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Abstract: Hepatitis C virus (HCV) is one of the most dangerous viruses worldwide. It is the foremost 

cause of the hepatic cirrhosis, and hepatocellular carcinoma, HCC. Detecting new key genes that 

play a role in the growth of HCC in HCV patients using machine learning techniques paves the way 

for producing accurate antivirals. In this work, there are two phases: detecting the 

up/downregulated genes using classical univariate and multivariate feature selection methods, and 

validating the retrieved list of genes using Insilico classifiers. However, the classification algorithms 

in the medical domain frequently suffer from a deficiency of training cases. Therefore, a deep neural 

network approach is proposed here to validate the significance of the retrieved genes in classifying 

the HCV-infected samples from the disinfected ones. The validation model is based on the artificial 

generation of new examples from the retrieved genes’ expressions using sparse autoencoders. 

Subsequently, the generated genes’ expressions data are used to train conventional classifiers. Our 

results in the first phase yielded a better retrieval of significant genes using Principal Component 

Analysis (PCA), a multivariate approach. The retrieved list of genes using PCA had a higher number 

of HCC biomarkers compared to the ones retrieved from the univariate methods. In the second 

phase, the classification accuracy can reveal the relevance of the extracted key genes in classifying 

the HCV-infected and disinfected samples. 

Keywords: key genes; HCC; HCV; classical machine learning; deep learning; autoencoders 

 

1. Introduction 

Hepatitis C virus (HCV) is one of the dangerous infection diseases worldwide. The replication 

of hepatitis C in an infected patient eventually causes cirrhosis of the liver or hepatocellular 

carcinoma (HCC) [1,2] which is ranked as the 12th disease in a ranking of the principal causes of 

death [3]. Current antivirals for HCV do not target every virus protein required during its life cycle 

due to the lack of knowledge about the key genes responsible for its replication phase [4].  

The microarray is an effective innovation that helps in studying the sub-atomic science of tissues 

and the quality expression estimations of the entire genome. High-density oligonucleotide array 

technology, Affymetrix GeneChip, is generally utilized as a part of numerous regions of biomedical 

exploration for estimating the gene expression values [5]. Affy microarrays help in quantifying the 

expression of thousands of genes in only one test, which paved the way to understanding and 

analyzing gene behavior under different conditions [6]. However, the prediction of new significant 

genes from huge data produced by large-scale Affymetrix microarrays may require the use of 

statistical and machine learning techniques [7].  

Simple statistical approaches for predicting informative genes from microarrays such as T-test 

and F-test can indicate the variance in gene expression in different data sets [8]. However, univariate 
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and multivariate machine learning techniques are more advanced methods [9]. Univariate gene 

selection approaches can measure the significance of each gene individually. Multivariate approaches 

are optimized to handle multiple variables (or features) simultaneously [10]. Another use of the 

multivariate approach is to expose the inherent structure of variables through the application of 

various statistical methods. 

One of the most commonly used approaches for validating the significance of detected key genes 

is done via Insilco classifiers. However, the classification algorithms in the medical domain frequently 

suffer from a deficiency of training cases [11]. Most probably, the classifiers yield worse prognostic 

performance when trained on such small number of classes [12]. Typically, large dimensionality is 

one of the significant challenges that faces the interpretation and the analysis of gene expression data 

measured using microarray technology [13]. In microarray technology, thousands of gene 

expressions are produced under few conditions’ samples. The inadequate number of condition 

samples yield a faulty generalization and an inaccurate precision of classification models [14]. Data 

augmentation, the synthetic generation of additional training samples, can help in resolving the 

imbalance in data [15,16]. The deep autoencoder is one the most commonly employed paradigms to 

the field data augmentation [17]. It is a feed-forward, deep neural network that generates an output 

data X’ that is similar o an input data X using a set of low-dimension hidden layers [18]. 

In this work, the variations in genes expression during the different stages of HCV replication 

cycle are analyzed, which may help in discovering new key genes that may be targeted via a more 

effective HCV antiviral vaccine. This study, using univariate and multivariate gene selection 

methods, aims to extract key genes that play a role in worsening the progression of the Hepatitis C 

cycle. The effectiveness of each approach, univariate and multivariate, is investigated via a biological 

interpretation of retrieved features and a proposed deep autoencoder validation mode. The model is 

based on generating an adequate dataset using a feed forward autoencoder. The generated synthetic 

dataset was generated based on the expression values of the extracted key genes. Such data have been 

used to train sets of classical classifiers.   

2. Literature Review 

The non-invasive detection of new significant genes for the replication of HCV and its outcomes, 

such as Hepatocellular carcinoma using machine learning techniques, has been recently addressed in 

a diverse array of studies. Studying the early stages of HCV infection and detecting the host genes 

involved in the HCV life cycle was discussed in [8]. They utilized the same dataset applied in this 

research. A simple statistical method, Analysis of Variance (ANOVA), has been applied. An average 

of the triplicate values was used to calculate fold change, and each value was assessed for its statistical 

significance. Host genes having a p-value less than 0.05 were considered significant genes. The 

retrieved genes are those ones that has an increase/decrease in their expression of at least 2-fold.   

The work done in [1] investigated the potential of Alpha Fetal Protein (AFP) as a well-known 

biomarker for HCC [19,20]. LncRNA (long non-coding RNAs) microarray has been used. Significant 

genes were selected using two univariate methods (chi-square tests and t-test). T-test was used to 

compare variances in the lncRNA expression of plasma tissue of normal and up normal samples. 

They detected three genes that might be potential biomarkers for tumorigenesis prediction and two 

genes for metastasis prediction in the future. 

Another study has been done in [10] and they compared the univariate and multivariate gene 

selection methods via a range of classifiers based on a diverse type of cancers. They concluded that 

univariate gene selection paradigms yielded better results than the multivariate ones in five out of 

seven datasets. In the univariate method, they applied Pearson correlation, t-statistic or SNR , signal 

to noise ratio, and applied base pair selection, forward selection and recursive feature elimination in 

the multivariate method. 

In the study done in [21], the author proposed new technique called Stable Gene Selection (SGS) 

which selects significant genes for training a Support Vector Machine (SVM) classifier [22]. Key genes 

are selected using Bayesian [23] and Lasso [24]. Then, the selected genes are used to train the SVM 
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classification algorithm to build a prediction model. The proposed method (SGS) has been applied 

on four datasets and it outperformed the existing gene selection methods. 

Another study [25] utilized perception tools to predict the up/down regulated genes in 

microarray samples. They proposed the Kernel PCA (KPCA) [26] and Biplot [27] to plot gene 

expression profiles. They applied the proposed method on three types of cancer including 

lymphoma, colon tumor, and leukemia cancer datasets. The proposed procedure starts with the SVD 

of preprocessed gene expression input matrix then takes the row of matrices as a set of observations 

to compute Kernel matrix. The nonlinear features are calculated using PCA on the Kernel matrix.  

Similar work using machine learning for the same medical domain, HCV, is the work done in 

[28]. They applied a hybrid machine learning paradigm for diagnosing hepatitis disease. Four stages 

are used in that work, including dimension reduction, clustering, feature selection, and classification. 

The dimension of the data was reduced using non-linear iterative partial least squares, then the self-

organizing map was applied to cluster the similar data points, Classification and Regression Trees 

(CART) for selecting the significant features, and the ensemble classifier to predict the class (live or 

die).  

The work done in [29] investigated the serum miR-218 and its expression in patients with HCC, 

and analyzed its potential in the diagnosis and prognosis of HCC. They compared the expression of 

the serum level of miR-218 in healthy liver and HCC tissues to assess the relationship between its 

expression normal and tumor samples. The demonstrative estimation of serum miR-218 in HCC was 

additionally examined. This study gave profitable confirmation of the recognizable proof of the 

serum miR-218 as prognostic biomarker for HCC. 

This study is an extension to our previous work done in [30] in which we have introduced a 

hybrid algorithm for the detection of the differentially expressed genes, upregulated ones, as 

candidate biomarkers for HCC. We have applied univariate methods including Pearson’s correlation 

coefficient, Cosine coefficient, Euclidean distance, mutual information and entropy. The 

experimental results yielded six genes that are well-known biomarkers for HCC using Pearson’s 

correlation coefficient, and Cosine coefficient . A lower number of well-known biomarkers were 

obtained by the other methods (four genes using mutual information, three genes using Euclidean 

distance and only one gene using entropy). In this work, we are comparing the significance of the 

univariate and multivariate approaches in detecting key genes associated with the replication cycle 

of C virus and its outcomes. Furthermore, we are proposing a novel approach of deep learning where 

sparse autoencoders are used in the validation model of retrieved significant genes. 

3. Proposed framework  

The proposed framework, as shown in Figure 1, consists of two phases: extracting the key genes 

that play a role in the occurrence of risky outcomes of HCV, and validating their significance for such 

diseases. The extraction of key genes has been done using both of univariate and multivariate gene 

selection methods. The significance of each tested method in retrieving powerful key genes for the 

risky outcomes of HCV is assessed by three paradigms: mining the biological literature, NCBI Entrez 

system, and KEGG pathways for such genes, inspecting their P-values and profiling their expression 

in both HCV-infected and HCV-disinfected samples, and assessing their ability in classifying the 

HCV-infected and HCV-disinfected samples.  
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Figure 1. The proposed framework for the extraction and validation of up/downregulated key genes 

for risky outcomes of hepatitis C virus (HCV). 

3.1. Key Genes Extraction   

The profiles of genes in HCV-infected and disinfected samples are represented by a gene 

expression matrix. The entries of this matrix are expression values of all genes, amount of their RNA, 

measured in infected and controlled samples. In this work, twenty-four samples were taken from 

Gene expression Omnibus, GEO [31]. The detailed description of the data used in this work is 

included in the Supplementary Materials section. After preprocessing of the data samples, a gene 

expression matrix of 54675 genes is retrieved for each period of post-infection.  

3.1.1. Ideal Up/Down Regulated Key Genes 

An ideal key gene can be defined as a gene that has a variation in its values in infected and 

disinfected samples [30]. In this work, two ideal key genes have been proposed, as shown in Figure 

2. Upregulated key genes are used as a vector, with two different sets (-1, 1) of values in HCV-
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disinfected and infected samples. And a downregulated key gene is proposed as a gene with values 

of (1, -1) in the HCV-disinfected and -infected samples.  

  
(a) UP regulated ideal Key Gene (b) Down regulated ideal Key Gene 

Figure 2. The proposed up/downregulated ideal key genes. 

3.2. Univariate gene selection methods 

The univariate gene selection is a methodology that utilizes a criterion to assess the information 

of every gene exclusively. T&F tests, Pearson correlation, Euclidean and Cosine distances have been 

applied here to detect the significant genes. The similarity between genes under investigation and 

the ideal key genes has been calculated using the Pearson Coefficient, Cosine coefficient, and 

Euclidean distances using the same criteria as [30]. Euclidean distance has been applied to measure 

similarities between the ideal key genes and all genes in the gene expression matrix. The similarity 

between two vectors can be dictated by measuring the distance between them in the space. The 

Cosine Coefficient (CC) can gauge the reliance between two vectors representing the genes. On the 

off chance that the cosine coefficient is zero, then they are independent, and, if one, then they are 

indicating in the same direction. Key genes should have a Pearson coefficient close to +/-1. Typically, 

the retrieved key genes have minimum values of +/-0.7 for their Pearson coefficient.  

3.3. Multivariate gene selection method: 

Multivariate feature selection approach is optimized to handle multiple features (or genes) 

simultaneously [10]. Principal Component Analysis (PCA) is a statistical multivariate paradigm for 

dimensionality reduction. It applies an orthogonal conversion for a set of correlated features into a 

set of principal components that are uncorrelated features. In this work, PCA is utilized, as it is the 

simplest multivariate analyses method and mostly applied as a tool in exploring and describing the 

variance of features within a dataset [33].  

Principal component analysis (PCA) is applied to outline the information in a dataset described 

by numerous variables. PCA reduces the dimensionality of data containing an extensive set of 

variables. This is accomplished by transforming the initial variables into another small set of variables 

without losing the most critical data in the first information set. The fundamental objective of PCA is 

identifying a concealed example in a dataset, dropping the dimensionality of the data by removing 

the noise and redundancy in the data, and identifying correlated variables.  

PCA applies to an input data table, X, that has rows (individuals) and columns (quantitative 

variables). X is transformed via an orthogonal linear transformation, as follows: assuming a is the 

new individual, then its coordinate can be written as shown in Equation 1, where�� (�), shown in 

Equation 2, is the coordinate of the variable �  on the axis s, �� is the weight accompanying to the 



Algorithms 2020, 13, 73 6 of 21 

variable �, and l� is the eigenvalue accompanying with the axis s, �� the weight accompanying to 

the individual�, ��� is the data table of row�, and column �. 

�� (�) =
1

�l�

 � �������(�)

�

 (1) 

�� (�) =
1

�l�

 � �������(�)

�

 (2) 

In this study, the multivariate analysis has been implemented using R language. Two R 

packages, namely FactoMineR [34] and FactoextraR [35], have been applied. FactoMineR has been 

used here for performing a multivariate exploratory data analysis. FactoextraR package has been 

used for computing variances in retrieved principal components. We have visualized individuals that 

are used during the principal component analysis, which appear as Affy Ids, ranked from the smallest 

p-value to larger ones. Then, we validated the data to extract significant genes that affect the 

replication cycle of the C virus. 

3.4. Validating the extracted Key Genes 

Mining the biological databases and literature, and examining the gene signal profiles for the 

top ranked extracted key genes have been extensively carried out in this work, as will be illustrated 

in the results section. However, the classification of HCV-infected and disinfected samples using the 

conventional classification algorithms has suffered from a deficiency in the number of samples. 

Twenty-four infected and disinfected samples are too insufficient to be split into training and testing 

samples. Most probably, the classification algorithms yield a worse predictive performance after 

being trained and tested on such a low number of samples. Therefore, in this work, we are proposing 

data augmentation of the expressions of the extracted key genes in the twenty-four samples to 

generate additional samples, as shown in Figure 3. A sparse autoencoder has been applied here, as it 

is one of the furthermost working methods for the field data augmentation [17]. It is a feed-forward 

deep neural network that generates an output, data  X’, that is similar to an input data X using a set 

of low-dimension hidden layers [18]. A sparse autoencoder is an unsupervised neural network 

learning approach that tries to predict an output that is very close to its input. The input data are 

passed to an encoder which compresses and encodes the data. The encoded data, in turn, will be 

decompressed via a decoder. The weights of the closing hidden layer are the compressed picture of 

the input from which an approximated version of the original data can be regenerated. The number 

of nodes of both the input layer and the output layer are the same in case of data reconstruction.  

 

Figure 3. The proposed data augmentation model using a sparse autoencoder to generate additional 

samples. 
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In our experiment, a gene expression matrix of the most significant retrieved genes, with a p-

value less than 0.005, is the input data, X, to the autoencoder. Ten autoencoders have been trained in 

an unsupervised manner with no labels to its input data examples, so the number of generated 

samples is 240. Each autoencoder consists of an encoder, hidden layers, and a decoder. Satlin, and 

purelin (defined by Equations 3, and 4 respectively) have been applied for the transfer function of the 

encoder and the decoder, respectively. The learning model tries to minimize the difference between 

the generated and original data (X and X’), so the cost function of the training model has been 

adjusted as a mean squared error function between X and X’. The learning model is trained for 1000 

epochs, 0.04 as a coefficient of L2 regularization term, and 4 as a sparsity regularization term.  

�(�) =  �

−1            �� � < −1
        �            �� − 1 < � < 1

1               �� � > 1
� (3) 

�(�) =  �  (4) 

4. Results and Discussion 

4.1. Biological validation of extracted Key Genes 

By mining the KEGG pathways [36], and NCBI Entrez system, the biological interpretations of 

the extracted key genes are listed in Tables 1–4. Each table contains the following details about the 

extracted key genes : the affy ID, gene symbol, Entrez ID, oncology, and the gene pathway. 
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Table 1. Functional annotation of key genes detected using T-test, and F-test methods after different periods of post-infection with C virus. 

AFFY ID 
Gene 

Symbol 

ENTREZ Gene 

ID 
Oncology Gene Pathway 

201010_s_at, 

201008_s_at, 

201009_s_at 

TXNIP 10628 

Breast cancer ,prostate Carcinoma, 

colorectal carcinoma, Hepatocellular 

Carcinoma (HCC) 

REACT_75808. The NLRP3 inflammasome. 

cellular response to tumor cell 

203438_at, 

203439_s_at 
STC2 8614 

Colorectecal cancer , Breast cancer 

,Mutation of HCC 
KEGG: hsa: 8614. 

205047_s_at ASNS 440 
Cancer, 

Protein and/or amino acid deprivation 

REACT_238. liver development. REACT_18355.  

ATF4 activates genes. 

202887_s_at DDIT4 54541 
Pancreatic tumor, prostate cancer, lung 

carcinoma 

REACT_355377. 

TP53 Regulates Metabolic Genes 

219270_at CHAC1 79094 downstream of the ATF4 

KEGG: hsa79094 

CHAC1 is a component of the UPR, unfolded protein response 

pathway. 

206085_s_at, 

217127_at 
CTH 1491 Bladder Cancer 

REACT_115589.  

Cysteine ormation from homocysteine 

1556499_s_at COL1A1 1277 
Mutation in liver, infirative skin 

carcinoma, bendnar carcinoma 

REACT_118779.  

Extracellular matrix organization. cascade. 

210587_at INHBE 83729 hepatocellular carcinoma, HCC REACT_15398. Glycoprotein hormones 

202672_s_at ATF3 467 Solid tumor REACT_18355. ATF4 activates genes. 

Table 2. Functional annotation of key genes detected using cosine coefficient and Pearson’s correlation methods after different periods post-infection with C virus. 
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AFFY ID 
Gene 

Symbol 

ENTREZ Gene 

ID 
Oncology Gene Pathway 

213322_at OARD1 221443 infiltrating duct carcinoma KEGG: hsa: 221443. 

36711_at MAFF 23764 leukemia/lymphoma (BCR-ABL1) 
REACT_24970. megakaryocyte, and platelet 

construction. 

205749_at CYP1A1 1543. 
hepatocellular carcinoma, NOS, unstated 

behavior 

KEGG: hsa: 1543. 

REACT_116145. PPARA activates gene 

expression. 

219371_s_at KLF2 10365. chronic lymphocytic B-cell leukemia KEGG: hsa: 10365. 

212558_at SPRY1 10252 HCC, gastrointestinal stromal sarcoma REACT_12484. EGFR downregulation. 

205047_s_at ASNS 440 
Cancer, 

Protein and/or amino acid deprivation 

REACT_238. 

liver development. 

REACT_18355. 

ATF4 activates genes. 

201010_s_at 

201009_s_at 
TXNIP 10628 

HCC ,Breast cancer ,prostate Carcinoma, 

colorectal carcinoma 

REACT_75808. The NLRP3 inflammasome. 

cellular response to tumor cell 

203119_at CCDC86 79080 HCV, squamous cell carcinoma KEGG:hsa79080 

232780_s_at ZNF691 51058 Infiltrating duct carcinoma REACT_12627. Generic Transcription Pathway. 

202847_at PCK2 5106 HCC KEGG:hsa00020Citrate cycle (TCA cycle) 
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Table 3. Functional annotation of key genes detected using Euclidean distance after different periods post-infection with C virus. 

AFFY ID Gene Symbol ENTREZ Gene ID Oncology -Gene Pathway 

36711_at MAFF 23764 leukemia/lymphoma (BCR-ABL1) 
REACT_24970. Megakaryocyte and platelet 

construction. 

205749_at CYP1A1 1543. 
hepatocellular carcinoma, NOS, 

unstated behavior 

KEGG: hsa: 1543. 

REACT_116145. PPARA activates gene expression. 

209775_x_at SLC19A1 6573. anaplastic large cell lymphoma  
KEGG: hsa 6573. 

REACT_11167. Metabolism of folate and pterines. 

205767_at EREG 2069. 
chronic myelogenous leukemia 

(BCR/ABL-positive) 

KEGG: hsa 2069. 

REACT_147727. Signaling by PI3K in Cancer. 

217996_at PHLDA1 22822 gastrointestinal stromal sarcoma KEGG: hsa: 22822. 

226515_at 

 
CCDC127 133957 renal cell carcinoma KEGG:hsa:133957 

206085_s_at, 

217127_at 
CTH 1491 Bladder Cancer 

REACT_115589. 

Cysteine ormation from homocysteine 

225285_at BCAT1 586 HCC REACT_197. Branched-chain amino acid catabolism. 

202847_at PCK2 5106 HCC KEGG:hsa00020Citrate cycle (TCA cycle) 

209173_at AGR2 10551 Breast Cancer KEGG: hsa: 10551. 
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Table 4. Functional annotation of detected key genes using PCA after different periods of post-infection with C virus. 

AFFY ID Gene Symbol ENTREZ Gene ID Oncology Gene Pathway 

204892_x_at EEF1A1 1915 HCC REACT_1404. Peptide chain elongation 

1553567_s_at ATP6 4508. HCC, adenoma REACT_6759. Development of ATP.  

200801_x_at ACTP 948575. hematopoietic KEGG: eco: b4067. 

212788_x_at FTL 2512. HCC 
REACT_163699. Scavenging by Class A 

Receptors. 

200801_x_at ACTB 60 Langerhans-cell histiocytosis 
REACT_20649. Cell-extracellular matrix 

interactions. 

201596_x_at KRT18 3875. HCV, adenocarcinoma KEGG: hsa: 3875. 

1553570_x_at COX2 5743 Adenocarcinoma, Mutation in HCC REACT_11213. Nicotinamide salvaging. 

224372_at MTND4 4538. Adenocarcinoma, Mutation in HCC 
REACT_22393. Respiratory electron 

transport. 

212661_x_at PPIA 5478. 
Burkitt lymphoma 

Mutation in HCC 
REACT_9406. HIV-1 infection. 

221798_x_at RPS2  anaplastic large cell lymphoma  

1553538_s_at COX1 5742. Mutation gene in HCC REACT_1396. COX reactions. 

211296_x_at UBC 7316. leukemia/lymphoma 
REACT_115852. Signaling by EGFR 

Cancer Variants. 
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4.2. Signal profiles and P-values of extracted Key Genes 

The gene signal profiles of top ranked key genes retrieved using each feature selection method 

are shown in Figures 4–7. Each gene signal is plotted in HCV-infected and disinfected samples and 

its P-value is attached along with its Affy ID. The signal profile illustrates the up/downregulated 

genes. Each figure represents the plot of the gene expression value in the disinfected and infected 

samples. The x axis represents the samples, 12 samples for the disinfected samples and 12 for the 

infected one. The Y axis represents the gene expression value. 

 

Figure 4. The gene signal profile of top ranked key genes retrieved using T-test and F-test. 

 

 



Algorithms 2020, 13, 73 13 of 21 

Figure 5. The gene signal profiles of top ranked key genes retrieved using Cosine and Pearson’s 

correlation. 

 

Figure 6. The gene signal profiles of top ranked key genes retrieved using Euclidean distance. 

 

Figure 7. The gene signal profiles of top ranked key genes retrieved using PCA. 

4.3. Discussing the relevance of extracted Key Genes based on their Biological examination and signal profiles  

The significance of those genes listed above, and their contributions in cellular functions and 

malignancies that may happen as risky outcomes of HCV, are discussed here in this section. An 

identical list was retrieved using T-test and F-test. It can be inferred that there is a major distinction 

between the two means of normal and infected samples. Additionally, the whole values of gene 

expression in infected samples are considerably completely different than the mean of gene 
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expression value in disinfected samples. This is often a validation of the importance of the retrieved 

genes as key genes for the risky outcomes of HCV. TXNIP, a Thioredoxin interacting protein, has 

been detected as a downregulated gene, as shown in Figure 4, in all periods of post-infection (12, 18, 

24, and 48 hours) using T-test and F-test. TXNIP is known as a vitamin D3 protein and convoluted in 

a varied range of cellular developments, as well as apoptosis, proliferation, lipid and glucose 

metabolism, and may additionally be concerned within the metastasis of a range of tumors [37]. 

Stanniocalcin 2 (STC2) has been detected as a downregulated gene in three periods of post-infection. 

The encoded protein of STC2 is significant in the regulation of renal and intestinal calcium. Variations 

in the expression of STC2 may contribute to the appearance of breast cancers, Colorectecal cancer, 

and HCC, as discussed in [38]. Asparagine synthetase(ASNS) and DNA-damaged inducible 

transcript 4 (DDIT4) have been detected as downregulated in all studied periods of post-infection 

with HCV. The ASNS gene is extremely regulated in stress, liver development, and HepG2 human 

hepatocellular carcinoma [39]. DDIT4 has been detected as a downregulated gene, and it encodes a 

protein that is well known as a biomarker for the prognosis of different types of cancer including 

liver cancer [40]. In addition, DDIT4 is associated with the TP53 pathway, which is a significant 

pathway for HCC according to the biological literature [40]. INHBE, inhibin subunit beta E, is 

detected as a downregulated gene after 24, and 48 hours of post-infection. This gene is regulated in  

cell proliferation, immune response, apoptosis, and hormone secretion [41]. Cystathionine gamma-

lyase, CTH, has been detected as downregulated. CTH encodes an enzyme in the cellular processes 

of liver and kidney and it is a prognostic biomarker for bladder cancer [42]. CHAC1 has only been 

detected in the first and second periods of post-infection. CHAC1 encodes a protein in the ATF4 

signaling. However, these genes are recommended as novel key genes in the replication cycle of HCV, 

as they have not been addressed before in the literature for HCV, liver cirrhosis, and HCC. COL1A1 

has been detected as upregulated after 12 hours of post-infection. COL1A1 has been reported recently 

as a highly up-regulated biomarker in HCC cancer tissues. COLIA1 can suppress the clonogenicity 

of HCC cells and help in the early survival of the HCC and play a great role in the target therapy of 

HCC [43]. 

The univariate methods, Pearson correlation, cosine coefficient, and Euclidean distance, have 

also yielded a similar list of key genes. KLF2 is the most significant key gene that has been detected 

using these methods. Its signal profile was as a downregulated gene in the infected tissues. The 

protein expression of KLF2 was enlarged in HCC cells [44]. ASNS, TXNIP, and PCK2 have been 

detected downregulated also, with significant p values, according to Figure 5. The PCK2 gene has 

been reported as a downregulated gene in primary HCC and a forced expression of PCK2 was 

suppressed the HCC tumorigenesis in an experiment on mice [45]. OARD1, SPRY1, and ZNF691 are 

downregulated detected genes. The role of OARD1 has been investigated in [46]. SPRY1 is related to 

the Sprouty Protien and has been investigated in [47]. They revealed that its expression is 

overexpressed in HCC. The role of ZNF691 gene in the HCC tumorigenesis has not been investigated 

yet. CYP1A1, from cytochrome P450 family 1, has been detected as downregulated in the first period 

of post-infection. A study on the contribution of CYP1A1 in the risky outcomes of an HCV-infected 

patient was done in [48]. They investigated the impact of polymorphisms of the CYP family of genes 

on the progression of liver diseases. Their study showed that Polymorphic modifications of CYP 

family genes could result in the development of liver infection and occurrence of HCC risk. MAFF 

and CCDC86 were insignificant according to their P values, shown in Figure 5. MAFF has been 

detected in the first and second periods of post-infection. MAFF regulates a diversity of goal genes, 

including genes responsible for platelet production and genes responsible for antioxidant/xenobiotic 

enzyme. MAFF has been conveyed in the regulation of the oxytocin gene. However, the involvement 

of MAFF within the regulation of genes and proteins significant for HCV and HCC has not been 

inspected to date [49]. CCDC86 has a contribution in the formation of HCV [50].  

By using the Euclidean distance gene selection method, a lower number of significant genes 

were retrieved, according to P values, as shown in Figure 6. CYP1A1, MAFF, and PCK2 genes have 

been retrieved. CTH, BCAT1, EREG, PHLDA1, and AGR2 have been retrieved as downregulated 

genes with significant P values. CTH has been differentially expressed in normal and tumor HCC 
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tissues [51]. BCAT1 has a highly significant expression in HCC samples compared to normal samples, 

as stated in [52], EREG has contributed in the hepatocarcinogenesis, as testified in [53], PHLDA1 has 

been detected as a novel biomarker of HCC, as it expressed differentially in the experiment done in 

[54], and AGR2 has high expression values in metastatic hepatocellular carcinoma samples, as found 

in [55]. Other retrieved genes, including SLC19A1, CCDC127, and MAFF, were unexpressed 

differentially according to their P values. 

Using PCA, several HCC biomarkers (EEF1A1, ATP6, and FTL) have been detected in the four 

periods of post-infection with C virus, as shown in Table 4. EEF1A1 is a well-known HCC biomarker 

and is considered one of the top 20 genes related to human hepatocarcinoma cell lines. EEF1A1 has 

been reported as a novel prognosis biomarkers for liver cancer using a multivariate analysis done in 

[56]. In our experiment, EEF1A1 was retrieved as a down-regulated gene with a significant p value, 

as illustrated by Figure 7. However, ATP6, and FTL were unexpressed, with p values > 0.005. RPS2 

was downregulated with a significant p value. RPS2 was founded in [57] as a significant key gene for 

HCC. ACTB gene has been detected as upregulated with a significant p values. ACTB was expressed 

differentially in the study done in [58]. Although the other retrieved genes were related to liver 

diseases (HCV, and HCC) in the biological literature [59–61], including COX1, COX2, KRT18, PPIA, 

UBC, and MTND4, they were unexpressed in this study. 

4.4. Examining the relevance of extracted Key Gens using Conventional classification & Data Augmentation  

The key genes expression matrix has been augmented using the sparse autoencoder to generate 

more samples, as we have an insufficient number of samples. The augmented data has been applied 

to the classification of HCV-infected and disinfected samples Each autoencoder consists of an 

encoder/decoder module with one hidden layer in each module. The training procedure is built on 

optimizing the cost formula, which calculates the error between the input data X and its regenerated 

output data, X’, on each iteration. The mean square reconstruction error of autoencoder has been 

calculated for the generated samples, as illustrated by Table 5. The effectiveness of the generated 

feature matrices has been investigated by comparing their performance in classifying the HCV-

infected and disinfected samples. The following conventional supervised classifiers, including Linear 

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Support Vector Machines 

(SVM), and K-Nearest Neighbor (KNN), have been extensively tested. In KNN, three values of K 

have been tested, including 1, 3, and 5. In SVM, three kernel functions have been employed, including 

linear, polynomial, and the Radial Base Kernel Function (RBF). Two polynomial orders (2, and 3) has 

been applied for the polynomial kernel function. Standardized and optimized RBF have been 

employed. All classifiers have been trained using 10-fold cross-validation to prevent over-fitting. 

During each fold, the learning model has been trained on nine divisions and verified on the 10th. The 

confusion matrix has been calculated in each fold and a summarized one was used to calculate the 

accuracy. Table 6 illustrates the classification accuracy for all feature selection methods discussed 

here. The highest accuracies are highlighted in a grey color. The retrieved key genes using T&F test 

have yielded the highest classification accuracy, 95.83%, using the QDA classifier. The extracted key 

genes, using PCA test, have returned a classification accuracy of 93.75% using the QDA classifier. On 

the other side, the key genes retrieved using PCA, and Euclidean distance have returned a 91.67% 

classification accuracy using the SVM classifier. 

Table 5. The mean squared reconstruction error of the generated samples using sparse 

autoencoder. 

Feature selection Method 
Mean Squared Reconstruction Error of the Generated 

Samples 

T, and F test 0.0891 

Pearson’s correlation, and cosine 

coefficient 

0.04966 
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Euclidean distance 0.05345 

Principal component analysis (PCA) 0.005861 
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Table 6. The classification accuracies based on the generated samples of the extracted key genes. 

Feature Selection 

Method 

LDA-

Linear 

QDA - 

Quadratic 
KNN SVM 

  K=1 K=3 K=5 
SVM - 

Linear 

SVM - 

Quadratic 

SVM - 

Cubic 

SVM - 

RBF 

SVM - RBF 

Optimized 

T and F test 66.7 95.83 79.1667 68.75 60.417 37.50 66.667 79.167 56.25 83.334 

Pearson’s correlation 

coefficient, cosine 

coefficient 

48 62.5 75 62.5 56.25 37.50 64.583 85.417 72.916 85.4167 

Euclidean distance) 

 
69.75 78.2 81.25 79.167 77.083 50 81.25 85.417 81.25 91.667 

Principal component 

analysis (PCA) 
70.8 93.75 85.41667 70.8334 72.9167 50 89.5833 87.50 77.083 91.667 
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5. Conclusions 

In this work, we have used the classical feature selection techniques, univariate method and 

multivariate methods, to detect up/downregulated genes which have a role in understanding the 

identification and characterization of the HCV replication cycle. This study has yielded 15 

downregulated key genes (TXNIP, STC2, ASNS, DDIT4, CTH, CHAC1, INHBE, KLF2, PCK2, 

OARD1, SPRY1, ZNF691, CYP1A1, EEF1A1, and RPS2) for studying the outcomes of HCV infection. 

Only two upregulated key genes (COL1A1, and ACTB) were detected. In addition, a deep neural 

network approach has been proposed to augment the insufficient number of samples. The augmented 

data has been employed in a training set of conventional classification algorithms. The classification 

accuracy can reveal the relevance of the extracted key genes in classifying the HCV-infected and 

disinfected samples.  

Supplementary Materials: All data analyzed here in this study has been published in [4]. Twenty four samples 

were downloaded from NCBI gene expression data repository, Gene expression Omnibus (GEO) [31]. These 

samples contain fourteen infected samples, Huh7 cells_JFH-1 and the remaining are controlled samples, Huh7 

cells_Mock. Extracted RNA was hybridized on Affymetrix microarray chips, Human U133 plus 2.0 at different 

period of post infection (12, 18, 24, and 48 hours). Data samples have GSE20948 as GEO accession number, and 

were pre-processed using an open source package, Affy, provided by Bioconductor [32].  

Funding: This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman 

University through the Fast-track Research Funding Program. 
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