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Abstract: The set of heuristics constituting the methods of deep learning has proved very efficient
in complex problems of artificial intelligence such as pattern recognition, speech recognition, etc.,
solving them with better accuracy than previously applied methods. Our aim in this work has been
to integrate the concept of the rough set to the repository of tools applied in deep learning in the
form of rough mereological granular computing. In our previous research we have presented the
high efficiency of our decision system approximation techniques (creating granular reflections of
systems), which, with a large reduction in the size of the training systems, maintained the internal
knowledge of the original data. The current research has led us to the question whether granular
reflections of decision systems can be effectively learned by neural networks and whether the deep
learning will be able to extract the knowledge from the approximated decision systems. Our results
show that granulated datasets perform well when mined by deep learning tools. We have performed
exemplary experiments using data from the UCI repository—Pytorch and Tensorflow libraries were
used for building neural network and classification process. It turns out that deep learning method
works effectively based on reduced training sets. Approximation of decision systems before neural
networks learning can be important step to give the opportunity to learn in reasonable time.

Keywords: rough sets; deep learning; classification

1. Introduction

This paper is divided into parts dedicated to deep learning, rough sets, granular computing by
means of rough mereology. Deep learning as a collection of techniques and is rooted in artificial neural
networks (ANN’s) [1–3]. The idea of a neural network is that of an acyclic directed graph whose nodes
are computing units—neurons—joined by edges labelled with weights. Nodes with input degrees
of zero are called inputs while nodes with the output degree zero are said to be outputs. The flow
of information is forward: from input nodes to output nodes. Nodes are classified into layers, each
layer defined recurrently starting from the input nodes layer. Exemplary Computation by a neural
net begins with the input vector and in the simple case of a sigmoidal perceptron, with the input x,
the output is given as f (x), f being an activation sigmoidal function. The result of the computation is
the vector output by the output layer of neurons.

The learning procedure for ANN’s is a series of computations on sequences of training vectors
xi which stops when the output vector is sufficiently close to the target vector on each input vector.
Theoretically justified by the Perceptron Learning Theorem [4], the method of learning by changing
weights by the delta rule turned effective when the backpropagation technique came into usage [5].
Deep learning proceeds further by enhancing the neural net with many filters allowing for exhibiting
of many local features. Some variants like LSTM allow for reaching deep back into memory of the
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process which makes such networks especially effective in, for example, speech processing [6]. For a
general introduction please consult [7].

Interesting research on the field of granular computation with the use of neural network
techniques can be found in the works [8–10]. To the best of our knowledge, there is no similarity to our
research in this context, so direct comparison is difficult. In addition, the aim of our work is to check
whether the data prepared by our granulation techniques are learned through deep neural networks.
It is not our goal to show that we have the best technique to reduce training systems.

Rough set theory [11] approaches data in set-theoretical terms by assuming that on each
collection of vectors representing some objects, a partition is obtained, its classes representing distinct
concepts/categories pertaining to those objects. A general concept, i.e., a set of objects in a given
collection (the universe) is perceived through categories: some concepts can be expressed by categories
in a deterministic way and some may not. The former are exact concepts (modulo the given partition
into categories) while the latter are inexact (rough) concepts. Each rough concept can only be expressed
in terms of its relation to categories by approximations: the lower approximation of a concept consists
of categories (or, exact concepts) contained in the concept whereas the upper approximation consists
of categories intersecting the given concept.

A means for dealing with data is provided by the notion of an information system (see Pawlak,
op.cit.) which is a tuple (U, A, V, f ) where U is a universe of objects, A is a set of attributes, V is a
set of attribute values, and, f is a mapping which assigns to each object x ∈ U and each attribute
a ∈ A, the value f (x, a) ∈ V. Categories obtained in this case are classes of the indiscernibility relation
INDB(x, y) = true i f and only i f a(x) = a(y) for each a ∈ B, where B is a subset of the set A of
attributes. A special case of information systems is a decision system with signature (U, A, V, f , d)
where d is a new attribute not in A, called the decision. A relation between sets INDB and INDd for
some B is called a decision algorithm over B. For algorithmic methods of inducing decision rules please
see [12,13]. A far reaching extension of rough set theory is rough mereology [14]. Rough mereology
applies as its primitive notion that of a part to a degree [15]. Parts to a degree are subjected to a few
basic restrictions which reflect properties of partial containment: each object is a part to itself to the
degree of 1, if an object x is a part to a degree of 1 to an object y then for each object z, the degree to
which z is contained in x is not greater than the degree to which z is contained in y. Rough mereology
in turn was applied in a formal definition of granules of knowledge [16,17]. Formally, given a measure
m of partial containment (called in Polkowski-Skowron a rough inclusion), a granule g(x, r) of the
radius r about an object x is the collection of all objects which are parts of x to degrees of at least r.
Consult [15] for a deeper discussion of computing with granules. On the basis of computing with
rough mereological granules, an approach to data mining was proposed [16]. This approach consists
in transforming a given decision system (data set) (U, A, V, f , d) into a granular decision system
(G, A′, V, f ′, d′, r) where: G is a set of granules of radius r about objects in U which provides a covering
of U; A′ is a set of attributes a′ for a ∈ A, each a′ maps each granule g into the value set V according
to the formula a′(g) = S(a(u) : u ∈ g) where S is a selected strategy like e.g., majority voting with
random tie resolution; V is the value set unchanged; f ′ (a′, g) = a′(g); d′ is defined in the same manner
as a′. To the granular decision system (U, A′, V, f ′, r) any standard algorithm for rule induction can be
applied for all plausible values of the radius r. This ends our introduction of the main ingredients in
our approach. In the following sections, we give details of our approach and we present results.

In the work we are focusing on deep learning effectiveness on the reduced decision systems, we
check the level of internal knowledge maintenance in terms of classification effectiveness.

The rest of the paper has the following content. In Section 2 there is a detailed description of
granulation technique used in experimental part. In Section 3 we have described the artificial network
architecture. In Section 4 we present the experimental part. We conclude our work in Section 5.
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2. Reducing the Size of Decision-Making Systems Based on Their Granular Reflections

As a reference technique, we have chosen one of our best methods for the approximation of
decision systems (concept-dependent granulation), which works analogously to the baseline procedure
described in this section, while granule formation takes place separately within decision classes.

Granulation consists in reducing the size of the training decision-making system through the
process of creating granular reflections of data.

The definition of the concept-dependent granule formulation is in the Section 2.2.
Let’s move on to the basic technique. Our methods are based on rough inclusions. Introduction to

rough inclusions in the framework of rough mereology is available in [16,18]; a detailed, extensive
discussion can be found in [15].

In the Polkowski’s granulation procedure, we can distinguish three basic steps.

1. First step: granulation. We begin with computation of granules around each training object using
selected method. In the method used in this article, by surrounding the objects of the training
system class with objects indiscernible to the degree determined by the granulation radius.

2. Second step: the process of covering. The training decision system is covered by selected granules.
After the calculation of granules in point 1, a group of granules that cover the entire training
system with their objects is searched for.

3. Third step: building the granular reflections. The granular reflection of original training decision
system is derived from the granules selected in step 2. We form new objects by converting granules
using majority voting.

We start with detailed description of the basic method—see [16].

2.1. Standard Granulation

For the sake of simplicity we use the following definition of decision system, it is triple (U, A, d),
where U is the universe of objects, A the set of conditional attributes, d 6∈ A is the decision attribute,
and rgran granulation radius from the set {0, 1

|A| ,
2
|A| , . . . , 1}.

The standard rough inclusion µ, for u, v ∈ U and for selected rgran is defined as

µ(v, u, rgran)⇔
|IND(u, v)|
|A| ≥ rgran (1)

where
IND(u, v) = {a ∈ A : a(u) = a(v)}, (2)

For each object u ∈ U, and selected rgran, we compute the standard granule grgran(u) as follows,

grgran(u) is {v ∈ U : µ(v, u, rgran)}. (3)

In the next step we use selected strategy to cover the training decision set U by computed
granules—the random choice is the simplest among the most effective studied in [19]). All studied
methods are available in [19] (pp. 105–220).

In the last step, granular reflection of training decision set is computed with use of Majority Voting
procedure. The ties are resolved randomly.

The process of granulation can be tuned with help of the triangular part of granular indiscernibility
matrix [cij](i,j=1)|U|, where

cij =

{
1, if

|IND(ui ,uj)|
|A| ≥ rgran

0, else
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2.2. Concept Dependent Granulation

A concept-dependent (cd) granule gcd
rgran(u) of the radius rgran about u is defined as follows:

v ∈ gcd
rgran(u) if and only if µ(v, u, rgran) and (d(u) = d(v)) (4)

2.2.1. Toy Example of Concept Dependent Granulation

For the decision system from Table 1, we have found concept-dependent granules.

Table 1. The training decision system (U, A, d).

a1 a2 a3 a4 d

u1 2 1 2 1 1
u2 3 2 3 3 1
u3 1 5 1 2 1
u4 6 2 3 8 2
u5 4 5 8 6 2
u6 5 1 8 1 2

For the granulation radius rgran = 0.25, the granular concept-dependent indiscernibility matrix
(gcdm) is shown in Table 2.

Table 2. gcdm (1 when ui is indiscernible by a degree rgran = 0.25 f rom uj, 0 otherwise, d(ui) is equal d(uj).)

u1 u2 u3 u4 u5 u6

u1 1 0 0 x x x
u2 0 1 0 x x x
u3 0 0 1 x x x
u4 x x x 1 0 0
u5 x x x 0 1 1
u6 x x x 0 1 1

hence, the granules in this case are

gcd
0.25(u1) = {u1};

gcd
0.25(u2) = {u2};

gcd
0.25(u3) = {u3};

gcd
0.25(u4) = {u4};

gcd
0.25(u5) = {u5, u6};

gcd
0.25(u6) = {u5, u6}.

Considering the random choice, the covering can be {gcd
0.25(u1), gcd

0.25(u2), gcd
0.25(u3), gcd

0.25(u4), gcd
0.25(u6)}

The concept dependent granular decision system formed from coverage is in Table 3.

Table 3. Concept dependent granular decision system for (U, A, d) and radius 0.25.

a
′
1 a

′
2 a

′
3 a

′
4 d

′

gcd
0.25(u1) 2 1 2 1 1

gcd
0.25(u2) 3 2 3 3 1

gcd
0.25(u3) 1 5 1 2 1

gcd
0.25(u4) 6 2 3 8 2

gcd
0.25(u6) 5 5 8 6 2
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The majority voting was applied only into the granule gcd
0.25(u6).

3. Design of the Experimental Part

A general scheme of the experimental part design is shown in in Figure 1. The neural network
architecture was chosen experimentally. For each tabular dataset used we have run our experiment
using the same network architecture to make it more comparable. We conducted 10 series of tests
for each system tested. Since the data sets used are small in size, we have built a network with
simple architecture. In addition, we have selected sets that have two decision classes at the output.
In subsequent experiments, the diversity of sets will be increased.

Figure 1. The diagram shows a scheme of our experimental part. The exact design of the neural
network is in Figure 3. The data that is fed into the neural network is normalized after granulation to a
range of < 0, 1 >.

Our network consists of an input layer, two hidden linear layers and an output layer. Input layer
is the only layer which size is dynamical and depends on the dataset used. First hidden layer consists
of 30 neurons and the second one of 20 neurons. Output layer consists of only two neurons as the
decision classes are binary in all used datasets.

We used a hyperbolic tangent as an activation function in layer 1 and 2 and a softmax function
in layer number 3. Our network is using an Adam optimizer and a learning rate equal to 0.001.
To calculate the value of the loss function Cross Entropy was used. Each iteration is being performed
across 500 epochs.

4. Procedure for Performed Experiments

General scheme of the test carried out and detail neural network architecture we have on the
Figures 1 and 2. Let us present below the combined procedure of our experiments.The procedure of
experimentation:

1. Data input (original decision system),
2. Data random split in the ratio 70-30 per cent TRN-TST,
3. Granulation step, covering step, new objects generation—see Section 2.2.1,
4. Neural network learning step for each set of objects (for each granulation radius) see Figure 1,
5. Classification step for each test set, based on approximated data see Figure 2,
6. Compute accuracy, time, number of objects and compare vs first set. The whole procedure is

repeated 10 times.
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Figure 2. A diagram of the neural network used to learn the Australian credit system. Neural
networks for the other two systems differ only in the number of inputs determined by the number of
conditional attributes.

4.1. The Results of Experiments

In this section we show the exemplary results for our selected technique, to show the effectiveness
of deep learning in classification based on reduced training data. We have the results for Monte Cross
Validation 10 method for selected data sets (see Table 4) from UCI repository [20].

Table 4. Exemplary decision systems from UCI Machine Learning Repository [20]. We have chosen
binary systems.

name attr no. obj no.

Australian− credit 15 690
Diabetes 9 768

Heartdisease 14 270

The internal knowledge from the original training decision systems—measured by ability for
classification—seems to be preserved in sufficient way (the accuracy of classification is comparable
with nil case, without reduction). The nil case is for radius 1.

The results of the experiments showed the usefulness of learning neural networks on
granular data.

Additionally to accuracy of classification vs the percentage of training size (the size after
granulation) for 10 iteration of learning (see Figures 3, 5, 7 and 9)—we have presented average
results from 10 experiments considering as x ax the radii of granulation (see Figures 4, 6, 8 and 10).
The latter result visualizes the classification accuracy results presented in the Tables 5, 6, 7 and 8.
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Figure 3. Results for 10 learning cycles, using 10 splits; for Australian credit data set; In ‘percentage of
objects’ ax, we have the percentage size of granulated data vs accuracy of classification in ‘Accuracy’
ax; in. The results are not perfectly evenly matched or at the same points on the x-axis, due to the fact
that the size reduction levels of the training systems varied.

Figure 4. Mean result for 10 learning cycles, using 10 splits; for Australian credit data set; The only
way to show the average values from the experiments was to calculate the average accuracy for specific
granulation radii. Hence, on the x-axis we have the granulation radii (approximation levels). The figure
shows the result from Table 5.
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Figure 5. Results for 10 learning cycles, using 10 splits; for Heart Disease data set; In ‘percentage of
objects’ ax, we have the percentage size of granulated data vs accuracy of classification in ‘Accuracy’
ax; in. The results are not perfectly evenly matched or at the same points on the x-axis, due to the fact
that the size reduction levels of the training systems varied.

Figure 6. Mean result for 10 learning cycles, using 10 splits; for Heart disease data set; Mean result for
10 learning cycles, using 10 splits; for Australian credit data set; The only way to show the average
values from the experiments was to calculate the average accuracy for specific granulation radii. Hence,
on the x-axis we have the granulation radii (approximation levels). The figure shows the result from
Table 6.
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Figure 7. Results for 10 learning cycles, using 10 splits; for Pima Indians Diabetes data set; In ‘percentage
of objects’ ax, we have the percentege size of granulated data vs accuracy of classification in ‘Accuracy’
ax; in. The results are not perfectly evenly matched or at the same points on the x-axis, due to the fact
that the size reduction levels of the training systems varied.

Figure 8. Mean results for 10 learning cycles, using 10 splits; for Pima Indians Diabetes data set; Mean
result for 10 learning cycles, using 10 splits; for Australian credit data set; The only way to show the
average values from the experiments was to calculate the average accuracy for specific granulation
radii. Hence, on the x-axis we have the granulation radii (approximation levels). The figure shows the
result from Table 7.
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Figure 9. Results for 10 learning cycles, using 10 splits; for Australian credit data set converted to
dummy variables (after conversion to dummy variables its 35 attributes); In ‘percentage of objects’
ax, we have the percentage size of granulated data vs accuracy of classification in ‘Accuracy’ ax; in.
The results are not perfectly evenly matched or at the same points on the x-axis, due to the fact that the
size reduction levels of the training systems varied.

Figure 10. Dummy variables - mean result for 10 learning cycles, using 10 splits; for Australian credit
data set; after conversion to Dummy variables its 35 attributes.
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Table 5. Results for Australian credit dataset (mean from 10 experiments).

no_of_gran_objects percentage_of_objects time_to_learn accuracy
Mean Mean Mean Mean

gran_rad

0.0667 2.0 0.4149 0.3666 0.5646
0.1333 2.0 0.4149 0.3607 0.5337
0.2000 3.4 0.7054 0.3691 0.5423
0.2667 5.1 1.0581 0.3685 0.5154
0.3333 8.2 1.7012 0.3696 0.5192
0.4000 16.0 3.3195 0.3778 0.5577
0.4667 31.6 6.5560 0.3777 0.6236
0.5333 65.3 13.5477 0.3916 0.7764
0.6000 145.3 30.1452 0.4287 0.8125
0.6667 283.8 58.8797 0.7464 0.8399
0.7333 412.9 85.6639 0.8210 0.8534
0.8000 468.8 97.2614 0.8585 0.8587
0.8667 477.9 99.1494 0.8532 0.8553
0.9333 479.3 99.4398 0.8817 0.8553
1.0000 482.0 100.0000 0.8995 0.8562

Table 6. Results for Heart disease dataset (mean from 10 experiments).

no_of_gran_objects percentage_of_objects time_to_learn accuracy
Mean Mean Mean Mean

gran_rad

0.0714 2.0 0.9434 0.3702 0.6801
0.1429 2.3 1.0849 0.3786 0.6505
0.2143 2.8 1.3208 0.3708 0.6231
0.2857 4.5 2.1226 0.3758 0.7132
0.3571 8.8 4.1509 0.3928 0.7110
0.4286 17.0 8.0189 0.4064 0.7187
0.5000 35.7 16.8396 0.4209 0.7198
0.5714 70.4 33.2075 0.4299 0.7560
0.6429 122.7 57.8774 0.4571 0.7813
0.7143 177.9 83.9151 0.4872 0.8231
0.7857 204.6 96.5094 0.4942 0.8297
0.8571 211.4 99.7170 0.4995 0.8220
0.9286 211.4 99.7170 0.5023 0.8209
1.0000 211.4 99.7170 0.5010 0.8253

Table 7. Results for Pima Indians Diabetes dataset (mean from 10 experiments).

no_of_gran_objects percentage_of_objects time_to_learn accuracy
Mean Mean Mean Mean

gran_rad

0.1111 2.0 0.3724 0.3679 0.5392
0.2222 32.6 6.0708 0.4544 0.5584
0.3333 145.3 27.0577 0.4899 0.7009
0.4444 331.0 61.6387 0.7895 0.7563
0.5556 477.8 88.9758 0.8457 0.7723
0.6667 533.0 99.2551 0.8643 0.7714
0.7778 537.0 100.0000 0.8882 0.7684
0.8889 537.0 100.0000 0.9313 0.7671
1.0000 537.0 100.0000 0.9417 0.7680
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Table 8. Dummy variables—results for Australian credit dataset (mean from 10 experiments; after
conversion to Dummy variables its 35 attributes).

no_of_gran_objects percentage_of_objects time_to_learn accuracy
Mean Mean Mean Mean

gran_rad

0.025 2.0 0.4149 0.3598 0.5534
0.050 2.0 0.4149 0.4274 0.5647
0.075 2.0 0.4149 0.4314 0.4836
0.100 2.0 0.4149 0.4373 0.4744
0.125 2.0 0.4149 0.4391 0.5536
0.150 2.0 0.4149 0.4327 0.5841
0.175 2.0 0.4149 0.4305 0.5778
0.200 2.0 0.4149 0.4349 0.4928
0.225 2.0 0.4149 0.4404 0.4826
0.250 2.0 0.4149 0.4348 0.5048
0.275 2.0 0.4149 0.4342 0.5082
0.300 2.0 0.4149 0.4586 0.5261
0.325 2.0 0.4149 0.4494 0.5652
0.350 2.0 0.4149 0.4476 0.5130
0.375 2.0 0.4149 0.4369 0.4797
0.400 2.0 0.4149 0.4608 0.5329
0.425 2.0 0.4149 0.4444 0.5256
0.450 2.0 0.4149 0.4443 0.5179
0.475 2.0 0.4149 0.4516 0.5135
0.500 2.0 0.4149 0.4436 0.5855
0.525 2.0 0.4149 0.4417 0.5034
0.550 2.2 0.4564 0.4517 0.4638
0.575 2.9 0.6017 0.4431 0.5063
0.600 3.7 0.7676 0.4476 0.5546
0.625 5.2 1.0788 0.4571 0.4947
0.650 8.7 1.8050 0.4506 0.5594
0.675 12.1 2.5104 0.4754 0.5237
0.700 18.0 3.7344 0.4782 0.6222
0.725 29.4 6.0996 0.5029 0.6961
0.750 49.9 10.3527 0.5087 0.7140
0.775 80.4 16.6805 0.5228 0.7889
0.800 134.8 27.9668 0.7577 0.7903
0.825 214.3 44.4606 0.8252 0.8169
0.850 331.3 68.7344 0.8719 0.8319
0.875 427.3 88.6515 0.9257 0.8386
0.900 470.7 97.6556 0.9505 0.8319
0.925 478.2 99.2116 0.9665 0.8309
0.950 479.5 99.4813 0.9729 0.8377
0.975 482.0 100.0000 0.9688 0.8329
1.000 482.0 100.0000 0.9697 0.8386

When considering the results for Heart Disease data set (see Figures 5 and 6 and Table 6), for a
radius of 0.756, with a reduction in the number of training objects of up to 67 percent, we get an
accuracy of 0.756 compared to the original system of 0.825. For a radius of 0.643, with a reduction of
nearly 42 percent, we get an accuracy of 0.781, while for a radius of 0.714, where granulation reduces
16 percent of the objects, we get a 0.823.

In the case of results for the Australian Credit system (see Figures 3 and 4 and Table 5), within a
radius of 0.6 we get a reduction of about 70 percent and a classification accuracy of 0.813 compared to
856 percent on the original system. In the case of 0.667 radius, with a reduction of 41 per cent, we get
an accuracy of 0.84. In case of radius 0.733, with reduction in training system size in the range od 14
percent, we have accuracy 0.853.
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In our next experiment for the Pima Indians Diabetes system (see results in Figures 7 and 8 and
Table 7), for a radius of 0.333 and a reduction in the number of objects of about 73 percent, we get an
accuracy of 0.7 compared to 0.772 on non-granular data. In case of radius of 0.444 and a reduction in
the number of objects of about 38 percent, we get an accuracy of 0.756 and finally for radius 0.55 with
11 percent reduction we obtained accuracy 0.772.

As an additional result, we added the learning effect of on the Australian credit data set after
the conversion of its symbolic attributes to Dummy variables. From the results of Figures 9 and 10
and Table 8 we see that the classification after the conversion is comparable. And exemplary result for
radius 0.775, with 83 percent reduction in training set size, accuracy is equal 0.789. In case of radius
0.885, accuracy is 0.817 with 55 percent reduction. For radius 0.85, with 31 percent reduction, we have
reached accuracy 0.832. For radius equal 0.875 with 11 percent reduction in training size, accuracy is
0.839. In the nil case for dummy variant accuracy is equal 0.839.

Despite the fact that the classification results are not the best among the techniques we have
previously applied to granular data (among others Naive Bayes classifier [19]), SVM [21], Rough set
based classifiers [19]), we are pleased that neural networks are able to maintain high classification
efficiency by working on granular data. We treat the results as a trailer for future intensive research on
the application of granular computing techniques in the context of learning neural networks.

The Tables 5–8 present more information about our experiments. As an explanation please refer
to the list of column labels and their explanation:

• gran_rad—granulation radius as a percentage value,
• no_of_gran_objects—number of new objects in tested decision system after the

granulation process,
• percentage_of_objects—percentage of objects in tested decision system comparing to the primary

decision system size,
• time_to_learn—time that was needed to complete the learning process using given data,
• accuracy—classification accuracy for given neural network.

5. Conclusions

This paper contains results that show how usage of granular reflections of decision systems can
be used in deep learning. For experimental purpose we have selected the most effective method
among the studied concept dependent variant and performed learning on selected data from the UCI
Repository based on the tensorflow library. It turned out that the designed neural network works on
approximated data in effective way, when measured in classification accuracy. Patterns contained in
the granulated data seem to be preserved in the neural network structures. Experiments from our
work have shown that our approximation techniques for tabular decision making systems can be an
effective pre-processing step before learning with deep neural networks. Reduced data, while retaining
internal knowledge, gives the opportunity for faster learning of networks. In future works we are
planning to check the set of neural networks architectures to use with our approximation methods. We
are considering the use of granular structures in the convolutionary part of the preparation of data for
learning by means of neural networks.
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