shows the transition times from the graphic
file to the text file. At every turn, the script has been executed 100 times, and the results show the
average time and standard deviation. The results show that the transition from image to text is not a
time-consuming process.

Compared to files compressed and stored in the format zip, the advantage of hiding the file’s
content is undoubted. A computer system can easily open the zip file. It means that we have direct
access to the content of the text file. However, to make a change to a compressed file, it must be
firstly decompressed. Though, the proposed method allows reading a specific pixel png file and its
modification (only those particular pixel).



Algorithms 2020, 13, 101 9 of 12

Table 4. The results show the transition times from the image png to the text file. The list of columns
includes filename, the time needed to create the text file, PC A, PC B, and PC C. The script has been run
100 times. Avg and std are respectively: mean time and standard deviation.

File Encoding Time A B C

data1.txt
ASCII avg 0.1840 0.4015 0.2518

std 0.0025 0.0052 0.0118

UTF-8 avg 0.0718 0.1547 0.1104
std 0.0013 0.0059 0.0068

data2.txt
ASCII avg - - -

std - - -

UTF-8 avg 0.0955 0.2026 0.1375
std 0.0016 0.0058 0.0047

data3.txt
ASCII avg 2.4929 5.2552 3.5691

std 0.0076 0.0373 0.9982

UTF-8 avg 0.4629 0.9612 0.6622
std 0.0076 0.0127 0.0381

data4.json
ASCII avg 0.0058 0.0127 0.0085

std 0.0012 0.0002 0.0021

UTF-8 avg 0.0058 0.0115 0.0078
std 0.0001 0.0025 0.0021

python.py
ASCII avg 0.0039 0.0084 0.0059

std 0.0009 0.0011 0.0015

UTF-8 avg 0.0044 0.0075 0.0055
std 0.0001 0.00147 0.0008

latex.tex
ASCII avg 0.0240 0.0507 0.0319

std 0.0011 0.0008 0.0026

UTF-8 avg 0.0165 0.0332 0.0230
std 0.0007 0.0008 0.0019

As described above, during the last step of the algorithm, the filename can be renamed by the use
of the hash function. The original filename and its extension are hidden inside the image. Identifying
the right file requires reading and processing many images png as it finds the right one. For the owner
of the text files (or for the server on which they are stored), it is possible to create an encrypted list
with information about the name under which the file is stored (after converting it to the png format).
However, if one does not need to protect its data in this way, then the step of naming the image with
its hash can be skipped.

Another problem related to data, in particular large data sets, is their processing [40], including
sorting [41–43], or processing to get random values from the collected data [44]. The proposed method
of data storage allows for further processing, even though they are hidden to the human eye.

3.6. Application in Cryptography

Images obtained as a result of the method can also be encrypted at the stage of creating the png file.
Before saving the text character to the appropriate pixel, it can be transformed using any encryption
algorithm. Without additional encryption of the pixel components, it can be seen that the histograms
for the colors red, green and blue are not flat, but resemble the structure of histograms for the natural
language in which the original text file was. Using even the simplest encryption methods that flatten
histograms can give entirely satisfactory results when trying to read it.

Furthermore, encryption of png files can be provided by use of any of the algorithms intended for
this purpose, e.g., [34–39].

4. Conclusions

The article describes a method for storing text data in the file stored on the server or in the
cloud, which allows simultaneously performing the compression and steganography operations of
its content. Described method copes well with most text file formats (including txt, json, tex, html,



Algorithms 2020, 13, 101 10 of 12

css). Files stored with doc extension can proceed without formatting. Its limitation is the method of
coding the original text—extended ASCII or UTF-8 coding is required. In the first case, the output file
is compressed, and image content looks like it is randomly generated. In contrast, UTF-8 encoding
allows the processing of a much broader range of text files, and in most cases (as demonstrated by
the results obtained), it provides compression of the output file, which content looks like randomly
generated. The method has been implemented in Python programming language, and the source code
has been placed in the Github publicly accessible repository. The method can be used in the area of Big
Data, where we deal with a large number of files (usually with text filetype), which content can be
compressed (in case of extended ASCII encoding) as well as protected against a simple attempt to read
their content. It should be emphasized that the proposed steganographic method extends the classic
approach based on a graphic file as a medium in which bits of plain text are introduced at a bit-level
of individual RGB components. The article fills a gap in the area of theory and has documented
application potential, which will be the subject of further research.

Author Contributions: conceptualization, M.L.; methodology, M.L., A.P. and A.K.; software, M.L. and A.P.;
formal analysis, M.L., and A.P.; writing—original draft preparation, M.L. and A.K.; writing—review and editing,
M.L. and A.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A

Address to the Python script, which is the implementation of both versions (extended
ASCII and UTF-8 coding) of the presented method can be found on platform Github under the
following link: https://github.com/MMI-research-team/mmi/tree/master/T2PT?fbclid=IwAR29u_
aEXnlyaW083y6LtZWeZspv_10ENDBhyXBTaUupMj-ba_4XFpEMD1g.

This script has been prepared to be run under the following operating systems: Microsoft
Windows, Linux and Apple MacOS. The Python programming language environment (Python 3)
and the libraries: numpy and Pillow are required to run this script.

References

1. Özköse, H.; Arı, E.S.; Gencer, C. Yesterday, Today and Tomorrow of Big Data. Procedia Soc. Behav. Sci. 2015,
195, 1042–1050. [CrossRef]

2. Bello-Orgaz, G.; Jung, J.J.; Camacho, D. Social big data: Recent achievements and new challenges. Inf. Fusion
2016, 28, 45–59. [CrossRef] [PubMed]

3. Plageras, A.P.; Psannis, K.E.; Stergiou, C.; Wang, H.; Gupta, B. Efficient IoT-based sensor BIG Data
collection—Processing and analysis in smart buildings. Future Gener. Comput. Syst. 2018, 82, 349–357.
[CrossRef]

4. Pottier, R.; Menaud, J. TrustyDrive, a Multi-cloud Storage Service That Protects Your Privacy. In Proceedings
of the 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 27
June–2 July 2016; pp. 937–940. [CrossRef]

5. ECB Says One of Its Websites Was Hacked, Data Possibly Captured. 2019. Available
online: https://news.bloomberglaw.com/banking-law/ecb-says-one-of-its-websites-was-hacked-data-
possibly-captured (accessed on 24 March 2020).

6. Kapczyński, A.; Banasik, A. Biometric logical access control enhanced by use of steganography over
secured transmission channel. In Proceedings of the 6th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS’2011, Prague, Czech
Republic, 15–17 September 2011; Volume 2, pp. 696–699. [CrossRef]

7. Lawnik, M. Generalized logistic map and its application in chaos based cryptography. J. Phys. Conf. Ser.
2017, 936. [CrossRef]

https://github.com/MMI-research-team/mmi/tree/master/T2PT?fbclid=IwAR29u_aEXnlyaW083y6LtZWeZspv_10ENDBhyXBTaUupMj-ba_4XFpEMD1g
https://github.com/MMI-research-team/mmi/tree/master/T2PT?fbclid=IwAR29u_aEXnlyaW083y6LtZWeZspv_10ENDBhyXBTaUupMj-ba_4XFpEMD1g
http://dx.doi.org/10.1016/j.sbspro.2015.06.147
http://dx.doi.org/10.1016/j.inffus.2015.08.005
http://www.ncbi.nlm.nih.gov/pubmed/32288689
http://dx.doi.org/10.1016/j.future.2017.09.082
http://dx.doi.org/10.1109/CLOUD.2016.0140
https://news.bloomberglaw.com/banking-law/ecb-says-one-of-its-websites-was-hacked-data-possibly-captured
https://news.bloomberglaw.com/banking-law/ecb-says-one-of-its-websites-was-hacked-data-possibly-captured
http://dx.doi.org/10.1109/IDAACS.2011.6072859
http://dx.doi.org/10.1088/1742-6596/936/1/012017


Algorithms 2020, 13, 101 11 of 12

8. Lawnik, M.; Kapczyński, A. Application of modified Chebyshev polynomials in asymmetric cryptography.
Comput. Sci. 2019, 20, 367–381. [CrossRef]

9. Chen, J.K.; Lee, W.Z. An Introduction of NoSQL Databases Based on Their Categories and Application
Industries. Algorithms 2019, 12, 106. [CrossRef]

10. Strohbach, M.; Daubert, J.; Ravkin, H.; Lischka, M. Big Data Storage. In New Horizons for a Data-Driven
Economy: A Roadmap for Usage and Exploitation of Big Data in Europe; Cavanillas, J.M., Curry, E., Wahlster, W.,
Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 119–141._7. [CrossRef]

11. Almansouri, H.T.; Masmoudi, Y. Hadoop Distributed File System for Big data analysis. In Proceedings
of the 2019 4th World Conference on Complex Systems (WCCS), Ouarzazate, Morocco, 22–25 April 2019;
pp. 1–5. [CrossRef]

12. Meier, A.; Kaufmann, M. SQL & NoSQL Databases: Models, Languages, Consistency Options and Architectures
for Big Data Management; Springer Vieweg: Berlin, Germany, 2019.

13. Bisong, E. Google BigQuery. In Building Machine Learning and Deep Learning Models on Google Cloud Platform:
A Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 485–517.

14. Kaur, K.; Sachdeva, M. Performance evaluation of NewSQL databases. In Proceedings of the 2017
International Conference on Inventive Systems and Control (ICISC), Coimbatore, India, 19–20 January 2017;
pp. 1–5. [CrossRef]

15. Murazzo, M.; Gómez, P.; Rodríguez, N.; Medel, D. Database NewSQL Performance Evaluation for Big Data
in the Public Cloud. In Cloud Computing and Big Data; Naiouf, M., Chichizola, F., Rucci, E., Eds.; Springer
International Publishing: Cham, Switzerland, 2019; pp. 110–121.

16. Siddiqa, A.; Karim, A.; Gani, A. Big data storage technologies: A survey. Front. Inf. Technol. & Electron. Eng.
2017, 18, 1040–1070. [CrossRef]

17. Salomon, D. Introduction. In Data Compression: The Complete Reference; Springer: Berlin/Heidelberg,
Germany, 2000; pp. 1–12._1. [CrossRef]

18. Portable Network Graphics (PNG) Specification (Second Edition), 2003. Available online: https://www.w3.
org/TR/2003/REC-PNG-20031110/#F-Relationship (accessed on 24 March 2020).

19. ZIP File Format Specification, 2019. Available online: https://pkware.cachefly.net/webdocs/casestudies/
APPNOTE.TXT (accessed on 24 March 2020).

20. Majumder, A.; Changder, S. A Novel Approach for Text Steganography: Generating Text Summary Using
Reflection Symmetry. Procedia Technol. 2013, 10, 112–120. [CrossRef]

21. Hamdan, A.M.; Hamarsheh, A. AH4S: An algorithm of text in text steganography using the structure of
omega network. Secur. Commun. Netw. 2016, 9, 6004–6016. [CrossRef]

22. Lee, C.F.; Chen, H.L. Lossless Text Steganography in Compression Coding. In Recent Advances in Information
Hiding and Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 155–179._8. [CrossRef]

23. Liu, Y.; Wu, J.; Xin, G. Multi-keywords carrier-free text steganography based on part of speech tagging.
In Proceedings of the 2017 13th International Conference on Natural Computation, Fuzzy Systems and
Knowledge Discovery (ICNC-FSKD), Guilin, China, 29–31 July 2017; pp. 2102–2107. [CrossRef]

24. Wang, K.; Gao, Q. A Coverless Plain Text Steganography Based on Character Features. IEEE Access 2019,
7, 95665–95676. [CrossRef]

25. Alsaadi, H.I.; Al-Anni, M.K.; Almuttairi, R.M.; Bayat, O.; Ucan, O.N. Text Steganography in Font Color of
MS Excel Sheet. In DATA ’18: Proceedings of the First International Conference on Data Science, E-Learning and
Information Systems; ACM: New York, NY, USA, 2018; pp. 10:1–10:7. [CrossRef]

26. Mandal, K.K.; Singh, P.K. Information Hiding in Text Steganography: A Different Approach. In Proceedings
of 2nd International Conference on Advanced Computing and Software Engineering (ICACSE), Sultanpur,
India, 8–9 February 2019.

27. Fateh, M.; Rezvani, M. An email-based high capacity text steganography using repeating characters. Int. J.
Comput. Appl. 2018, 1–7, doi:10.1080/1206212X.2018.1517713. [CrossRef]

28. Bharti, J.; Solanki, S.; Beliya, A. Comparison of LSB methods and pattern. In Proceedings of the 2017
International Conference on Recent Innovations in Signal processing and Embedded Systems (RISE), Bhopal,
India, 27–29 October 2017; pp. 250–256. [CrossRef]

29. Ziv, J.; Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 1977,
23, 337–343. [CrossRef]

http://dx.doi.org/10.7494/csci.2019.20.3.3307
http://dx.doi.org/10.3390/a12050106
http://dx.doi.org/10.1007/978-3-319-21569-3_7
http://dx.doi.org/10.1109/ICoCS.2019.8930804
http://dx.doi.org/10.1109/ICISC.2017.8068585
http://dx.doi.org/10.1631/FITEE.1500441
http://dx.doi.org/10.1007/978-3-642-86092-8_1
https://www.w3.org/TR/2003/REC-PNG-20031110/#F-Relationship
https://www.w3.org/TR/2003/REC-PNG-20031110/#F-Relationship
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
http://dx.doi.org/10.1016/j.protcy.2013.12.343
http://dx.doi.org/10.1002/sec.1752
http://dx.doi.org/10.1007/978-3-642-28580-6_8
http://dx.doi.org/10.1109/FSKD.2017.8393096
http://dx.doi.org/10.1109/ACCESS.2019.2929123
http://dx.doi.org/10.1145/3279996.3280006
http://dx.doi.org/10.1080/1206212X.2018.1517713
http://dx.doi.org/10.1109/RISE.2017.8378162
http://dx.doi.org/10.1109/TIT.1977.1055714


Algorithms 2020, 13, 101 12 of 12

30. Huffman, D.A. A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE 1952,
40, 1098–1101. [CrossRef]

31. Pillow, 2019. Available online: https://python-pillow.org/ (accessed on 24 March 2020).
32. Dworkin, M. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions; NIST: Gaithersburg,

MD, USA, 2015. [CrossRef]
33. Textract, 2019. Available online: https://textract.readthedocs.io/en/stable/ (accessed on 24 March 2020).
34. Kumari, M.; Gupta, S.; Sardana, P. A Survey of Image Encryption Algorithms. 3D Res. 2017, 8, 37. [CrossRef]
35. Uhl, A.; Pommer, A. Image and Video Encryption. In Image and Video Encryption: From Digital Rights

Management to Secured Personal Communication; Springer US: Boston, MA, USA, 2005; pp. 45–134._5.
[CrossRef]

36. Guan, Z.H.; Huang, F.; Guan, W. Chaos-based image encryption algorithm. Phys. Lett. A 2005, 346, 153–157.
[CrossRef]

37. Yavuz, E.; Yazıcı, R.; Kasapbaşı, M.C.; Yamaç, E. A chaos-based image encryption algorithm with simple
logical functions. Comput. Electr. Eng. 2016, 54, 471 –483. [CrossRef]

38. Arab, A.; Rostami, M.J.; Ghavami, B. An image encryption method based on chaos system and AES
algorithm. J. Supercomput. 2019, 75, 6663–6682. [CrossRef]

39. Hua, Z.; Zhou, Y.; Huang, H. Cosine-transform-based chaotic system for image encryption. Inf. Sci. 2019,
480, 403–419. [CrossRef]

40. Duda, O.; Kochan, V.; Kunanets, N.; Matsiuk, O.; Pasichnyk, V.; Sachenko, A.; Pytlenko, T. Data processing
in IoT for smart city systems. In Proceedings of the 10th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Metz, France,
18–21 September 2019; Volume 1, pp. 96–99. [CrossRef]

41. Marszałek, Z. Performance tests on merge sort and recursive merge sort for big data processing. Tech. Sci.
2018, 21, 19–35. [CrossRef]

42. Shatnawi, A.; AlZahouri, Y.; Shehab, M.A.; Jararweh, Y.; Al-Ayyoub, M. Toward a new approach for sorting
extremely large data files in the big data era. Clust. Comput. 2019, 22, 819–828. [CrossRef]

43. Chen, H.; Wan, J.; Li, X. Research and implementation of database high performance sorting algorithm
with big data. In Proceedings of the 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA),
Beijing, China, 10–12 March 2017, pp. 94–99. [CrossRef]

44. Lawnik, M. Generation of numbers with the distribution close to uniform with the use of chaotic maps.
In Proceedings of the 2014 4th International Conference On Simulation And Modeling Methodologies,
Technologies And Applications (SIMULTECH), Berlin, Germany, 5–7 September 2014; pp. 451–455.
[CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JRPROC.1952.273898
https://python-pillow.org/
http://dx.doi.org/10.6028/NIST.FIPS.202
https://textract.readthedocs.io/en/stable/
http://dx.doi.org/10.1007/s13319-017-0148-5
http://dx.doi.org/10.1007/0-387-23403-9_5
http://dx.doi.org/10.1016/j.physleta.2005.08.006
http://dx.doi.org/10.1016/j.compeleceng.2015.11.008
http://dx.doi.org/10.1007/s11227-019-02878-7
http://dx.doi.org/10.1016/j.ins.2018.12.048
http://dx.doi.org/10.1109/IDAACS.2019.8924262
http://dx.doi.org/10.31648/ts.2714
http://dx.doi.org/10.1007/s10586-018-2860-1
http://dx.doi.org/10.1109/ICBDA.2017.8078784
http://dx.doi.org/10.5220/0005090304510455
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Compression
	Steganography of the Text

	Graphic Format png

	Method
	Variant 1: Text Encoded in Extended Ascii
	Variant 2: Utf8 Coded Text

	Analysis And Discussions
	Limitations
	Case Study
	Compression
	Application in Data Transfer
	Application in Steganography
	Application in Cryptography

	Conclusions
	
	References

