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Abstract: Dynamic Bayesian networks (DBNs) represent complex time-dependent causal
relationships through the use of conditional probabilities and directed acyclic graph models. DBNs
enable the forward and backward inference of system states, diagnosing current system health,
and forecasting future system prognosis within the same modeling framework. As a result, there
has been growing interest in using DBNs for reliability engineering problems and applications
in risk assessment. However, there are open questions about how they can be used to support
diagnostics and prognostic health monitoring of a complex engineering system (CES), e.g., power
plants, processing facilities and maritime vessels. These systems’ tightly integrated human, hardware,
and software components and dynamic operational environments have previously been difficult to
model. As part of the growing literature advancing the understanding of how DBNs can be used
to improve the risk assessments and health monitoring of CESs, this paper shows the prognostic
and diagnostic inference capabilities that are possible to encapsulate within a single DBN model.
Using simulated accident sequence data from a model sodium fast nuclear reactor as a case study,
a DBN is designed, quantified, and verified based on evidence associated with a transient overpower.
The results indicate that a joint prognostic and diagnostic model that is responsive to new system
evidence can be generated from operating data to represent CES health. Such a model can therefore
serve as another training tool for CES operators to better prepare for accident scenarios.

Keywords: dynamic Bayesian networks; prognostics and health management; complex engineering
systems; causal modeling; risk assessment; safety monitoring

1. Introduction

Most industries depend heavily on the functionality of large and costly systems with tightly
integrated hardware, software, and human components. Safety risks, financial concerns, and industrial
regulations require modeling and predicting the health state of such complex engineering systems
(CESs). One modeling framework, dynamic Bayesian networks (DBNs), has shown the ability to
infer complex time-dependent causal relationships between nodes connected within these models [1].
As such, there has been growing interest in using DBNs to assess current CES health and model future
system health. Applying causal-based reasoning to CES operational data has the potential to generate
diagnostic system state models, as well as prognostic outlooks on the future health of the system
or potential causes of system failure. However, there are still questions regarding how to make this
prognostics and health management (PHM) process effective and efficient for the fast-paced cycle of
industry operations and accident sequences.

This paper shows how a DBN model helps provide system health prognostic and diagnostic
capabilities for monitoring the health of a CES. Due to the wide range of failure points, components,
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and data streams that a CES may have, a structured approach is needed to systematically describe
and define regions within the model that capture both the CES and the accident scenario space. Using
simulated accident sequence data from a transient overpower (TOP) event within a sodium fast nuclear
reactor (SFR) as a case study, a joint diagnostic- and prognostic-focused DBN model is constructed from
the reactor’s operational data and accident scenario conditions. The output of the model is a posterior
estimate for the overall health of the system, the nature of the accident, and potential reactor outcomes.

This paper first discusses the need CESs have for diagnostic and prognostic functions and the
challenges that current PHM approaches face when applied to complicated systems (Section 2).
An introduction into DBNs and their inference capabilities is then followed by an explanation of how
DBNs can be structured around the requirements of CES health monitoring. This framework is then
demonstrated through the SFR TOP case study. After the example reactor and accident scenario setups
are described, the paper traces the process of constructing a prognostic and diagnostic model for
the SFR (Section 3). Model verification results and observations on the model construction process
are included in the discussion section, as well as thoughts on future work to improve the model
framework’s effectiveness and relevancy to real world systems (Section 4).

2. Materials and Methods

The use of sensors to monitor the health of strategic system components has led to an increase in
the availability of data regarding the system’s current performance. These data have the potential to
provide diagnostic information about the current health of the overall system, as well as a prognostic
assessment of the future state of the system given its current health status. Understanding the current
and potential future health states of a system allows its operators and maintainers to make more
informed critical operating or maintenance decisions to prolong a system’s operating life before it
loses critical functionality. This is a priority for systems that are mission-critical, expensive to repair or
replace from a failed state, or pose a safety risk to humans and other associated systems if not fully
operable. This process of converting data and expert knowledge from CESs into informed diagnostic
and prognostic decisions is illustrated in Figure 1.

Figure 1. Modeling complex engineering systems (CESs), such as power plants and large maritime
vessels, with causal-based models such as dynamic Bayesian networks, provides system operators and
maintainers improved diagnostic and prognostic awareness. This causal knowledge about the system
is particularly important following an accident event when action is needed to mitigate system damage
and loss of functionality.

Previous PHM research has focused predominantly on smaller components and subsystems. This
is in part due to the increased availability of life data for these smaller systems. Additionally, it is easier
to assume independence when identifying potential interactions that lead to system or component
failure. These prognostic techniques often rely on data coming from a single sensor or sensor type.
In his literature review, Guo [2] states that there are three categories for the different approaches to
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converting system data into a future system health assessment: data-driven, expert-based (often in
the form of a physics-based relationship), or a hybrid compilation of the two. Monitoring CES health,
however, is more difficult. These systems have multiple integrated hardware, software, and human
components functioning together. The subsystems within the platform provide a complicated network
of dependencies and common-cause failures. Data from a single data sensor is not sufficient for
providing an accurate depiction of system health, and, as a result, prognostic techniques for complex
systems require the fusion of data of various types and sources. In their work, Jardine et al. [3] found
that data fusion in prognostics takes place in three different approaches based on the data, features,
and decisions. Despite these challenges, PHM is an important capability for system operations
as many of these CESs are critical to maintain, costly, and potentially harmful if not functioning
correctly. This is shown by Muller et al. [4] as their prognosis model was designed to support large
industrial maintenance.

Because of the additional hurdles associated with the system health monitoring of complex
engineering systems, there have been many different approaches towards generating PHM for complex
engineering systems (PACES). An initial approach was identifying relationships within the subsystems
and expanding them to the system level. Weber and Jouffe [5] modeled the reliability of complex
systems with an object-oriented approach. Over time, PHM strategies continued to incorporate more
data from various sources [6]. In 2020, Li et al. [7] created a systematic methodology for defining
and designing PHM for aircraft maintenance. While some methods rely on machine learning to take
advantage of the large amount of system data available, others adopt a fundamentally different tactic
relying on expert knowledge. For example, Zio and Di Maio [8] approached dynamic failure scenarios
through fuzzy on-line estimations of the remaining useful life (RUL) of nuclear plants. In these lines of
research, the focus was on identifying the future state of the system, rather than diagnosing the current
system health.

2.1. Dynamic Bayesian Networks and Related Research

Although there are many manners in which prognostics and overall system health can be assessed
for complex systems, the remainder of this paper will focus on one potential modeling method: the
dynamic Bayesian network (DBN). Bayesian networks, such as the ones illustrated in Figure 2, are
directed acyclical graphs that convey causal relationships through directed arcs between their nodes of
associated conditional probabilities [9]. DBNs have been increasingly used in reliability and system
safety-related research, as they allow for causal-based inference calculations on hard-to-measure
system states while providing a clear direction-based relationship within the structure of the model.
The conditional probability tables and initial value distribution used in the networks are calculated
from available data or determined through expert-based opinions. Critical to a DBN’s construction is
the assumption that future operational conditions are known or stable enough for reliable modeling;
works by Djeziri et al. [10] and Mosallam et al. [11] have begun to consider necessary conditions for
capturing these missing data.
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Figure 2. Sample static Bayesian network (left) and dynamic Bayesian network (DBN) (right). Both
models have a relationship structure of nodes and directed arcs as well as conditional probability tables
for those relationships; however, dynamic nodes within the DBN also need an initial distribution for
their states.

Risk-focused and reliability engineering studies have shown the versatility of these models with
respect to system reliability and monitoring system health. Early research connected DBN formalisms
to reliability block diagrams [12], dynamic fault trees [13], and Markov chain models [14]. As part of
their extensive literature review on the use of Bayesian networks for fault diagnostics, Cai et al. [15]
found that more recent research used these fundamental reliability relationships to pursue specific
areas of reliability engineering research, including process, structural, and manufacturing systems.
Amin et al. [16] used DBNs to determine a dynamic availability assessment of safety critical systems,
while Wu [17] found that DBNs could be used to make safety decisions for tunnel constructions.
Rebello et al. [18] relied on hidden Markov models (HMMs) to monitor system functionality through
DBNs. These researchers wanted to capture the dynamic qualities that would otherwise not be
accessible to static models. In addition to the use of DBNs for system diagnostic purposes, there has
been some research into whether this method could be used for prognostics as well. Medjaher et al. [19]
represented a small industrial system through DBNs to determine the expected prognostics of the
system. Zhao et al. [20] proposed the use of DBNs to monitor fault diagnostics and loss-of-coolant
accident progression prediction in a high-temperature gas-cooled reactor pebble-bed module (HTR-PM)
reactor. In each of these instances, an emphasis was placed either on the system health prognostics
or diagnostics of the system; there has been limited effort made to combine this information into a
single model.

DBNs are also used in modeling for risk management of systems. Initial research by Kohda and
Cui [21] found that DBNs could be applied to a safety monitoring system to improve its capabilities.
Khakzad [22,23] has shown the applicability of DBNs in capturing performance assessments in fires
in chemical plants. Groth et al. [1] have used DBNs as part of a process for providing risk-informed
diagnosis procedures. However, there has not been a significant push to merge risk-informed dynamic
Bayesian models with the system health of a complex engineering system to generate insight into the
current health of the system.

2.2. Using Dynamic Bayesian Networks to Model Complex Engineering Systems

One of the primary characteristics of Bayesian networks and other causal-based models heavily
used in previous research efforts is that evidence concerning the state of one node can lead to an
updated estimate of the value of another node within the model through logical inferences. The ability
to infer the status of nodes within a dynamic Bayesian network translates into a powerful tool for
understanding the current health condition of a system. DBN nodes can represent a wide range of
features within a system, from individual sensors to entire subsystems. As inference capabilities are
associated with the directed arcs between nodes, i.e., the node relationships, information about the
system can act as evidence in one section of the model, which then travels to other parts of the model.
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This allows the DBN model to utilize more evidence and provide more insight into the system than
otherwise expected. The dynamic aspect of DBNs is the repeated occurrence of evidence for the same
node. For this case study, and in most instances, DBNs are characterized as a two-time-step model, in
which the current node values are only related to the immediate time step beforehand. This Markov
structure, therefore, suggests that for a given Bayesian network with Xn variables, the underlying
probability that a certain scenario would occur, P, is based on Equation (1) from Cai et al. [15]:

P(X1, X2, ..., Xn) =
n

∏
j=1

P(Xj|parents(Xj)) (1)

where parents(Xj) is the set of nodes with arcs into the variable Xj. This may not hold for networks
that have more complicated time-based ordering; however, this assumption is often used for the ease
of modeling dynamic relationships.

Since inference generated within a DBN can run from parent to child nodes and vice versa,
information from separate parts of the model can provide information to other aspects; for a CES, this
widens the range of information available for use. As a result, DBN models designed to monitor CES
health can have nodes for sensors, components or subsystems that a) either provide useful or readily
available data for use as system evidence, or b) are aspects of the CES that operators and maintainers
would want to know information about. Consider the theoretical DBN shown in Figure 3. Information
provided about an operator’s behavior or the system’s environment may change the expected state of
a specific component’s or the system’s overall health.

Figure 3. Theoretical DBN construct that indicates the relationships between event/accident data,
system information from sensor data, the overall system diagnostics, and prognostics. Additional
information about each node could then be used to infer posterior estimates of the other nodes.

A DBN model designed to monitor and provide information on the health state of a CES following
a major accident should incorporate not only operational system information, but also the conditions of
potential accidents. As shown in Figure 4, DBN models representing this CES scenario can be structured
using four distinct data regions. Each section of the model has its own node types, data availability,
and purpose for managing CES health. These four regions are:

• Accident State: the nodes within this region represent the different accident events the system
might encounter that this model covers. Typically, CESs are operating at normal or baseline
conditions until one of these events occur; after an accident, the system will be operating under
different circumstances. The type of accidents that this model covers may be either external to the
system (i.e., an earthquake or a power outage) or internal (sabotage). Depending on the potential
accidents that may impact the CES, different accident nodes will be needed to reflect different
states that may not be mutually exclusive and occur at the same time;
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• System Information/Sensor Data: CESs generate a sizable amount of data of different types and
in varying frequencies. These data can take the form of sensor readings, analytical measurements,
and status and maintenance reports, and can either be continuous or discrete. Since data sources
are frequently updated with new system information, these are the “dynamic” nodes of the DBN.
The classification of data into discrete bins is dependent upon the nature of the data; however,
a common bin distribution would be for “normal operating conditions”, “above operating
conditions”, and “below operating conditions”. This region is predominantly where additional
model evidence is added to the DBN, as extra information can be used to make informed decisions
about the nodes in the other regions;

• System Prognostics: this region of the model provides insight into potential failure modes that a
CES might fail from given a particular accident. These are typically distinct from other prognostics
techniques, which might indicate a remaining useful life of the system; rather than indicating
whether a system will be healthy or faulty at a given point in time, these nodes indicate what will
be the resulting failure of the system given the current system information and data. Examples
may include “metal cladding failure” or “short-circuit” and are often expressed as a binary
option (i.e., “Yes/True” and “No/False”). Each failure event state should be considered as a
separate node;

• System Diagnostics: Based on the system prognostics estimate captured in the “System
Prognostics” region, CES health can be assessed by whether or not the system will fail from
another failure mode other than expected failures at the end of its life cycle. Unlike the other
nodes, this region can be fully captured in a single node with a number of mutually exclusive
states; depending on the CES’s structure, this approach can be used on the subsystem level as
well. An easy way of expressing this is through a simple OR gate-style node for overall system
health. Examples of states may include “Healthy”, “Faulty”, or “Inoperable”.

Figure 4. The nodes within a DBN model designed to monitor CES health following an accident event
can be classified into four information regions: accident state, system information and sensor data,
system prognostics, and system diagnostics. The arrows drawn between the information regions
reflect the directed relationships; the model is designed so that each node is fully connected to
the child information region (i.e., each “Accident State” node is fully connected to every “System
Information/Sensor Data” node and every “System Prognostics” node).

Following Figure 4, information about the accident state as well as system or sensor data provide
information about the current system diagnostics. An understanding of the current system health in
conjunction with the system measurements can be used for system prognostics to identify potential
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causes of system failure. Because of the relationship arcs connecting the four different regions within a
DBN, a model structured in this manner can be used to provide diagnostics and prognostics. From the
information provided by the sensor and an understanding about the accident sequences, understanding
about the current health of the system can be determined. Using the time-dependent relationships
of each system as well, that information can be propagated backwards to adjust understanding of
the system. This will in turn adjust the current understanding. Similar to diagnostics, a predictive
end state can be introduced into a DBN. The benefit of including this in a temporal network is that
the probability of certain prognostic updates can fluctuate, and these can then be used to make a
prediction over the state of the system. Information provided about the current system can then be
used to calculate the future outcomes that the system might face.

This structure of system data and model evidence into these distinct information regions is
scalable to address the different accidents, data types, and prognostics failure modes. It is also
compressible: a purely prognostics-focused model can have the failure state nodes act as root nodes,
while a solely diagnostics model would have a singular failure mode in the system prognostics
information region: “Failure”. In that case, the resulting diagnostics node would simply duplicate the
probabilities calculated for the prognostic node; it acts as an identity node for the binary failure state.

2.3. Case Study: Transient Overpower Event (TOP) in a Sodium Fast Reactor (SFR)

In order to show how such a DBN structure can be used to provide joint prognostics and diagnostic
capabilities aimed at assessing CES health and their potential failures following an accident event,
the remainder of this paper will present a sample DBN for modeling and monitoring an SFR reactor
in a transient overpower event. This case study is a simplified exercise conducted by Groth et al. [1]
with the data modifications made by Jankovsky et al. [24]. This section will begin with a description
of both the SFR and the TOP scenario that the model is designed to monitor. The construction of
the model is then discussed. Results from the model will then be used to illustrate the additional
prognostic and diagnostic capabilities that DBNs can provide for complicated systems and processes
with multiple integrated parts. These sections are written as a fairly high overview; further details
regarding the accident dataset and the overall DBN construction process are covered in Appendix A
and Appendix B, respectively.

2.3.1. Case Study Background—Reactor and Accident Description

For this case study, a Sodium Fast Reactor (SFR) will serve as a typical complex engineering system.
As these type of reactors rely on fast-neutron activity, the need for other equipment is minimized,
making them useful models for complicated nuclear reactions. In addition to the nuclear core,
the system has a balance of plant and an auxiliary cooling process; however, for this demonstration,
the focus will be on the reactor core itself. Although there are multiple components to a sodium fast
reactor that provide a significant amount of system information through sensors and operational
reports, this initial study will focus on a limited number of data sources, namely the primary drivers
for the automatic scramming process to shut down reactor power.

In this case study, the primary accident event described through the DBN model is a transient
overpower (TOP) event. Such an event can be caused by external factors, e.g., an earthquake, that
result in a sudden surge of power generation in the reactor. When such an event occurs, the reactor’s
automatic scram mechanism is expected to respond by inserting control rods into the reactor to
greatly reduce power generation; common indicators for the automatic scram mechanism include large
power-to-flow readings, as well as high values of reactor pressure, inlet, and outlet temperature [24].
Depending on the cause of the accident, however, scram functions may be impacted, limiting their
ability to prevent core reactions from further escalating. If this were to occur, the reactor would
face significant failure challenges with fuel relocation and clad melting, resulting in a partial or full
nuclear meltdown.
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The accident data used in this case study is from the study by Jankovsky et al. [24]. In their
report, a series of accident event scenarios were constructed using a dynamic event tree that addressed
potential failure points in response to the TOP. Based on the event scenario specifications, simulation
models focusing on different aspects of the nuclear reactor were used to produce different parameters
necessary for monitoring overall system health. The models were run to simulate data readings
throughout the reactor and balance of plant a day after a transient overpower event (86,400 simulation
seconds). The scenario was considered finished when either: the cladding fraction of the core channels
reached an average of 90% (representing a clad melting failure); the temperature of the cold pool had
reached a significantly high temperature (representing a fuel relocation); or the reactor had survived
the day without reaching those other thresholds. In that instance, it is assumed that operators would
have enough time to address any problems with the system’s processes.

Three datasets captured different parameters that could be used to provide system operational
data. They provided information about the reactor channels, overall reaction values, and information
about the balance of plant and auxiliary systems. These datasets were created from the following
two models:

• SAS4A/SASSYS-1: this code provides information about the nuclear reactions occurring within
the four channels of the reactor. Data provided from this part include inlet and outlet temperature
and inlet and outlet flow. Additionally, the model was used to generate any current nuclear core
activities, such as power generation and reaction coefficient values. These model data provide
insight into the current power generated from the reactor and other information about physical
nuclear reaction;

• PRIMAR4: this simulation code generates values for the overall piping and thermodynamics of
the system, including the balance of plant and other auxiliary systems. This includes information
about the temperature and pressures of compressible volumes and pools around the reactor,
measurements of the pumps and the different elements of the balance of plant and cooling systems.

From these models, an operational timeline can be comprised of the different parameters necessary
for monitoring overall system health.

2.3.2. DBN Construction

For this study, a simplified model was constructed to cover the primary elements of the SFR that
are relevant for scramming failures in the event of a transient overpower. As previously mentioned,
automatic scram action occurs when the power-to-flow ratio, the reactor’s inlet and outlet temperature,
or overall reactor pressure are measured above a certain threshold. Designing a DBN model to help
operators identify current system health status and potential failure modes, as shown in Figure 5,
therefore requires nodes in the accident state, system and sensor information, system diagnostics, and
system prognostics information regions. The temporal loops included for the system information
nodes (Power-to-flow, Pressure, Inlet and Outlet Temperature) indicate a distinct dependency on
previous parameter values, unlike the other nodes which have static conditional probabilities (i.e.,
a prediction of the current scram state is not dependent upon the scram state prediction from a
previous measurement). This model’s conditional probability tables are trained with operational data
provided from scenarios that resulted in three distinct outcomes: failure due to clad melting; failure
due to thermal relocation; and a successful model outcome. The model’s objective is identifying the
current health state of the reactor as well as the likelihood of a certain outcome based on current data
from the system’s sensors. Data received from the system will be used as evidence for an improved
determination of the state of the reactor’s scram and trip mechanism. The DBN model is constructed
using the GeNIE software; conditional probability table (CPT) elements are calculated using the Python
programming language.
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Figure 5. DBN node structure and relationship graph for the SFR transient overpower (TOP) case study.
The dashed boxes represent the different node regions for a diagnostics and prognostics model for CES.
The arrows are reflective on the current time step, with the exception of the dynamic relationship in the
nodes in the “System Information/Sensor Data” box.

As CESs generate a multitude of data, there are large amounts of readily available data that can be
used to inform the model’s quantification of the conditional probability tables. The information
provided for this model was carried out in multiple simulations over different time period
measurements. For example, nuclear reactor data from the SAS4A-SASSYS-1 code was collected
more rapidly at the beginning of the accident simulation, at a rate of 0.1 simulation seconds, and
slowed down to a collection frequency of 100 s. On the other hand, new information from the PRIMAR4
code was provided approximately every nine seconds. This is similar to real-world scenarios in which
measurements and sensor readings occur over different frequencies. As such, operators are dealing
with a mixture of newer and older information and need to consider these respectively. In order to
capture as much relevant information as possible, an operational timeline was created to consolidate
both model readings into one sequence of events. As illustrated in Figure 6, relevant information was
identified from both models. The available data were then sorted based on the simulation time at
which the data were received. When new data were acquired from a sensor, that entry would replace
the measurement from the previous timing; however, the “current” information from other system
sensors would remain as new data have not yet been provided.

Using the simulated data generated from the reactor and infrastructure models, a sample set of
conditional probability tables, which reflects how the health of the nuclear reactor system progresses
over time, was quantified. The CPTs provide insight into the transformation of the different nodes
across the model and describe the causal relationships within the nodes. For this DBN structure, there
are three types of CPT that are reflective of different structures in the nodes: static CPTs for the static
nodes and initialization and temporal CPTs for the dynamic nodes. For these CPTs, the elements in the
table can be determined by a frequentist approach by counting the number of instances a child node
state occurred with the identified parent node states, or

P(ChildState|ParentState) =
ΣChildState
ΣParentState

. (2)
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Figure 6. Data from different models with varying time frequencies are compiled into a single
operational timeline. Given multiple accident scenarios, this produces many example operational
timelines, which can be used for constructing the DBN’s conditional probability tables.

DBN nodes are designed to contain discrete states; for this model, the simulation data provided
were separated into ranges based on reasonable expectations for “Low”, “Medium”, or “High” values.
These determinations were based on what is expected either through expert opinion or a collection of
information. For this case study, information from a simulated scenario in which no TOP occurred was
used as a baseline for what would fall in the middle bin. Bin discretizations vary based on the data
that the model is relying on, but the example ranges are shown in Table 1.

Table 1. Model parameters and discretized bin threshold values based on baseline operational data.

Model Parameter Low Threshold High Threshold

Inlet Temperature (K) 667.3 668.2
Outlet Temperature (K) 798.2 821.3

Relative Power-to-Flow Ratio (s/kg) 12.85 12.98
Inlet Pressure (Pa) 235,019 235,126

Dynamic nodes within the DBN require an initial distribution for their states, from which the
temporal conditions rely on, for the proceeding time steps. For this study, it is assumed, unless
evidence is provided otherwise, that the initial state of the system is healthy and running at a normal
operational status as expected from the baseline operations.

3. Results

Based on the previous model and data received, the CPTs for the previously described model
were quantified. Where there was evidence, a frequentist approach of determining probabilities was
used; however, when that data was not available, appropriate approximations were used to complete
the table that would minimize influencing the posterior estimates to a greater extent than the available
information. Table 2 is an example of one of the quantified dynamic CPTs. In each instance, the majority
of data was classified in the same bin as the previous measurement; any deviation would therefore be
considered a rare event and worth noting. Although certain relationships might not occur in an actual
accident scenario, those elements still need to be included in the CPTs.
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Table 2. Dynamic conditional probability table (CPT) for CV1 Pressure Measurements. Note the
columns with the round estimates (expert-based opinions) interspersed with the more precise estimates
based on the available data.

CV1 Dynamic CPT
Pressure

Scram/ Scram,Trip Success Scram, Trip Failure Scram Success, Scram Failure,
Trip State Trip Failure Trip Success

(Self) [t− 1] Low Middle High Low Middle High Low Middle High Low Middle High
Low 0.9 0.05 0 1 0.6667 5.11× 10−5 0.9 0.05 0 1 0.05 4.83× 10−5

Middle 0.1 0.9 0 0 0.3333 1.36× 10−6 0.1 0.9 0 0 0.9 0
High 0 0.05 1 0 0 0.9999 0 0.05 1 0 0.05 0.9999

To show the model’s effectiveness at assessing an SFR’s health state following an accident event
and potential future failure outcomes, hypothetical data are provided to the model that may be
indicative of a TOP. These data will serve as evidence, which will impact the posterior estimates for
the system prognostics, diagnostics, and accident state.

A transient overpower could be initially indicated by an increase in the power-to-flow ratio.
Table 3 shows the prior and posterior scram state probabilities with evidence that the power-to-flow
ratio was found to be higher than a baseline amount and all other relevant parameters were held the
same. As expected, the prior probabilities of the scram state and the power-to-flow CPTs along with
the limited amount of information provided little change to the prior; this model is still predominantly
assessing that the scram process is working as intended. Although minute, the posterior estimates
for the state of the scram and trip mechanisms are changing. However, just as in most instances, that
information alone is not enough to convince the model that something is seriously going wrong. There
are many reasons that the power-to-flow ratio may be higher than baseline measurements; given the
significantly low probability that the scram and trip mechanism fails, the model is estimating that
there is something else that could explain the discrepancy. This is also seen in the system prognostics
at this particular point in time, as shown in Table 4. For both instances, the probability of failure is
either non-existent or negligible.

Table 3. Prior and posterior probabilities of scram, prognostics, and system diagnostics with evidence
of high power-to-flow ratio.

Model Parameter Prior Evidence Posterior

Scram and Trip Success 1− ΣP( f ailure) ≈ 1 Power-to-Flow (1) = High
Outlet Temperature (1) = Medium

Inlet Temperature(1) = Medium
Pressure (1) = Medium

1− ΣP( f ailure) ≈ 1
Scram Success and Trip Failure 1.4× 10−9 1.39× 10−9

Scram Failure and Trip Success 1.4× 10−9 6.26× 10−11

Scram and Trip Failure 2.9× 10−7 8.24× 10−9

Table 4. Prognostics outcome for reactor with high power-to-flow reading.

Prognostic Outcome Failure: Fuel Relocation Failure: Clad Melting

Will Occur 0.0001 0.0001
Will Not Occur 0.9999 0.9999

This assessment of the reactor’s prognostics changes, however, when new information is received.
Assume now that the following sensor readings indicate that not only is the power-to-flow value still
above the operational baseline, but the outlet temperature of the reactor is also higher than anticipated.
This is then followed by another reading of high power-to-flow and outlet and inlet temperatures. This
combination of evidence, in addition to the initial high power-to-flow value, significantly alters the
estimate of whether the scramming mechanism worked, as seen in Table 5. The posterior estimates
indicate that it is more likely that the scram and trip failed. The model responds to a small amount of
information to raise a concern that an accident has indeed occurred.
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Table 5. Prior and posterior probabilities of scram, prognostics, and system diagnostics based on the
listed evidence.

Model Parameter Prior Evidence Posterior

Scram and Trip Success 1− ΣP( f ailure) ≈ 1 Power-to-Flow (1) = High
Inlet Temperature (1) = Medium

Outlet Temperature (1) = Medium
Pressure(1) = Medium

Power-to-Flow (2) = High
Outlet Temperature (2) = High

Inlet Temperature(2) = Medium
Pressure (3) = Medium

Power-to-Flow (3) = High
Outlet Temperature (3) = High

Inlet Temperature(3) = High
Pressure (2) = Medium

0

Scram Success and Trip Failure 1.4× 10−9 0

Scram Failure and Trip Success 1.4× 10−9 0.0228

Scram and Trip Failure 2.9× 10−7 0.9772

The addition of new data also changed the current prognostics outlook of the system, as seen in
Table 6. The previous prognostics seen in Table 4 showed a negligible reactor failure from clad melting,
and a nonexistent risk from fuel relocation; however, that assessment was based on the assumption
that the scram and trip mechanism were successful. Since the new evidence introduced into the model
changed the posterior estimate of the scram state to have failed in some manner, there is a greater
likelihood that the reactor will fail by one of those failure modes. The updated prognostics now
suggest that given the current data received from the system sensors, there is a 0.31% chance that
the system, if conditions remain the same, would result in a failure by fuel relocation. Interestingly,
the probability that the system would fail from clad melting has been reduced. These two facts are
the result of the specific conditional probability tables used to project sensor measurement values.
This assessment does match expected results, as both clad melting and fuel relocation occur when
outlet temperatures are hotter than operation levels; however, fuel relocation can occur faster at higher
reactor temperatures.

Table 6. Prognostic outcome for reactor with high power-to-flow reading, followed by high
power-to-flow and outlet temperature readings, and then high power-to-flow, outlet and inlet
temperature measurements at Time 3.

Prognostic Outcome Failure: Fuel Relocation Failure: Clad Melting

Will Occur 0.0031 0
Will Not Occur 0.9969 1

In addition to changing the assessment of the reactor’s prognostics, the influx of new system
data and sensor information should impact the estimate of the reactor’s health. Table 7 provides
point estimates on the reactor system’s diagnostics. At the beginning of the experiment (Time 0),
there is no indication that the system would be faulty as the initial state distribution is consistent
with that of the operating baseline; as a result, it is deemed a fully healthy system. When the high
power-to-flow measurement comes in at Time 1, there is now a possibility that one of the failure
outcomes could occur; as a result, the reactor’s health is marginally diminished. When the additional
power-to-flow and outlet temperature data are received at Time 2, and it becomes evident to the model
that a failure in the scram mechanism has occurred, the system’s health diagnostic assessment is
significantly degraded. The collection of this result, as well as the prognostic assessments and estimate
in scram failure, would result in a more educated process to find and address the issue, minimizing
any potentially harmful outcomes.
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Table 7. Progression of system diagnostics following the example accident sequence.

System Diagnostic Value at Time 0 (Initial) Value at Time 1 Value at Time 2 Value at Time 3

Healthy 0.9998 0.9999 0.9999 0.9969
Not Healthy 0.0002 0.0001 0.0001 0.0031

4. Discussion

The results indicate that the DBN model provided a system diagnostic and prognostic capability
for the reactor accident sequences that it was designed to monitor. Using available information from a
large number of system sensors, a clearer image of the current and future system health was estimated
for a complex system. The strength of the model lies in its inference abilities, as it provides a responsive
posterior probability for both specific system outcomes and current health and accident states. This
type of modeling is important to consider when monitoring CES health, as it provides a visually
appealing method of presenting the causal relationships found in these systems and subsystems.
CESs have heavily integrated platforms that, through other techniques, would otherwise not have
their time-dependent causal relationships truly defined. As this capability is possible with DBN
models, there are now better and more accurate PHM strategies that are available to use on CESs than
previously utilized.

One of the common challenges associated with applying DBNs to real systems is the CPT
quantification process. Depending on the number of state bins and the amount of parents for each
node, the size of the tables can vary greatly, increasing the time and power required to process the
probabilities. For this case study, most failure scenarios led to the same parent/child node relationships
and some parent/child combinations were not met. Limiting the number of accident scenarios,
minimizing the amount of states per node, and relying on expert-based relationships may reduce the
computational requirements; however, an increase in the number of scenarios and state bins make the
model applicable to a wider range of accidents and failure modes and increases the granularity of the
model, respectively. An analysis is needed to identify the proper amount of granularity and model
coverage for each specific CES.

The current structure of the DBN model is designed for a continuously operating CES that can
experience an accident at any given moment. Given the long operational lifetime of these systems
relative to the start-up and wind-down time periods, this is a reasonable assumption; however,
accidents can just as easily occur at the onset of operation or operation build-up. To consider these
time periods when constructing a model, data or expert-based opinions of the system relationships are
needed. Such a model may end up entirely distinct from one of a similar CES in its operational phase.

As this modeling approach is intended to work for all CESs that experience accident events, there
are many areas of improvement for this type of work to reflect the diversity of its application areas:

• First, further study is needed on the impact that the time step measurements at which data
are received have on CES prognostics and diagnostics assessments. In the SFR case study, the
CPTs were designed with data collected over varying lengths of time but assumed to be equal
evidence. Constructing the CPTs over simulation time, rather than data collection time, may
result in a different assessment of system health. An initial study by Lewis and Groth looked
at the potential impacts that different time discretization techniques had on prognostics and
diagnostics performance. The SFR case study could be used as a case study to quantify some of
these differences [25];

• One major assumption in constructing the operational timelines for different accident scenarios
was that every piece of system information not received at that point in time was assumed to
be constant until otherwise changed. Additional work is needed to identify other methods of
unmeasured system data evolution, as it is possible that other predictive approaches, such as
filtering or forecasting, may ultimately be used to provide a more accurate estimate of certain
values before the new values become known;
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• Another set of assumptions present in the case study was the number of expert opinions used to
fill the conditional probability tables for events and conditions that did not have available data.
The current DBN structure itself is not able to fully incorporate physical knowledge of the system,
such as degradation and failure modes, into its diagnostic and prognostic assessments; as such,
this system information might be a better alternative for substituting missing data with respect to
nodes related to remaining useful life predictions. There has been a range of work in this subject
for various systems, including wind turbines [26], railways [27], and subsea pipelines [28];

• A next-level line of study would be to vary the weight of information provided to the system
as evidence. Currently, all information used by the model carries the same weight. Certain
sensor readings may be more reliable or provide a greater amount of evidence than other sensors;
newer system information should take greater precedence in system health assessments than
older information;

• Another area worth addressing is the bin size for each of the nodes, particularly those in the
system data and system information region. Since the conditional probability tables are dependent
upon where state bin thresholds are located, adjusting the bin boundaries will have a significant
impact on the conditional probability tables that the model is dependent on. Previous work by
Zhu and Collette [29] has found attempts to discretize the bins dynamically. This study would also
be associated with identifying the appropriate number of bins, based on the findings from Yang
and Webb [30]. As an increase in bins allows a greater number of variations, the logical extension
of this would be aligned with some of the research that Li et al. [31], Codetta-Raiteri et al. [32],
or Iamsumang et al. [33] have performed on continuous-time or hybrid Bayesian networks.
Future research from Codetta-Raiteri [32] has even suggested creating a continuous-time-based
DBN that provides insight over conditional states that are not discrete but based on continuous
probabilistic distributions;

• Lastly, a more complicated model could be created by introducing additional accident states
to the CES. Having an additional accident state would result in different parameters having
different relationships with the same or other relevant system data. Further research is needed to
determine how those can be successfully integrated into the model.

The direction of where DBN modeling for CES prognostics and diagnostics is heading depends
on the priority of the researchers in each application area. Understanding any one of these incomplete
research areas better, however, will result in a diagnostic and prognostic model that better reflects the
requirement of the CES.

5. Conclusions

This paper shows how a DBN structure could be used for a joint diagnostic and prognostic model
for monitoring complex engineering system health following an accident event. By breaking apart
the model nodes into four distinct information regions, access to sensor data and system information
allow for different assessments for accident scenarios, prognostics, and diagnostics for systems and
subsystems. Through the SFR TOP case study, expert-based opinions and data-driven techniques
were used to quantify the DBN’s CPTs and strengthen the model. The model responded to the
hypothetical accident data supplied as evidence by indicating an increased chance of scram and
trip mechanism failure and overall system failure, and a decrease in overall system health. Such
an ability suggests that this model can be used to prepare CES operators for rare-event accident
scenarios. Potential extensions of the current work may include applying the model structure to
other CES accident scenarios, fine-tuning the model design and construction process, or studying a
multi-accident scenario sequence.
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Abbreviations

The following abbreviations are used in this manuscript:

CES Complex engineering system
CPT Conditional probability table
DBN Dynamic Bayesian network
DET Dynamic event trees
PACES PHM approaches to complex engineering systems
PHM Prognostics and health management
PSID Preliminary safety information document
RUL Remaining useful life
SFR Sodium fast reactor
TOP Transient overpower

Appendix A. Case Study Data

The data used in this case study are the result of simulations run by Jankovsky et al. [24]
using the SAS4A/SASSYS-1 and PRIMAR4 models as part of a project to develop methodologies for
merging dynamic event trees (DETs) with operator actions. The dynamic event tree was designed
to “investigate the effects of various mitigating actions and uncertain plant parameters in an SFR
following an inadvertent insertion of reactivity”. It consisted of seven branching conditions and
two ending conditions that had two to ten child branches each. This resulted in a collection of
2052 accident sequences that had the outcomes of model success, clad relocation, or temperature
failure. A SAS4A/SASSYS-1 model was then used to calculate the data along the tree.

For this case study, only one branching condition and its relation to the scenario outcome was
considered (Scram and Trip Success).

Appendix B. Case Study DBN Formation

This appendix describes the formation of the DBN for the case study scenario of a sodium fast
reactor experiencing a scramming mechanism failure during a transient overpower.

Appendix B.1. Overview

Figure A1 is the illustration of the DBN model nodes and directed relationships within their
respective information regions. This network structure was determined by a general understanding
of the nature of the scramming mechanism and the two described failure modes in the study by
Jankovsky, et al. [24]. Table A1 lists the nodes constructed in the model, the information region they
are located in, and the number and the value of node states.
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Figure A1. DBN node structure and relationship graph for the SFR TOP case study. The dashed boxes
represent the different node regions for the diagnostics and prognostics model for CES. The arrows are
reflective on the current time step, with the exception of the dynamic relationship in the nodes in the
“System Information/Sensor Data” box.

Table A1. Model nodes and node states.

Node Name Type of Node Number of States General State Descriptions

Scram State Accident State 4 Scram and Trip Success,
Scram Success and Trip Failure,
Scram Failure and Trip Success,

Scram and Trip Failure
Inlet Temperature System Information/Sensor Data 3 Low, Medium, High

Outlet Temperature System Information/Sensor Data 3 Low, Medium, High
Power-to-Flow System Information/Sensor Data 3 Low, Medium, High

Pressure System Information/Sensor Data 3 Low, Medium, High
Failure: Thermal Melting System Prognostics 2 Yes, No

Failure: Clad Fraction System Prognostics 2 Yes, No
System Diagnostics System Diagnostics 2 Yes, No

In addition to a network structure of nodes and directed arcs, a DBN model requires associated
conditional probability tables, as well as an additional initial distribution table for the dynamically
changing nodes. Therefore, the following is the list of CPT tables needed for the model designed for
the SFR scenario:

• Static Conditional Probability Tables

1. P(Scram State);
2. P(Power− to− Flow|Scram State);
3. P(Pressure|Scram State);
4. P(Inlet Temperature|Scram State);
5. P(Outlet Temperature|Scram State);
6. P(Failure : Clad Melting|Scram State, Power− to− Flow);
7. P(Failure : Fuel Relocation|ScramState);
8. P(System Diagnostic|Failure : Clad Melting, Failure : Fuel Relocation).

• Dynamic Conditional Probability Tables

1. P(Power− to− Flow|ScramState, Power− to− Flow(t− 1));
2. P(Pressure|Scram State, Pressure(t− 1));
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3. P(Inlet Temperature|Scram State, Inlet Temperature(t− 1));
4. P(Outlet Temperature|Scram State, Outlet Temperature(t− 1)).

To quantify these tables, either prior expert knowledge or operational data are required. For this
case study, a hybrid approach was used to complete the CPTs. Expert-based opinions were determined
from either source documents (i.e., the preliminary safety information document (PSID)) [34], or were
mentioned in the study by Jankovsky et al. [24]. The operational data used were received from Sandia
National Laboratories.

Appendix B.2. Coding Scenario Information

The structure of the model relies on data from both system sensors and other monitoring
equipment, in addition to situational information regarding different accident scenarios that the
reactor may be exposed to. The scenario information describes the different conditions following the
accident event as well as the simulated outcome of that particular event sequence (successful system
survival or system failure). To allow the DBN model’s CPTs to be constructed from the operational data
attached to the different scenario sequences, data measurements from the different system parameters
(Power-to-Flow, Inlet and Outlet Temperature, CV1 Pressure) were assigned a number based on the
amount of bins available for discretization. For this study, the sensor data were treated with either
“High”, “Medium/Normal”, or “Low” relative to baseline operating information.

Appendix B.3. Creating Operational Timelines for Different Timelines

In order to create the conditional probability tables for each of the nodes, the operational data is
formatted into a single timeline. Relevant information was identified from both models; in the case
study, the system sensors were the primary indicators for the automatic scram and trip mechanism.
Those two data sets were then merged together and sorted based on the timing that the information
was received. In some instances, data from one model was received, and not from the other. In those
instances, the newer information replaces the earlier measurements received from the same system
sensor, whereas all other system information remains the same.

Appendix B.4. Separating Scenario Outcomes by Accident Node State (Scram State)

Based on the model structure shown in Figure A1, the accident node “SCRAM state” is connected
to each of the system information/sensor data as well as to the system prognostic nodes; as a result,
it is important to be able to classify the accident scenario sequences by their accident states. This
requires the operational data to be categorized according to what accident the reactor experienced.
This situational information is critical for constructing the CPTs for the CES prognostics nodes.

Appendix B.5. Creating the CPTs

The conditional probability tables for each node were created by measuring the frequency of
different data combinations with respect to the different node states and supplementing the available
data with expert opinions when there was no information available. For example, for the dynamic
table for the inlet temperature, the value P(InletTemperature|ScramState, InletTemperature(t − 1))
was calculated for the different values of inlet temperatures that were associated with each of the
different scram/trip states and previous values. Each state was then normalized over the same parent
node conditions.

The manner of providing expert opinion for the CPTs depended on the nature of the CPTs as well
as the location of the node:

• Accident State (Scram State): The expert opinion used to construct the CPT for the “Scram State”
node was based on probabilities taken from the PRISM preliminary safety information document
(PSID) and listed in Table A2 [34]:
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Table A2. Prior distribution for SCRAM state.

Scram State Prior Distribution

Scram and Trip Success 1− ΣP( f ailure) ≈ 1
Scram Success and Trip Failure 1.4× 10−9

Scram Failure and Trip Success 1.4× 10−9

Scram and Trip Failure 2.9× 10−7

• System Information/Sensor Data (Inlet Temperature, Outlet Temperature, Power-to-Flow
Ratio, Pressure near Inlet): The initial distribution of each measurement was assumed to be
within the normal operating baseline of the variable; therefore, the initial measurement for each
system sensor started in the middle bin marked “Medium/Normal”. For the dynamic distributions,
the conditional probabilities were dependent on the sensor values in the previous time period; as
a result, CPTs that were missing a parent node condition would substitute the blank column with
one of the following listed in Table A3:

Table A3. Filled-in columns for missing information in case study dynamic conditional
probability table.

System Information/Sensor Data Dynamic CPT

Scram State Scram State [i]
(Self) [t− 1] Low Middle High

Low 0.9 0.05 0
Middle 0.1 0.9 0.1
High 0 0.05 0.9

• System Prognostics (Failure: Fuel Relocation, Failure: Clad Melting): Because of the limited
number of scenarios that result in an overall system failure from the two outcomes specified in
the case study, the prognostics CPTs are the most incomplete in the model. To fill the CPTs with
values that would not skew the outcome, it was assumed that the empty parent condition cases
would result in a 1:1000 chance of having either system failure occur;

• System Diagnostics (Diagnostics): For this model, it is assumed that if a failure occurs, then the
system is not healthy. As such, the CPT for the diagnostics node “Diagnostics” is constructed
using the conditional probability table shown in Table A4:

Table A4. Conditional probability table for diagnostics node.

Diagnostics Distribution

Failure: Fuel Relocation True False
Failure: Clad Melting True False True False

Healthy 0 0 0 1
Not Healthy 1 1 1 0
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