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Abstract: Deep learning architectures are the most effective methods for analyzing and classifying 
Ultra-Spectral Images (USI). However, effective training of a Deep Learning (DL) gradient classifier 
aiming to achieve high classification accuracy, is extremely costly and time-consuming. It requires 
huge datasets with hundreds or thousands of labeled specimens from expert scientists. This research 
exploits the MAML++ algorithm in order to introduce the Model-Agnostic Meta-Ensemble Zero-shot 
Learning (MAME-ZsL) approach. The MAME-ZsL overcomes the above difficulties, and it can be 
used as a powerful model to perform Hyperspectral Image Analysis (HIA). It is a novel 
optimization-based Meta-Ensemble Learning architecture, following a Zero-shot Learning (ZsL) 
prototype. To the best of our knowledge it is introduced to the literature for the first time. It 
facilitates learning of specialized techniques for the extraction of user-mediated representations, in 
complex Deep Learning architectures. Moreover, it leverages the use of first and second-order 
derivatives as pre-training methods. It enhances learning of features which do not cause issues of 
exploding or diminishing gradients; thus, it avoids potential overfitting. Moreover, it significantly 
reduces computational cost and training time, and it offers an improved training stability, high 
generalization performance and remarkable classification accuracy. 

Keywords: model-agnostic meta-learning; ensemble learning; GIS; hyperspectral images; deep 
learning; remote sensing; scene classification; geospatial data; Zero-shot Learning 

 

1. Introduction 

Hyperspectral image analysis and classification is a timely special field of Geoinformatics which 
has attracted much attention recently. This has led to the development of a wide variety of new 
approaches, exploiting both spatial and spectral content of images, in order to optimally classify them 
into discrete components related to specific standards. Typical information products obtained by the 
above approaches are related to diverse areas; namely: ground cover maps for environmental Remote 
Sensing; surface mineral maps used in geological applications; vegetation species maps, employed in 
agricultural-geoscience studies and in urban mapping. Recent developments in optical sensor 
technology and Geoinformatics (GINF), provide multispectral, Hyperspectral (HyS) and 
panchromatic images at very high spatial resolution. Accurate and effective HyS image analysis and 
classification is one of the key applications which can enable the development of new decision 
support systems. They can provide significant opportunities for business, science and engineering in 
particular. Automatic assignment of a specific semantic label to each object of a HyS image (according 
to its content) is one of the most difficult problems of GINF Remote Sensing (RES). 
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With the available HyS resolution, subtle objects and materials can be extracted by HyS imaging 
sensors with very narrow diagnostic spectral bands. This can be achieved for a variety of purposes, 
such as detection, urban planning, agriculture, identification, surveillance and quantification. HyS 
image analysis enables the characterization of objects of interest (e.g., land cover classes) with 
unprecedented accuracy, and keeps inventories up to date. Improvements in spectral resolution have 
called for advances in signal processing and exploitation algorithms. 

A Hyperspectral image is a 3D data cube, which contains two-dimensional spatial information 
(image feature) and one-dimensional spectral information (spectral bands). Especially, the spectral 
bands occupy very fine wavelengths. Additionally, image features related to land cover and shape 
disclose the disparity and association among adjacent pixels from different directions at a confident 
wavelength. This is due to its vital applications in the design and management of soil resources, 
precision farming, complex ecosystem/habitat monitoring, biodiversity conservation, disaster 
logging, traffic control and urban mapping. 

It is well known that increasing data dimensionality and high redundancy between features 
might cause problems during data analysis. There are many significant challenges which need to be 
addressed when performing HyS image classification. Primarily, supervised classification faces a 
challenge related to the imbalance between high dimensionality and incomplete accessibility of 
training samples, or to the presence of mixed pixels in the data. Further, it is desirable to integrate 
the essential spatial and spectral information, so as to combine the complementary features which 
stem from source images. 

Deep Learning methodologies have significantly contributed towards the evolution and 
development of HyS image analysis and classification [1]. Deep Learning (DL) is a branch of 
computational intelligence which uses a series of algorithms that model high-level abstraction data 
using a multi-level processing architecture. 

It is difficult for all Deep Learning algorithms to achieve satisfactory classification results with 
limited labeled samples, despite their undoubtedly well-established functions and their advantages. 
The approaches with the highest classification accuracy and generalization ability fall under the 
supervised learning umbrella. For this reason, especially in the case of Ultra-Spectral Images, huge 
datasets with hundreds or thousands of specimens labeled by experts are required [2]. This process 
is very expensive and time consuming. 

In the case of supervised image classification, the input image is processed by a series of 
operations performed at different neuronal levels. Eventually, the output generates a probability 
distribution for all possible classes (usually using the Softmax function). Softmax is a function which 
takes an input vector Z of k real numbers and normalizes it into a probability distribution consisting 
of k probabilities, proportional to the exponentials of the input numbers [3]. 𝜎(𝑧)௝ = 𝑒௭ೕ∑ 𝑒௭ೖ௄௞ୀଵ  𝑗 = 1, … , 𝑘 𝑤ℎ𝑒𝑟𝑒 𝜎: 𝑅௞ →  𝑅௞ 𝑍 = (𝑧ଵ, … … , 𝑧௞) ∈ 𝑅௞ (1) 

For example, if we try to classify an image as 𝐿௜௠ି௔ , or 𝐿௜௠ି௕ , or 𝐿௜௠ି௖ , or 𝐿௜௠ିௗ , then we 
generate four probabilities for each input image, indicating the respective probabilities of the image 
belonging to each of the four categories. There are two important points to be mentioned here. First, 
during the training process, we require a large number of images for each class (𝐿௜௠ି௔, 𝐿௜௠ି௕, 𝐿௜௠ି௖, 𝐿௜௠ିௗ). Secondly, if the network is only trained for the above four image classes, then we cannot 
expect to test it for any other class; e.g., “𝐿௜௠ି௫.” If we want our model to sort images as well, then 
we need to get many “𝐿௜௠ି௫” images and to rebuild and retrain the model [3]. There are cases where 
we do not have enough data for each category, or the classes are huge but also dynamically changing. 
Thus, the cost of data collection and periodic retraining is enormous. A reliable solution should be 
sought in these cases. In contrast, k-shot learning is a framework within which the network is called 
upon to learn quickly and with few examples. During training, a limited number of examples from 
diverse classes with their labels are introduced. The network is required to learn general 
characteristics of the problem, such as features which are either common to the samples of the same 
class, or unique features which differentiate and eventually separate the classes. 
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In contrast to the learning process of the traditional neural networks, it is not sufficient for the 
network to learn good representations of the training classes, as the testing classes are distinct and 
they are not presented in training. However, it is desirable to learn features which distinguish the 
existing classes. 

The evaluation process consists of two distinct stages of the following format [4]: 
Step 1: Given k examples (value of k-shot), if k = 1, then the process is called one-shot; if k = 5, five-

shot, and so on. The parameter 𝑘 represents the number of labeled samples given to the algorithm 
by each class. By considering these samples, which comprise the support set, the network is required 
to classify and eventually adapt to existing classes. 

Step 2: Unknown examples of the labeled classes are presented randomly, unlike the ones 
presented in the previous step, which the network is called to correctly classify. The set of examples 
in this stage is known as the query set. 

The above procedure (steps) is repeated many times using random classes and examples which 
are sampled from the testing-evaluation set. 

As it is immediately apparent from the description of the evaluation process, as the number of 
classes increases, the task becomes more difficult, because the network has to decide between several 
alternatives. This means that Zero-shot Learning [5] is clearly more difficult than the one-shot, which is 
more difficult than the five-shot, and so on. Although humans have the ability to cope with this process, 
traditional ANN require many more examples to generalize effectively, in order to achieve the same 
degree of performance. The limitation of these learning approaches is that the model has access to 
minimum samples from each class and the validation process is performed by calculating the cross-
entropy error of the test set. Specifically, in the cases of one-shot and Zero-shot Learning (ZsL), only 
one example each of the candidate classes and only meta-data is shown at the evaluation stage. 

Overall, k-shot learning is a perfect example of a problematic area, where specialized solutions 
are needed to design and train systems capable to learn very quickly from a small support set, 
containing only 1–5 samples per class. These systems can offer strong generalization to a 
corresponding target set. A successful exploitation of the above k-shot learning cases is provided by 
meta-learning techniques which can be used to deliver effective solutions [6]. 

In this work, we propose a new classification model, which is based on zero-shot philosophy, 
named MAME-ZsL. The significant advantages of the proposed algorithm is that it reduces 
computational cost and training time; it avoids potential overfitting by enhancing the learning of 
features which do not cause issues of exploding or diminishing gradients; and it offers an improved 
training stability, high generalization performance and remarkable classification accuracy. The 
superiority of the proposed model refers to the fact that the instances in the testing set belong to 
classes which were not contained in the training set. In contrast, the traditional supervised state-of-
the-art Deep Learning models were trained with labeled instances from all classes. The performance 
of the proposed model was evaluated against state-of-the-art supervised Deep Learning models. The 
presented numerical experiments provide convincing arguments regarding the classification 
efficiency of the proposed model. 

2. Meta-Learning 

It is a field of machine learning where advanced learning algorithms are applied to the data and 
metadata of a given problem. The models “learn to learn” [7] from previous learning processes or 
previous sorting tasks they have completed [8]. It is an advanced form of learning where 
computational models, which usually consist of multiple levels of abstraction, can improve their 
learning ability. This is achieved by learning some or all of their own building blocks, through the 
experience gained in handling a large number of tasks. Their building blocks which are “learning to 
learn” can be optimizers, loss functions, initializations, Learning Rates, updated functions and 
architectures. 

In general, for real physical modeling situations, the input patterns with and without tags are 
derived from the same boundary distribution or they follow a common cluster structure. Thus, 
classified data can contribute to the learning process, while correspondingly useful information 
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related to the exploration of the data structure of the general set can be extracted from the non-
classified data. This information can be combined with knowledge originating from prior learning 
processes or from completed prior classification tasks. Based on the above theory, meta-learning 
techniques can discover the structure of the data, by allowing new tasks to be learned quickly. This 
is achieved by using different types of metadata, such as the properties of the learning problem, the 
properties of the algorithm used (e.g., performance measures) or the patterns derived from data from 
a previous problem. This process employs knowledge from unknown cases sampled from real-world 
distribution of examples, aiming to enhance the outcome of the learning task. In this way it is possible 
to learn, select, change or combine different learning algorithms to effectively solve a given problem. 

Meta-learning is achieved by conceptually dividing learning in two levels. The inner-most levels 
acquire specific knowledge for specific tasks (e.g., fine-tuning a model on a new dataset), while the 
outer-most levels acquire across-task knowledge (e.g., learning to transfer tasks more efficiently). 

If the inner-most levels are using learnable parameters, outer-most optimization process can 
meta-learn the parameters of such components, thereby enabling automatic learning of inner-loop 
components. 

A meta-learning system should combine the following three requirements [9,10]: 

1. The system must include a learning sub-system. 
2. Experience must be derived from the use of extracted knowledge from metadata related to the 

dataset under consideration, or from previous learning tasks completed in similar or different 
fields. 

3. Learning biases should be dynamically selected. 

Employing a generic approach, a credible meta-learning model should be trained in a variety of 
learning tasks and it should be optimized for the best performance in generalizing tasks, including 
potentially unknown ones. Each task is associated with a dataset D, containing attribute vectors and 
class labels in a supervised learning problem. The optimal parameters of the model are [11]: 𝜃∗ = 𝑎𝑟𝑔ఏ௠௜௡𝔼஽~௉(஽)ሾ𝐿ఏ(𝐷)ሿ (2) 

It looks similar to a normal learning process, but each data set is considered as a data sample. 
The dataset D is divided in two parts, a training set S and a set of predictions B for validation 

and testing.  𝐷 =  ⟨𝑆, 𝐵⟩ (3) 

The dataset D includes pairs of vectors and labels so which: 𝐷 =  {(𝑥௜, 𝑦௜)} (4) 

Each label belongs to a known label set L. 
Let us consider a classifier 𝑓ఏ. The parameter θ extracts the probability 𝑥, 𝑃ఏ (𝑦|𝑥)  of a data 

point to belong to class y, given by the attribute vector. Optimal parameters should maximize the 
likelihood of identifying true labels in multiple training batches 𝛣 ⊂ 𝐷: 𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥ఏ𝔼(௫,௬)∈஽ሾ𝑃ఏ(𝑦|𝑥)ሿ (5) 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥ఏ𝔼஻⊂஽ ቎ ෍ 𝑃ఏ(𝑦|𝑥)(௫,௬)∈௯ ቏ (6) 

The aim is to reduce the prediction error in data samples with unknown labels, in which there 
is a small set of “fast learning” support which can be used for “fine-tuning”. 

Fast learning is a trick which creates a “fake” dataset containing a small subset of labels (to avoid 
exposing all labels to the model). During the optimization process, various modifications take place, 
aiming to achieve rapid learning. 

A brief step-by-step description of the whole process is presented below [11]: 

1. Development of a subset of labels 𝐿௦ ⊂ 𝐿. 
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2. Development of a training subset 𝑆௅ ⊂ 𝐷 and a forecast subset 𝛣௅ ⊂ 𝐷. Both of them include 
data points with labels belonging to the subset 𝐿௦, y ∈ 𝐿௦, ∀ (x, y) ∈ 𝑆௅, 𝛣௅. 

3. The optimization procedure uses 𝛣௅ to calculate the error and to update the model parameters 
via back propagation. This is done in the same way as it is used in a simple supervised learning 
model. 

In this way each sample pair (𝑆௅, 𝛣௅) can be considered to be a data point. The model is trained 
so that it can generalize to new unknown datasets. 

The following function (Equation (7)) is a modification of the supervised learning model. The 
symbols of the meta-learning process have been added: 

𝜃∗ = 𝑎𝑟𝑔𝑚𝑎𝑥ఏ𝔼௅ೞ⊂௅ ൦𝔼ௌಽ⊂஽,஻ಽ⊂஽ ቎ ෍ 𝑃ఏ(𝑥, 𝑦, 𝑆௅)(௫,௬)∈௯ಽ ቏൪ (7) 

There are three meta-learning modeling approaches, as presented below [11] and the Table 1.: 

a. Model-based: These are techniques based on the use of circular networks with external or 
internal memory. They update their parameters quickly with minimal training steps. This can 
be achieved through their internal architecture or by using other control models. Memory-
augmented neural networks and meta networks are characteristic cases of model-based meta-learning 
techniques. 

b. Metrics-based: These are techniques based on learning effective distance measurements which 
can offer generalization. The core concept of their operation is similar to that of the nearest 
neighbors algorithms, where they aim to learn a measurement or a distance from objects. The 
concept of a good metric depends on the problem, as it should represent the relationship between 
inputs to the site, facilitating problem solving. Convolutional Siamese neural networks, matching 
networks, relation networks and prototypical networks are characteristic metrics-based meta-learning 
techniques. 

c. Optimization-based: These are techniques based on optimizing the parameters of the model for 
quick learning. LSTM Meta-Learners, temporal discreteness and the reptile plus Model-Agnostic Meta-
Learning (MAML) algorithms are typical cases of optimization-based meta-Learning. 

Table 1. Meta-learning approaches. 

 Model-Based Metric-Based Optimization-Based 
Key idea RNN; memory Metric learning Gradient descent 

How is Pθ(y|x) modeled? fθ(x,S) ෍ 𝑘ఏ(𝑥, 𝑥௜)𝑦௜(௫೔,௬೔)∈ௌ  𝑃௚ക൫ఏ,ௌಽ൯(𝑦|𝑥) 

* 𝑘ఏ is a kernel function which calculates the similarity between xi and x. 

The Recurrent Neural Networks (RNNs) which use only internal memory, and also the Long-Short-
Term Memory approaches (LSTM), are not considered meta-learning techniques [11]. Meta-learning 
can be achieved through a variety of learning examples. In this case, the supervised gradient-based 
learning can be considered as the most effective method [11]. More specifically, the gradient-based, 
end-to-end differentiable meta-learning, provides a wide framework for the application of effective meta-
learning techniques. 

This research proposes an optimization-based, gradient-based, end-to-end differentiable meta-
learning architecture, based on an innovative evolution of the MAML algorithm [10]. MAML is one 
of the most successful and at the same time simple optimization algorithms which belongs to the 
meta-learning approach. One of its great advantages is that it is compatible with any model which 
learns through the Gradient Descent (GRD) method. It is comprised of the Base-Learner (BL) and the 
Meta-Learner (ML) models, with the second used to train the first. The weights of the BL are updated 
following the GRD method in learning tasks of the k-shot problem, whereas the ML applies the GRD 
approach on the weights of the BL, before the GRD [10]. 

In Figure 1 you can see a depiction of the MAML algorithm. 



Algorithms 2020, 13, 61 23 of 24 

 
Figure 1. Model-Agnostic Meta-Learning algorithm. 

It should be clarified that 𝜃 denotes the weights of the meta-learner. Gradient 𝐿௜ comprises of 
the losses for task 𝑖 in a meta-batch. The 𝜃௜ ∗ are the optimal weights for each task. It is essentially 
an optimization procedure on a set of parameters, such that when a slope step is obtained with respect 
to a particular task i, the respective parameters 𝜃ᵢ∗ are approaching their optimal values. Therefore, 
the goal of this approach is to learn an intrinsic feature which is widely applicable to all tasks of a 
distribution p(T) and not to a single one. This is achieved by minimizing the total loss across tasks 
sampled from the distribution 𝑝(𝑇). 

In particular, we have a base-model represented by a parametric function 𝑓ఏ with parameters 𝜃ᵢ and a task 𝑇௜∼𝑝(𝑇). After applying the Gradient Descent, a new feature vector is obtained denoted 
as 𝜃௜ᇱ: 𝜃௜ᇱ = 𝜃 − 𝛼∇ఏ𝐿்೔(𝑓ఏ) (8) 

We will consider that we execute only one GD step. The meta-learner optimizes the new 
parameters using the initial ones, based on the performance of the 𝑓ఏᇲ model, in tasks which use 
sampling from the 𝑃(𝑇). Equation (9) is the meta-objective [10]: minఏ ෍ 𝐿்೔ ቀ𝑓ఏ೔ᇲቁ = minఏ ෍ 𝐿்೔ ቀ𝑓ఏ − 𝛼∇ఏ𝐿்೔(𝑓ఏ)ቁఁ೔~௣(்)ఁ೔~௣(்)  (9) 

The meta-optimization is performed again with the Stochastic Gradient Descent (SGD) and it 
updates the parameters 𝜃 as follows: 𝜃 ← 𝜃 − 𝛽∇ఏ ෍ 𝐿்೔ ቀ𝑓ఏ೔ᇲቁఁ೔~௣(்)  (10) 

It should be noted that we do not actually define an additional set of variables  𝜃௜ᇱ whose values 
are calculated by considering one (or more) Gradient Descents from 𝜃 relative to 𝑡𝑎𝑠𝑘 i. This step is 
known as the Inner Loop Learning (INLL), which is the reverse process of the Outer Loop Learning (OLL), 
and it optimizes Equation (10). If, for example, we apply INLL to fine-tune 𝜃 for process 𝑖, then 
according to Equation (10) we are optimizing a target with the expectation which the model applies 
to each task, following corresponding fine-tuning procedures. 

The following Algorithm 1 is an analytical presentation of the MAML algorithm [10]. 

Algorithm 1. MAML. 
Require: 𝑝(𝑇): distribution over tasks 
Require: 𝛼, 𝛽: step size hyperparameters 
1: randomly initialize 𝜃 
2: while not done do 
3: Sample batch of tasks 𝛵௜~𝑝(𝑇) 
4: for all 𝛵௜ do 
5: Evalluate ∇ఏ𝐿்೔(𝑓ఏ) with respect to K examples 
6: Compute adapted parameters with gradient descent: 𝜃௜ᇱ = 𝜃 − 𝛼∇ఏ𝐿்೔(𝑓ఏ) 
7: end for 
8: Update 𝜃 ← 𝜃 − 𝛽∇ఏ ∑ 𝐿்೔ ቀ𝑓ఏ೔ᇲቁఁ೔~௣(்)  
9: end while 



Algorithms 2020, 13, 61 24 of 24 

Figure 2 is a graphical illustration of the operation of the MAML algorithm. 

 
Figure 2. Graphical presentation of the MAML. 

It should be clarified that the intermediate parameters 𝜃ᵢ’ are considered fast weights. The INLL 
considers all of the 𝑁  gradient steps for the final estimation of the fast weights, based on the fact 
that the outer learning loop calculates the outer task loss  𝐿்೔ ቀ𝑓ఏ೔ᇲቁ. However, though the inner 
learning loop makes 𝑁 iterations, the MAML algorithm employs only the final weights to perform 
the OLL. However, this is a fairly significant problem, as it can create instability in learning when N 
is large. 

The field of few-shot or Zero-shot Learning, has recently seen substantial advancements. Most 
of these advancements came from casting few-shot learning as a meta-learning problem. MAML is 
currently one of the best approaches for few-shot learning via meta-learning. It is a simple, general, 
and effective optimization algorithm that does not place any constraints on the model architecture or 
loss functions. As a result, it can be combined with arbitrary networks and different types of loss 
functions, which makes it applicable to a variety of different learning processes. However, it has a 
variety of issues, such as being very sensitive to neural network architectures, often leading to 
instability during training. It requires arduous hyperparameter searches to stabilize training and 
achieve high generalization, and it is very computationally expensive at both training and inference 
times. 

3. Related Work 

Although the MAML algorithm and its variants do not use parameters other than those of the 
base-learner, network training is quite slow and computationally expensive as it contains second-
degree derivatives. In particular, the meta-update of the MAML algorithm includes gradient nested 
in gradient, or second-degree derivatives, which significantly increases the computational cost. In 
order to solve the above problem, several approximation techniques have been proposed to accelerate 
the algorithm. 

Finn et al. [12] developed the MAML by ignoring the second derivatives, calculating the slope 
in the meta-update, which they called FOMAML (First Order MAML). 

More specifically, MAML optimizes the: minఏ 𝔼ఁ~௣(்) ቂ𝐿் ቀ𝕌௞் (𝜃)ቁቃ, (11) 

where 𝕌௞்  is the process by which k samples are taken from task T and 𝜃 is updated. This procedure 
employs the support set and the query set, so the optimization can be rewritten as follows: 
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minఏ 𝔼ఁ~௣(்) ቂ𝐿்,ொ ቀ𝕌்,ௌ(𝜃)ቁቃ (12) 

Finally, MAML uses the slope method to calculate the following: 𝑔𝑀𝐴𝑀𝐿 = 𝐿்,ொ ቀ𝕌்,ௌ(𝜃)ቁ = 𝕌்,ௌᇱ (𝜃)𝐿ᇱ்,ொ൫𝜃෨൯, (13) 

where 𝜃෨ = 𝕌்,ௌ(𝜃) and 𝕌்,ௌᇱ  is the Jacobian renewal matrix of  𝕌்,ௌ where the FOMAML considers 𝕌்,ௌᇱ  as unitary, so it calculates the following: 𝑔𝐹𝑂𝑀𝐴𝑀𝐿 = 𝐿ᇱ ்,ொ൫𝜃෨൯ (14) 

The resulting method still calculates the meta-gradient for the parameter values after updating  𝜃ᇱ , which is an effective post-learning method from a theoretical point of view. However, 
experiments have shown that the yield of this method is almost the same as the one obtained by a 
second derivative. Most of the improvement in MAML comes from the gradients of the objective at 
the post-update parameter values, rather than the second-order updates from differentiating through 
the gradient update. 

A different implementation employing first degree derivatives was studied and analyzed by 
Nichol et al. [13]. They introduced the reptile algorithm, which is a variation of the MAML, using 
only the first derivative. The basic difference from FOMAML is that the last step treats θ −̃θ as a slope 
and feeds it into an adaptive algorithm such as ADAM. Algorithm 2 presents reptile. 

Algorithm 2. Reptile algorithm. 
Initialize 𝜃, the vector of initial parameters 
1: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1,2, …, do 
2: Sample task 𝑇, corresponding to Loss 𝐿் on weighs vector 𝜃෨ 
3: Compute 𝜃෨ = 𝕌௞் (𝜃), denoting k steps of gradient descent or Adam algorithm 
4: Update 𝜃 ← 𝜃 + 𝜀൫𝜃෨ − 𝜃൯ 
5: end for 

MAML also suffers from training instability, which can currently only be alleviated by arduous 
architecture and hyperparameter searches. 

Antoniou et al. proposed an improved variant of the algorithm, called MAML++, which 
effectively addresses MAML problems, by providing a much improved training stability and 
removing the dependency of training stability on the model’s architecture. Specifically, Antoniou et 
al. [14] found that simply replacing max-pooling layers with stridden convolutional layers makes 
network training unstable. It is clearly shown in Figure 3 that in two of the three cases, the original 
MAML appears to be unstable and irregular, while all 3 MAML++ models appear to converge 
consistently very quickly, with much higher generalization accuracy without any stability problems. 

 
Figure 3. Stabilizing MAML. 
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It was estimated that the instability was caused by a gradient degradation (gradient explosion 
or vanishing gradient) which was due to the depth of the network. Let us consider a typical four-
layer Convolutional Neural Network (CNN) followed by a single linear layer. If we repeat the Inner 
Loop Learning N times, then the inference graph comprises 5N layers in total, without any skip 
connections. 

Since the original MAML only uses the final weights for the Outer Loop Learning, the 
backpropagation algorithm has to go through all layers, which causes gradient degradation. To solve 
the above problem, the Multi-Step Loss (MSL) optimization approach was adopted. It eliminates the 
problem by calculating the external loss after each internal step, based on the outer loop update, as 
in Equation (15) below: 𝜃 = 𝜃 − 𝛽∇ఏ ∑ ∑ 𝑤௝𝐿்೔ ቀ𝑓ఏೕ೔ቁே௝ୀଵ஻௜ୀଵ , (15) 

where β is a Learning Rate; 𝐿்೔ ቀ𝑓ఏೕ೔ቁ denotes the outer loss of task i when using the base-network 

weights after the j-inner-step update; and 𝑤௝ denotes the importance weight of the outer loss at step 
j. 

The following, Figure 4, is a graphical display of the MAML++ algorithm, where the outer loss 
is calculated after each internal step and the weighted average is obtained at the end of the process. 

 
Figure 4. MAML++ visualization. 

In practice, all losses are initialized with equal contributions to the overall loss, but as repetitions 
increase, contributions from previous steps are reduced, while the ones of subsequent steps keep 
increasing gradually. This is to ensure that as training progresses, the final step loss receives more 
attention from the optimizer, thereby ensuring that the lowest possible loss is achieved. If the 
annealing is not used, the final loss might be higher compared to the one obtained by the original 
formulation. Additionally, due to the fact that the original MAML overcomes the second-order 
derivative cost by completely ignoring it, the final general performance of the network is reduced. 
The MAML++ solves this problem, by using the derivative order annealing method. Specifically, it 
employs the first order grade for the first 50 epochs of training and then it moves to the second order 
grade for the rest of the training process. An interesting observation is that this derivative-order 
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annealing does not create incidents of exploding or diminishing gradients, and so the training is 
much more stable. 

Another drawback of MAML is the fact that it does non-use batch normalization statistic 
accumulation. Instead, only the statistics of the current batch are used. As a result, smoothing is less 
effective, as the trained parameters must include a variety of different means and standard deviations 
from different tasks. A naive application would accumulate current batch statistics at all stages of the 
Inner Loop Learning update, which could cause optimization problems, and it could slow or stop 
optimization altogether. The problem stems from the erroneous assumption that the original model 
and all its updated iterations have similar attribute distributions. Thus, the current statistics could be 
shared across all updates to the internal loop of the network. Obviously, this assumption is not correct. 
A better alternative solution, which is employed by MAML++, is the storage of per-step batch 
normalization statistics and the reading of per-step batch normalization weights and biases for each 
repetition of the inner loop. One issue that affects the speed of generalization and convergence is the 
use of a shared Learning Rate for all parameters and all steps of learning process update. 

The consistent Learning Rate requires multiple hyperparameter searches, in order to find the 
right rate for a particular set of data. This is computationally expensive and time consuming, 
depending on how the search is shared. Use the shared Learning Rate for all parameters and all the 
steps of updating the learning process. In addition, while gradient is an effective data fitting tactic, 
a constant Learning Rate can easily lead to overfitting under the few-shot regime. An approach to avoid 
potential overfitting is the identification of all learning factors in a way that maximizes the power of 
generalization rather than the over-fitting of the data. 

Li et al. [15] proposed a Learning Rate for each parameter in the core network where the internal 
loop was updated, as in the following equation (Equation (16)): 𝜃ᇱ = 𝜃 − 𝛼 ○ ∇ఏ𝐿்೔(𝑓ఏ), (16) 

where α is a vector of learnable parameters with the same size as 𝐿்೔(𝑓ఏ) and ○ denotes the element-
wise product operation. We do not put the constraint of positivity on the Learning Rate (LER) 
denoted as “α.” Therefore, we should not expect the inner-update direction to follow the gradient 
direction. 

A clearly improved approach to the above process is suggested by MAML++ which employs per-
layer per-step Learning Rates. For example, if it is assumed that the core network comprises L layers 
and the Inner Loop Learning consists of N stages of updating, then there are LN additional learnable 
parameters for the Inner Loop Learning Rate. 

MAML uses the ADAM algorithm with a constant LER to optimize the meta-objective. This 
means which more time is required to properly adjust the Learning Rate, which is a critical parameter 
of the generalization performance. On the other hand, MAML++ employs the cosine annealing 
scheduling on the meta-optimizer, which is defined based on the following Equation (17) [16]. 𝛽 = 𝛽௠௜௡ + ଵଶ (𝛽௠௔௫ − 𝛽௠௜௡) ቀ1 + cos ቀ ்೘்ೌೣ 𝜋ቁቁ, (17) 

where 𝛽௠௜௡ denotes the minimum Learning Rate, 𝛽௠௔௫ denotes the initial Learning Rate, 𝑇 is the 
number of current iterations and 𝑇௠௔௫ is the maximum number of iterations. When 𝑇 = 0, the LER 𝛽 = 𝛽௠௔௫. On the other hand, if 𝑇 = 𝑇௠௔௫, 𝑡ℎ𝑒𝑛 𝛽 = 𝛽௠௜௡. In practice, we might want 𝑇 to be 𝑇௠௔௫. 

In summary, this particular MAML++ standardization enables its use in complex Deep Learning 
architectures, making it easier to learn more complex functions, such as loss functions, optimizers or 
even gradient computation functions. Moreover, the use of first-class derivatives offers a powerful 
pre-training method aiming to detect the parameters which are less likely to cause exploding or 
diminishing gradients. Finally, the learning per-layer per-step LER technique avoids potential 
overfitting, while it significantly reduces the computational cost and time required to build a 
consistent Learning Rate throughout the process. 
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4. Design Principles and Novelties of the Introduced MAME-ZsL Algorithm 

As it has already been mentioned, the proposed MAME-ZsL algorithm employs MAML++ for 
the development of a robust Hyperspectral Image Analysis and Classification (HIAC) model, based on 
ZsL. The basic novelty introduced by the improved MAME-ZsL model, is related to a neural network 
with Convolutional (CON) filters, comprising very small receptive fields of size 3 × 3. 

The Convolutional stride and the spatial padding were set to 1 pixel. Max-pooling was 
performed over 3 × 3 pixels windows with stride equal to three. All of the CON layers were developed 
using the Rectified Linear Unit (ReLU) nonlinear Activation Function (ACF), except for the last layer 
where the Softmax ACF [3] was applied, as it performs better on multi-classification problems like 
the one under consideration (18). 𝜎௝(𝑧) = 𝑒௭ೕ∑ 𝑒௭ೖ௄௞ୀଵ , 𝑗 = 1, … , 𝐾 (18) 

The Sigmoid approach offers better results in binary classification tasks. It is a fact that in the 
Softmax, the sum of probabilities is equal to 1, which is not the case for the Sigmoid. Moreover, in 
Softmax the highest value has a higher probability than the others, while in the Sigmoid the highest 
value is expected to have a high probability but not the highest one. 

The fully Convolutional Neural Network (CNN) was trained based on the novel AdaBound 
algorithm [17] which employs dynamic bounds on the Learning Rate and it achieves a smooth 
transition to stochastic gradient descent. Algorithm 3 makes a detailed presentation of the AdaBound 
[17]: 

Algorithm 3. The AdaBound algorithm. 
Input: 𝑥ଵ ∈ 𝐹, initial step size 𝛼, {𝛽ଵ௧}௧ୀଵ் , 𝛽ଶ lower bound function 𝜂௟, upper bound function 𝜂௨ 
1: Set 𝑚଴ = 0, 𝑢଴ = 0 
2: for 𝑡 = 1 to T do 
3: 𝑔௧ = ∇𝑓௧(𝑥௧) 
4: 𝑚௧ = 𝛽ଵ௧𝑚௧ିଵ + (1 − 𝛽ଵ௧)𝑔௧ 
5: 𝑢௧ = 𝛽ଶ𝑢௧ିଵ + (1 − 𝛽ଶ)𝑔௧ଶ and 𝑉௧ = 𝑑𝑖𝑎𝑔(𝑢௧) 

6: 𝜂̂௧ = 𝐶𝑙𝑖𝑝 ቆ ௔ඥ ௏೟ , 𝜂௟(𝑡), 𝜂௨(𝑡)ቇ and 𝜂௧ = ఎෝ೟√௧ 
7: 𝑥௧ାଵ = ∏ (𝑥௧ − 𝜂௧ ∙ 𝑚௧)௙,ௗ௜௔௚൫ఎ ೟షభ൯  
8: end for 

Compared to other methods, AdaBound has two major advantages. It is uncertain whether there 
exists a fixed turning point to distinguish the simple ADAM algorithm and the SGD. The advantage 
of the AdaBound is the fact that it addresses this problem with a continuous transforming procedure, 
rather than with a “hard” switch. Τhe AdaBound introduces an extra hyperparameter to perform the 
switching time, which is not very easy to fine-tune. Moreover, it has a higher convergence speed than 
the stochastic gradient descent ones. Finally, it overcomes the poor generalization ability of the 
adaptive models, as it uses dynamic limits on the LER, aiming towards higher classification accuracy. 

The selection of the appropriate hyperparameters to be employed in the proposed method, was 
based on the restrictions’ settings and configurations, which should be based on the consideration of 
the different decision boundaries of the classification problem. For example, the obvious choice of 
classifiers with the smallest error in training data is considered as improper for generating a 
classification model. The performance based on a training dataset, even when cross-validation is used, 
may be misleading when first seen data vectors are used. In order for the proposed process to be 
effective, individual hyperparameters were chosen. They not only display a certain level of diversity, 
but they also use different operating functions, thus allowing different decision boundaries to be 
created and combined in such a way that can reduce the overall error. 

In general, the selection of features was based on a heuristic method which considers the way 
the proposed method faces each situation. For instance: 
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• Are any parametric approaches employed? 
• What is the effect of the outliers? (The use of a subgroup of training sets with bagging can 

provide significant help towards the reduction of the effect of outliers or extreme values) 
• How is the noise handled? For instance: if it is repeatedly non-linear, it can detect linear or non-

linear dispersed data; it tends to perform very well with a lot of data vectors. The final decision 
is made based on the performance encountered by the statistical trial and error method. 

5. Application of the MAME-ZsL in Hyperspectral Image Analysis 

Advances in artificial intelligence, combined with the extended availability of high quality data 
and advances in both hardware and software, have led to serious developments in the efficient 
processing of data related to the GeoAI field (Artificial Intelligence and Geography/Geographic 
Information Systems). Hyperspectral Image Analysis for efficient and accurate object detection using 
Deep Learning is one of the timely topics of GeoAI. The most recent research examples include 
detection of soil characteristics [18], detailed ways of capturing densely populated areas [19], 
extracting information from scanned historical maps [20], semantic point sorting [21], innovative 
spatial interpolation methods [22] and traffic forecasting [23]. 

Similarly, modern applications of artificial vision and imaging (IMG) systems significantly 
extend the distinctive ability of optical systems, both in terms of spectral sensitivity and resolution. 
Thus, it is possible to identify and differentiate spectral and spatial regions, which although having 
the same color appearance, are characterized by different physico-chemical and/or structural 
properties. This differentiation is based on the emerging spatial diversification, which is detected by 
observing in narrow spectral bands, within or outside the visible spectrum. 

Recent technological developments have made it possible to combine IMG (spatial variation in 
RGB resolution) and spectroscopy (spectral analysis in spatially emitted radiation) in a new field 
called “Spectral Imaging” (SIM). In the SIM process, the intensity of light is recorded simultaneously 
as a function of both wavelength and position. The dataset corresponding to the observed surface 
contains a complete image, different for each wavelength. In the field of spectroscopy, a fully resolved 
spectrum can be recorded for each pixel of the spatial resolution of the observation field. The 
multitude of spectral regions, which the IMG system can manage, determines the difference between 
multispectral (tens of regions) and Hyperspectral (hundreds of regions) Imaging. The key element of 
a typical spectral IMG system is the monochromatic image sensor (monochrome camera), which can 
be used to select the desired observation wavelength. 

It can be easily perceived that the success of a sophisticated Hyperspectral Analysis System 
(HAS) is a major challenge for DL technologies, which are using a series of algorithms attempting to 
model data characterized by high-level of abstraction. HAS use a multi-level processing architecture, 
which is based on sequential linear and non-linear transformations. Despite their undoubtedly well-
established and effective approaches and their advantages, these architectures depend on the 
performance of training with huge datasets which include multiple representations of images of the 
same class. Considering the multitude of classes which may be included in a Hyperspectral image, 
we realize that this process is so incredibly time consuming and costly, that it can sometimes be 
impossible to run [1]. 

Τhe ZsL method was adopted based on a heuristic [24], hierarchical parameter search 
methodology [25]. It is part of a family of learning techniques which exploit data representations to 
interpret and derive the optimal result. Τhis methodology uses distributed representation, the basic 
premise of which is that the observed data result from the interactions of factors which are organized 
in layers. A fundamental principle is that these layers correspond to levels of abstraction or 
composition based on their quantity and size. 

Fine-Grained Recognition (FIG_RC) is the task of distinguishing between visually very similar 
objects, such as identifying the species of a bird, the breed of a dog or the model of an aircraft. On the 
other hand, FIG_RC [26] which aims to identify the type of an object among a large number of 
subcategories, is an emerging application with the increasing resolution which exposes new details 
in image data. Traditional fully supervised algorithms fail to handle this problem where there is low 
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between-class variance and high within-class variance for the classes of interest with small sample 
sizes. The experiments show that the proposed fine-grained object recognition model achieves only 
14.3% recognition accuracy for the classes with no training examples. This is slightly better than a 
random guess accuracy of 6.3%. Another method [27] automatically creates a training dataset from a 
single degraded image and trains a denoising network without any clear images. However, the 
performance of the proposed method shows the same performance as the optimization-based 
method at high noise levels. 

Hu et al., 2015, proposed a time-consuming and resource depended model [28] which learns to 
perform zero-shot classification, using a meta-learner which is trained to produce corrections to the 
output of a previously trained learner. The model consists of a Task Module (TM) which supplies an 
initial prediction, and a Correction Module (CM) updating the initial prediction. The TM is the learner 
and the CM is the meta-learner. The correction module is trained in an episodic approach, whereby 
many different task modules are trained on various subsets of the total training data, with the rest 
being used as unseen data for the CM. The correction module takes as input a representation of the 
TM’s training data to perform the predicted correction. The correction module is trained to update 
the task module's prediction to be closer to the target value. 

In addition [29] proposes the use of the visual space as the embedding one. In this space, the 
subsequent nearest neighbor search suffers much less from the harness problem and it becomes more 
effective. This model design also provides a natural mechanism for multiple semantic modalities (e.g., 
attributes and sentence descriptions) to be fused and optimized jointly in an end-to-end manner. Only 
the statistics of the current environment are used and the trained process must include a variety of 
different statistics from different tasks and environments. 

Additionally, [30] propose a very promising approach with high-grade accuracy, but the model 
is characterized by high bias. In the case of image classification, various spatial information can be 
extracted and used, such as edges, shapes and associated color areas. As they are organized into 
multiple levels, they are hierarchically separated into levels of abstraction, creating the conditions for 
selecting the most appropriate features for the training process. Utilizing the above processes, ZsL 
inspires and simulates the functions of human visual perception, where multiple functional levels 
and intermediate representations are developed, from capturing an image to the retina to responding 
in stimuli. This function is based on the conversion of the input representation to a higher level one, 
as it is performed by each intermediate unit. High-level features are more general and unchanged, 
while low-level ones help to categorize inputs. Their effectiveness is interpreted on the basis of the 
“universal approximation theorem,” which deals with the ability of a neural structure to approach 
continuous functions and the probabilistic inference which considers the activation of nonlinearity 
as a function of cumulative distribution. This is related to the concepts of optimization and 
generalization respectively [25]. 

Given that in deep neural networks, each hidden level trains a distinct set of features, coming 
from the output of the previous level, further operation of this network enables the analysis of the 
most complex features, as they are reconstructed and decomposed from layer to layer. This hierarchy, 
as well as the degradation of information, while increasing the complexity of the system, also enables 
the handling of high-dimensional data, which pass through non-linear functions. It is thus possible 
to discover unstructured data and to reveal a latent structure in unmarked data. This is done in order 
to handle more general problematic structures, even discerning the minimal similarities or anomalies 
they entail. 

Specifically, since the aim was the design of a system with zero samples from the target class, 
the proposed methodology used the intermediate representations extracted from the rest of the image 
samples. This was done in order to find the appropriate representations to be used in order to classify 
the unknown image samples. 

To increase the efficiency of the method, bootstrap sampling was used, in order to train different 
subsets of the data set in the most appropriate way. Bootstrap sampling is the process of using 
increasingly larger random samples until the accuracy of the neural network is improved. Each 
sample is used to compile a separate model and the results of each model are aggregated with 
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“voting”; that is, for each input vector, each classifier predicts the output variable, and finally, the 
value with the most “votes” is selected as the response variable for which particular vector. This 
methodology, which belongs to the ensemble methods, is called bagging and has many advantages, 
such as reducing co-variance and avoiding overfitting, as you can see in the below Figure 5 [31]. 

 
Figure 5. Bagging (bootstrap sampling) (https://www.kdnuggets.com/). 

The ensemble approach was selected to be employed in this research, due to the particularly 
high complexity of the examined ZsL, and due to the fact that the prediction results were highly 
volatile. This can be attributed to the sensitivity of the correlational models to the data, and to the 
complex relationship which describes them. The ensemble function of the proposed system offers a 
more stable model with better prediction results. This is due to the fact that the overall behavior of a 
multiple model is less noisy than a corresponding single one. This reduces the overall risk of a 
particularly bad choice. 

It is important to note that in Deep Learning, the training process is based on analyzing large 
amounts of data. The research and development of neural networks is flourishing thanks to recent 
advancements in computational power, the discovery of new algorithms and the increase in labeled 
data. 

Neural networks typically take longer to run, as an increase in the number of features or columns 
in the dataset also increases the number of hidden layers. Specifically, we should say that a single 
affine layer of a neural network without any non-linearities/activations is practically the same as a 
linear model. Here we are referring to deep neural networks that have multiple layers and activation 
functions (non-linearities as Relu, Elu, tanh, Sigmoid) Additionally, all of the nonlinearities and 
multiple layers introduce a nonconvex and usually rather complex error space, which means that we 
have many local minimums that the training of the deep neural network can converge to. This means 
that a lot of hyperparameters have to be tuned in order to get to a place in the error space where the 
error is small enough so that the model will be useful. A lot of hyper parameters which could start 
from 10 and reach up to 40 or 50 are dealt with via Bayesian optimization, using Gaussian processes 
to optimize them, which still does not guarantee good performance. Their training is very slow, and 
adding the tuning of the hyperparameters into that makes it even slower, whereas the linear model 
would be much faster to be trained. This introduces a serious cost–benefit tradeoff. A trained linear 
model has weights which are interpretable and gives useful information to the data scientist as to 
how various features should have roles for the task at hand. 
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Modern frameworks like TensorFlow or Theano perform execution of neural networks on GPU. 
They take advantage of parallel programming capabilities for large array multiplications, which are 
typical of backpropagation algorithms. 

The proposed Deep Learning model is a quite resource-demanding technology. It requires 
powerful, high-performance graphics processing units and large amounts of storage to train the 
models. Furthermore, this technology needs more time to train in comparison with traditional 
machine learning. Another important disadvantage of any Deep Learning model is that it is incapable 
of providing arguments about why it has reached a certain conclusion. Unlike in the case of 
traditional machine learning, you cannot follow an algorithm to find out why your system has 
decided which it is a tree on a picture, not a tile. To correct errors in Deep Learning, you have to 
revise the whole algorithm. 

6. Description of the Datasets 

The datasets used in this research include images taken from a Reflective Optics System Imaging 
Spectrometer (ROSIS). More specifically, the Pavia University and Pavia Center datasets were 
considered [32]. Both datasets came from the ROSIS sensor during a flight campaign over Pavia in 
southern Italy. The number of spectral bands is 102 for the Pavia Center and it is 103 for Pavia 
University. The selected Pavia Center and Pavia University images have an analysis of 1096 × 1096 
pixels and 610 × 610 pixels respectively. Ultrasound imaging consists of 115 spectral channels ranging 
from 430 to 860 nm, of which only 102 were used in this research, as 13 were removed due to noise. 
Rejected specimens which in both cases contain no information (including black bars) can be seen in 
the following figure (Figure 6) below. 

  
(a) Sample band of Pavia Centre dataset (b) Ground truth of Pavia Centre dataset 

  

(c) Sample band of Pavia University dataset (d) Ground truth of Pavia University dataset 

Figure 6. Noisy bands in Pavia Centre and University datasets. 

The available samples were scaled down, so that every image has an analysis of 610 × 610 pixels 
and geometric analysis of 1.3 m. In both datasets the basic points of the image belong to nine 
categories which are mainly related to land cover objects. The Pavia University dataset includes nine 
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classes, and in total, 46,697 cases. The Pavia Center dataset comprises nine classes with 7456 cases, 
whereas the first seven classes are common in both datasets (Asphalt, Meadows, Trees, Bare Soil, Self-
Blocking Bricks, Bitumen, Shadows) [33]. 

The Pavia University dataset was divided into training, validation and testing sets, as is 
presented in the following table (Table 2) [32]. 

Table 2. Pavia University dataset. 

Class No Class Name All Instances 
Sets 

Training Validation Test 
1 Asphalt 7179 √ - - 
2 Meadows 19,189 √ - - 
3 Trees 3588 √ - - 
4 Bare Soil 5561 √ - - 
5 Self-Blocking Bricks 4196 √ - - 
6 Bitumen 1705 √ - - 
7 Shadows 1178 √ - - 
8 Metal Sheets 1610 - √ - 
9 Gravel 2491 - - √ 

Total 46,697 42,596 1610 2491 

The Pavia Center dataset was divided into training, validation and testing sets, as is presented 
analytically in the following table (Table 3) [32]. 

Table 3. Pavia Center dataset. 

Class No Class Name All Instances 
Sets 

Training Validation Test 
1 Asphalt 816 √ - - 
2 Meadows 824 √ - - 
3 Trees 820 √ - - 
4 Bare Soil 820 √ - - 
5 Self-Blocking Bricks 808 √ - - 
6 Bitumen 808 √ - - 
7 Shadows 476 √ - - 
8 Water 824 - √ - 
9 Tiles 1260 - - √ 

Total 7456 5372 824 1260 

Metrics Used for the Assessment of the Modeling Effort 

The following metrics were used for the assessment of the modeling effort [33,34]: 
(a) Overall Accuracy (OA): This index represents the number of samples correctly classified, 

divided by the number of testing samples. 
(b) Kappa Statistic: This is a statistical measure which provides information on the level of 

agreement between the truth map and the final classification map. It is the percentage of agreement 
corrected by the level of agreement, which could be expected to occur by chance. In general, it is 
considered to be a more robust index than a simple percent agreement calculation, since  𝑘 takes into 
account the agreement occurring by chance. It is a popular measure for benchmarking classification 
accuracy under class imbalance. It is used in static classification scenarios and for streaming data 
classification. Cohen's kappa measures the agreement between two raters, where each classifies N 
items into C mutually exclusive categories. The definition of κ is [35,36]: 

κ= ௣బି௣೐ଵି௣೐ = 1 − ଵି௣బଵି௣೐, (19) 

where po is the relative observed agreement among raters (identical to accuracy), and pe is the 
hypothetical probability of chance agreement. The observed data are used to calculate the 
probabilities of each observer, to randomly see each category. If the raters are in complete agreement, 
then κ = 1. If there is no agreement among the raters other than what would be expected by chance 
(as given by pe), then κ ≈ 0. 
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The Kappa Reliability (KR) can be considered as the outcome from the data editing, allowing the 
conservancy of more relevant data for the upcoming forecast. A detailed analysis of the KR is 
presented in the following Table 4. 

Table 4. Kappa Reliability. 

Kappa Reliability 
0.00 no reliability 

0.1–0.2 minimum 
0.21–0.40 little 
0.41–0.60 moderate 
0.61–0.80 important 
≥0.81 maximum 

(c) McNemar test: The McNemar statistical test was employed to evaluate the importance of 
classification accuracy derived from different approaches [31]: 𝑧ଵଶ = ௙భమି௙మభඥ௙భమା௙మభ, (20) 

where 𝑓௜௝ is the number of correctly classified samples in classification 𝑖, and incorrect one are in 
classification 𝑗. McNemar’s test is based on the standardized normal test statistic, and therefore the 
null hypothesis, which is “no significant difference,” rejected at the widely used 𝑝 = 0.05 (|𝑧| > 1.96) 
level of significance. 

7. Results and Comparisons 

The training of the models was performed using a Learning Rate of 0.001. Loss function is the 
cross-entropy error between the predicted and true class. The cross-entropy error was used as the 
Loss function between the predicted and the true class. For the other parameters of the model, the 
recommended default settings were set as in [37]. 

A comparison with the following most widely used supervised Deep Learning models was 
performed to validate the effectiveness of the proposed architecture. 

(a) 1-D CNN: The architecture of the 1-D CNN was designed as in [38], and it comprises the input 
layer, the Convolutional Layer (COL), the max-pooling layer, the fully connected layer and the 
output one. The number of the Convolutional Filters (COFs) was equal to 20, the length of each 
filer was 11 and the pooling size had the value of 3. Finally, 100 hidden units were contained in 
the fully connected layer. 

(b) 2-D CNN: The 2-D CNN architecture was designed as in [39]. It includes three COLs which were 
supplied with 4×4, 5×5 and 4×4 CON filters respectively. The COL except of the final one were 
followed by max-pooling layers. Moreover, the numbers of COFs for the COLs were to 32, 64 
and 128, respectively. 

(c) Simple Convolutional/deconvolutional network with the simple Convolutional blocks and the 
unpooling function, as it is described in [40,41]. 

(d) Residual Convolutional/deconvolutional network: Its architecture used residual blocks and a 
more accurate unpooling function, as it is shown in [42]. 

The following Tables 5 and 6 show the classification maps which have emerged for the cases of 
the Pavia University and Pavia Center datasets. Moreover, they present a comparative analysis of the 
accuracy of the proposed MAME-ZsL algorithm, with the performance of the following classifiers; 
namely: 1-D CNN, 2-D CNN, Simple Convolutional/Deconvolutional Network (SC/DN), Residual 
Convolutional/Deconvolutional Network (RC/DN). 

Α single dataset including all records of the Pavia University and Pavia Center datasets was 
developed, which was employed in an effort to fully investigate the predictive capacity of the 
proposed system. It was named General Pavia Dataset (GPD), and it was divided into training (Classes 
1–7), validation (Classes 8 and 9) and testing subsets (Classes 10 and 11). It is presented in the 
following Table 7. 



Algorithms 2020, 13, 61 19 of 24 

Table 5. Testing classification accuracy and performance metrics. 

Pavia University Dataset 
Class Name 1-D CNN 2-D CNN SC/DN RC/DN MAME-ZsL 

Metal Sheets 
OA κ McN OA κ McN OA κ McN OA κ McN OA κ McN 

99.41% 0.8985 
33.801 

100% 1 
32.752 

97.55% 0.8356 
30.894 

97.77% 0.8023 
29.773 

78.56% 0.7292 
30.856 

Gravel 
OA κ OA κ OA κ OA κ OA κ 

67.03% 0.7693 63.13% 0.7576 60.31% 0.7411 61.46% 0.7857 54.17% 0.7084 

Table 6. Testing classification accuracy and performance metrics. 

Pavia Center Dataset 
Class Name 1-D CNN 2-D CNN SC/DN RC/DN MAME-ZsL 

Water 
OA κ McN OA κ McN OA κ McN OA κ McN OA κ McN 

77.83% 0.8014 
32.587 

79.97% 0.8208 
32.194 

80.06% 0.8114 
31.643 

82.77% 0.8823 
30.588 

62.08% 0.7539 
31.002 

Tiles 
OA κ OA κ OA κ OA κ OA κ 

81.15% 0.8296 76.72% 0.7994 80.67% 0.7978 78.34% 0.8095 65.37% 0.7111 

Table 7. The general Pavia dataset. 

Class No Class Name All Instances 
Sets 

Training Validation Test 
1 Asphalt 7995 √ - - 
2 Meadows 20,013 √ - - 
3 Trees 4408 √ - - 
4 Bare Soil 6381 √ - - 
5 Self-Blocking Bricks 5004 √ - - 
6 Bitumen 2513 √ - - 
7 Shadows 1654 √ - - 
8 Metal Sheets 1610 - √ - 
9 Water 824  √ - 

10 Gravel 2491 - - √ 
11 Tiles 1260  - √ 

Total 47,968 42,596 2434 3751 
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As it can be seen from Table 8, the increase of samples has improved the results in the case of 
the trained algorithms and in the case of the ZsL technique. It is easy to conclude which the proposed 
MAME-ZsL is a highly valued Deep Learning system which has achieved remarkable results in all 
evaluations over their respective competing approaches. 

The experimental comparison does not include other examples of Zero-shot Learning. This fact 
does not detract in any case from the value of the proposed method, taking into account that the 
proposed processing approach builds a predictive model which is comparable to supervised learning 
systems. The appropriate hyperparameters in the proposed method are also identified by the high 
reliability and overall accuracy on the obtained results. The final decision was taken based on the 
performance encountered by the statistical trial and error method. The performance of the proposed 
model was evaluated against state-of-the-art fully supervised Deep Learning models. It is worth 
mentioning that the proposed model was trained with instances only from seven classes while the 
Deep Learning models were trained with instances from all eleven classes. The presented numerical 
experiments demonstrate that the proposed model produces remarkable results compared to 
theoretically superior models, providing convincing arguments regarding the classification efficiency 
of the proposed approach. Another important observation is that it produces accurate results without 
recurring problems of undetermined cause, because all of the features in the considered dataset are 
efficiently evaluated. The values of the obtained kappa index are a proof of high reliability (the 
reliability can be considered as high when κ ≥ 0.70)[35,36]. 

The superiority of the introduced, novel model focuses on its robustness, accuracy and 
generalization ability. The overall behavior of the model is comparable to a corresponding supervised 
one. Specifically, it reduces the possibility of overfitting, it decreases variance or bias and it can fit 
unseen patterns without reducing its precision. This is a remarkable innovation which significantly 
improves the overall reliability of the modeling effort. This is the result of the data processing 
methodology which allows the retention of the more relevant data for upcoming forecasts. 

The following Table 8 presents the results obtained by the analysis of the GPD. 
The above, Table 8, also provides information on the results of the McNemar test, to assess the 

importance of the difference between the classification accuracy of the proposed network and the 
other approaches examined. The improvement of the overall accuracy values obtained by the novel 
algorithm (compared to the other existing methods) is statistically significant. 

Finally, the use of the ensemble approach in this work is related to the fact that very often in 
multi-factor problems of high complexity such as the one under consideration, the prediction results 
show multiple variability [43]. This can be attributed to the sensitivity of the correlation models to 
the data. The main imperative advantage of the proposed ensemble model is the improvement of the 
overall predictions and the generalization ability (adaptation in new previously unseen data). The 
ensemble method definitely decreases the overall risk of a particularly poorer choice. 

The employed bagging technique offers better prediction and stability, as the overall behavior 
of the model becomes less noisy and the overall risk of a particularly bad choice that may be caused 
from under-sampling is significantly reduced. The above assumption is also supported by the 
dispersion of the expected error, which is close to the mean error value, something which strongly 
indicates the reliability of the system and the generalization capability that it presents. 

As it can be seen in Tables 5–8, the ensemble method appears to have the same or a slightly lower 
performance across all datasets, compared to the winning (most accurate) algorithm. The highly 
overall accuracy shows the rate of positive predictions, whereas k reliability index specifies the rate 
of positive events which were correctly predicted. In all cases, the proposed model has high average 
accuracy and very high reliability, which means that the ensemble method is a robust and stable 
approach which returns substantial results. Tables 7 and 8 show clearly that the ensemble model is 
very promising. 
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Table 8. Testing classification accuracy and performance metrics. 

General Pavia Dataset (OA Is the Overall Accuracy) 
Class Name 1-D CNN 2-D CNN SC/DN RC/DN MAME-ZsL 

Metal Sheets 
OA κ McN OA κ McN OA κ McN OA κ McN OA κ McN 

99.44% 0.8992 

30.172 

100% 1 

33.847 

99.09% 0.8734 

31.118 

97.95% 0.8137 

30.633 

81.16% 0.8065 

31.647 

Water 
OA κ OA κ OA κ OA κ OA κ 

81.15% 0.8296 80.06% 0.8137 81.82% 0.8123 84.51% 0.8119 65.98% 0.7602 

Gravel 
OA κ OA κ OA κ OA κ OA κ 

67.97% 0.7422 64.17% 0.7393 61.98% 0.7446 63.98% 0.7559 54.48% 0.7021 

Tiles 
OA κ OA κ OA κ OA κ OA κ 

85.11% 0.8966 80.29% 0.8420 81.26% 0.8222 79.96% 0.8145 69.12% 0.7452 
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8. Discussion and Conclusions 

This research paper proposes a highly effective geographic object-based scene classification 
system for image Remote Sensing which employs a novel ZsL architecture. It introduces serious 
prerequisites for even more sophisticated pattern recognition systems without prior training. 

To the best of our knowledge, it is the first time that such an algorithm has been presented in the 
literature. It facilitates learning of specialized intermediate representation extraction functions, under 
complex Deep Learning architectures. Additionally, it utilizes first and second order derivatives as a 
pre-training method for learning parameters which do not cause exploding or diminishing gradients. 
Finally, it avoids potential overfitting, while it significantly reduces computational costs and training 
time. It produces improved training stability, high overall performance and remarkable classification 
accuracy. 

Likewise, the ensemble method used leads to much better prediction results, while providing 
generalization which is one of the key requirements in the field of machine learning [38]. At the same 
time, it reduces bias and variance and it eliminates overfitting, by implementing a robust model 
capable of responding to high complexity problems. 

The proposed MAME-ZsL algorithm follows a heuristic hierarchical hyperparameter search 
methodology, using intermediate representations extracted from the employed neural network and 
avoiding other irrelevant ones. Using these elements, it discovers appropriate representations which 
can correctly classify unknown image samples. What should also be emphasized is the use of 
bootstrap sampling, which accurately addresses noisy scattered misclassification points which other 
spectral classification methods cannot handle. 

The implementation of MAME-ZsL, utilizing the MAML++ algorithm, is based on the optimal 
use and combination of two highly efficient and fast learning processes (Softmax activation function 
and AdaBound algorithm) which create an integrated intelligent system. It is the first time which this 
hybrid approach has been introduced in the literature. 

The successful choice of the Softmax (SFM) function instead of the Sigmoid (SIG) was based on 
the fact that it performs better on multi-classification problems, such as the one under consideration, 
and the sum of its probabilities equals to 1. On the other hand, the Sigmoid is used for binary 
classification tasks. Finally, in the case of SFM, high values have the highest probabilities, whereas in 
SIG this is not the case. 

The use of the AdaBound algorithm offers high convergence speed compared to stochastic 
gradient descent models. Moreover, it exceedes the poor generalization ability of the adaptive 
approaches, as it has dynamic limits on the Learning Rate in order to obtain the highest accuracy for 
the dataset under consideration. Still, this network remarkably implements a GeoAI approach for 
large-scale geospatial data analysis which attempts to balance latency, throughput and fault-
tolerance using ZsL. At the same time, it makes effective use of the intermediate representations of 
Deep Learning. 

The proposed model avoids overfitting, decreases variance or bias, and it can fit unseen patterns, 
without reducing its performance. 

The reliability of the proposed network has been proven in identifying scenes from Remote 
Sensing photographs. This suggests that it can be used in higher level geospatial data analysis 
processes, such as multi-sector classification, recognition and monitoring of specific patterns and 
sensors’ data fusion. In addition, the performance of the proposed model was evaluated against state-
of-the-art supervised Deep Learning models. It is worth mentioning that the proposed model was 
trained with instances only from seven classes, while the other models were trained with instances 
from all eleven classes. The presented numerical experiments demonstrate that the introduced 
approach produces remarkable results compared to theoretically superior models, providing 
convincing arguments regarding its classification efficiency. 

Suggestions for the evolution and future improvements of this network should focus on 
comparison with other ZsL models. It is interesting to see the difference between ZsL, one-shot and 
five-shot learning methods, in terms of efficiency. 
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On the other hand, future research could focus on further optimization of the hyperparameters 
of the algorithms used in the proposed MAME-ZsL architecture. This may lead to an even more 
efficient, more accurate and faster classification process, either by using a heuristic approach or by 
employing a potential adjustment of the algorithm with spiking neural networks [44]. 

Additionally, it would be important to study the extension of this system by implementing more 
complex architectures with Siamese neural networks in parallel and distributed real time data stream 
environments [45]. 

Finally, an additional element which could be considered in the direction of future expansion, 
concerns the operation of the network by means of self-improvement and redefinition of its 
parameters automatically. It will thus be able to fully automate the process of extracting useful 
intermediate representations from Deep Learning techniques. 
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