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Abstract: High-temperature fuel cells are one of the devices currently investigated for an integration
into distributed power supply grids. Such distributed grids aim at the simultaneous production of
thermal energy and electricity. To maximize the efficiency of fuel cell systems, it is reasonable to track
the point of maximum electric power production and to operate the system in close vicinity to this
point. However, variations of gas mass flows, especially the concentration of hydrogen contained
in the anode gas, as well as variations of the internal temperature distribution in the fuel cell stack
module lead to the fact that the maximum power point changes in dependence of the aforementioned
phenomena. Therefore, this paper first proposes a real-time capable stochastic filter approach for
the local identification of the electric power characteristic of the fuel cell. Second, based on this
estimate, a maximum power point tracking procedure is derived. It is based on an iteration procedure
under consideration of the estimation accuracy of the stochastic filter and adjusts the fuel cell’s
electric current so that optimal operating points are guaranteed. Numerical simulations, based on
real measured data gathered at a test rig available at the Chair of Mechatronics at the University of
Rostock, Germany, conclude this paper.

Keywords: Kalman filter design; fuel cells; maximum power point tracking; real-time optimization

1. Introduction

Solid Oxide Fuel Cells (SOFCs) [1–4] are one of those types of high-temperature fuel cells that are
currently under active investigation for an integration into distributed grids for a combined supply
with heat and electricity. Thus far, most of the existing solutions are operated in such a way that
a certain thermal as well as electric operating point is predefined, which is then kept constant by
suitable feedback control procedures [5–8]. Even if the electric operating point was determined in
an offline design so that it is close to the maximum power point (alternatively close to the point of
maximum energy efficiency or combined maximum efficiency and fuel utilization), deviations of
the actual operating conditions from this point would inevitably occur due to the following a priori
unknown influence factors:

• variations of the composition and temperature of the supplied anode gas, especially if the
hydrogen supply is implemented by gas reformation of hydro-carbonates;

• imperfect temperature control of the fuel cell stack by means of the cathode gas enthalpy flow
as well as variations of the stack’s internal temperature distribution due to exothermic reaction
enthalpies;

• rapid variations of the electric current and electric power taken from the SOFC module, leading
to an instationary temperature distribution in the stack module; and

• aging of fuel cell components, etc.
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One possibility to derive and implement control and operating strategies that allow for a real-time
capable maximization of the electric power production is based on an offline identification of the
current–voltage characteristic of the fuel cell. This characteristic can be determined experimentally as
a multivariate look-up table depending on a representative temperature in the interior of the fuel cell
as well as on the flow rate of hydrogen at the SOFC’s anode inlet manifold.

Already at this point, the definition of the representative temperature of the fuel cell stack is
not at all trivial. Due to the distributed parameter behavior of the stack, both spatial and temporal
variations of the temperature distribution in the interior of the fuel cell occur—leading to changes in
the current–voltage characteristic—if at least one of the heat flows summarized in Figures 1–3 changes
its value.
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Figure 1. Semi-discretization of the fuel cell stack module with gas preheaters.
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Figure 2. Spatial semi-discretization of the fuel cell stack module.
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Figure 3. Local energy balance of the semi-discretized fuel cell stack module.

These heat flows, entering the balance of internal energy in the fuel cell stack, sketched in terms
of a finite-volume semi-discretization in Figure 2, are [9–11]:

• heat transfer Q̇IHT,J , J ∈ {I−i , I+i , I−j , I+j , I−k , I+k }, due to heat conduction in the interior of the
stack as well as internal convection and radiation between the supplied gases ṁχ,in and solid
components;

• heat exchange between the stack module and the ambiance, both summarized in the term Q̇IHT,J
for elements located at the system boundary;

• enthalpy flows ∑G Q̇I
G,I−j

(t), G ∈ {AG, CG}, for the anode gas (AG) and the cathode gas (CG);

• exothermic reaction enthalpies Q̇IR; and
• Ohmic heat production Q̇IEL caused by the internal stack resistance and the local electric currents

II = I
M·N , where M · N denotes the number of discretization segments orthogonal to the electric

current.

Even if spatially semi-discretized models for the temperature distribution in the fuel cell stack
(as those shown in Figures 2 and 3 which were described in detail by Rauh et al. [9]) are reasonable
for the implementation of model-based stack temperature estimators and controllers [10–16], the use
of numerous temperature values for the interior of the stack in a semi-discretized manner is not at
all practical for the accurate—offline-based—identification of a current–voltage characteristic as a
function of each of these thermal state variables. This holds analogously for the spatial variations of
the fractions of the anode and cathode gas mass flows, and their respective partial concentrations,
which are depicted schematically in Figure 4 for the same semi-discretization that was previously
described for the thermal subsystem model.
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Figure 4. Local mass flow balances in the semi-discretized fuel cell stack module.
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Therefore, industrial applications typically make use of at most one temperature variable as an
influence factor on the electric power characteristic. This variable (for the sake of accessibility for
measurements) is commonly chosen as the outlet temperature of the stack (either the anode or cathode
gas outlet), which is then also treated as the primary controlled thermal state variable.

Obviously, this value is, on the one hand, corrupted by measurement errors and, on the other hand,
cannot fully represent the complete internal state of the stack module. Therefore, each of such offline
generated look-up tables (as well as analytic interpolations of these data leading to explicit functional
relations) are characterized by unavoidable errors. Especially, they are not capable of capturing
the dependency of variable gas inlet manifold temperatures on the steady-state gains between the
hydrogen mass flow supplied at the anode and the achievable maximum electric power. However,
such kind of dependency was shown experimentally by Frenkel et al. [17] to have a severe influence on
the accuracy and stability of electric power control strategies that use the hydrogen mass flow as the
primary control variable.

For this reason, this paper proposes to substitute the offline identification of current–voltage
and current–power characteristics, respectively, by a real-time capable Kalman filter-based parameter
identification. The respective filter is implemented in such a way that a locally quadratic approximation
of the electric power as a function of the electric stack current is estimated online during the fuel
cell operation in terms of a mean value with corresponding covariance information. This covariance
information helps one to quantify the reliability of the estimate and to judge to which precision a
maximum power point tracking procedure can work in practice.

Since this Kalman filter solution is based on a locally quadratic approximation, it is only necessary
to estimate three parameter values in real time. This reduces memory demands significantly in
comparison with multivariate look-up tables and allows for a real-time capable adaptation of the
current–power characteristic due to the influence factors described above.

This paper is structured as follows. Section 2 summarizes the fundamental current–voltage as
well as current–power characteristics of an SOFC stack module on the basis of measured data of a test
rig available at the Chair of Mechatronics at the University of Rostock. Based on an offline identified
quasi-static mapping, a simplified quadratic representation of the current–power characteristic is
proposed which serves as the basis for a real-time parameter identification. The derivation of a
real-time capable Kalman filter for the online parameter identification, replacing classical offline
computed quasi-static mappings for the current–power characteristic, concludes this section. Then, a
strategy towards a robust maximum power point tracking is proposed in Section 3. The algorithmic
properties of both the online parameter identification and maximum power point tracking procedures
are investigated in detail by means of real measured data as well as with the help of a simulation case
study in this section. Conclusions and an outlook on future work are finally given in Section 4.

2. Kalman filter design for real-time estimation of electric power characteristic of fuel cells

2.1. Fundamental current–voltage and current–power characteristics of SOFCs

According to the measured data shown in Figure 5, which were determined for a constant
hydrogen mass flow ṁH2,in ≈ 5.1 · 10−6 kg

s at the available test rig, the typical dependency between
the terminal voltage U of the fuel cell stack and its electric current I (measured at a variable external
electric resistance as a load device) becomes clearly visible.

For the presented experiments, an SOFC stack consisting of 60 planar fuel cells in electric series
connection was employed. This stack has a maximum electric power output of 1.3 kW. To have
sufficient potential for identifying the optimal power point, the stack was operated in part load
conditions.



Algorithms 2020, 13, 58 5 of 17

time in s

cu
rr

en
ti

n
A

0
0

600 1200 1800

7

1
2
3
4
5
6

(a) Terminal current I of the SOFC.

time in s

vo
lt

ag
e

in
V

0
0

10

20

30

40

50

600 1200 1800

(b) Terminal voltage U of the SOFC.

time in s

po
w

er
in

W

0
0

600 1200 1800

200

160

120

80

40

(c) Electric power PEL of the SOFC.

I in A

U
in

V

0
0

102 4 6 8

10

20

30

50

40

A
region

B C
region region

(d) Current–voltage characteristic.

I in A
P E

L
in

W
0

0

40

80

200

160

120

102 4 6 8

A
region

B C
region region

(e) Current–power characteristic.

Figure 5. Measured electric current I, terminal voltage U, and electric power PEL of the SOFC for a
relatively small, constant hydrogen mass flow ṁH2,in ≈ 5.1 · 10−6 kg

s .

In Figures 5(d) and 5(e), three different regions can be identified:

• Region A of activation polarization (characterized by small currents I close to the theoretical
Nernst voltage characterizing the SOFC’s open-circuit behavior);

• Region B of Ohmic polarization corresponding to an almost linear reduction of the terminal
voltage for increasing currents I; and
• Region C of concentration polarization, in which the terminal voltage U rapidly gets close to

zero.

After computing the instantaneous electric power according to

PEL,k = Uk · Ik (1)

at each sampling instant k with the sampling interval tk+1 − tk = 1 s, one can clearly see the existing
power maximum in Figure 5(e). For the sake of maximizing the electric power production in the
following section, it is desirable to identify the maximum of the current–power characteristic in
real time, while preventing excessively large currents I coinciding with a negative slope of the
current–power characteristic. Such operating points should be avoided in practice by the use of
maximum power point tracking approaches because they lead to fuel starvation that can go along with
an accelerated degradation of the SOFC module.

Note that maximum power point tracking approaches are well-known also from several other
fields of applications. For example, they are extensively used for maximizing the power of photovoltaic
systems. However, in recent publications from this area (cf. [18,19]), preventing overshooting the
maximum power point is not as crucial as in the SOFC application considered in this paper. Therefore,
the approaches applied to photovoltaic systems perform incremental control adaptation schemes
without directly accounting for estimation uncertainty in the electric power characteristic. However,
for preventing overshooting, this information about uncertainty is essential and can be provided in
real time by applying the Kalman filter-based identification scheme derived in this paper.
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In Figures 5(d),5(e), analytic approximations, including logarithmic terms inspired by Tafel’s
equation [20,21], for the terminal voltage

Uk = a0 + a1 · Ik + a2 · I2
k + a3 · ln (Ik) + a4 · ṁH2,in,k + a5 · Ik · ṁH2,in,k + a6 · Ik · ṁ2

H2,in,k (2)

as well as for the electric power

PEL,k =
(

a0 + a1 · Ik + a2 · I2
k + a3 · ln (Ik) + a4 · ṁH2,in + a5 · Ik · ṁH2,in,k + a6 · Ik · ṁ2

H2,in,k

)
· Ik (3)

are compared with the measured data under the assumption of a constant hydrogen mass flow. In this
case, the parameter estimates listed in Table 1 are obtained, where the coefficients a4, a5, and a6 can be
set to zero without any loss of information as long as ṁH2,in,k is constant. Additive offset terms are
then fully included in the coefficient a0.

Table 1. Offline identified parameters of the current–voltage and current–power characteristics
as a function of the stack current Ik for constant hydrogen mass flow ṁH2,in,k ≈ 5.1 · 10−6 kg

s in
Figure 5(d),5(e).

Parameter Value

a0 −23.3553
a1 135.3495
a2 −10.0203
a3 −229.1167
a4 0
a5 0
a6 0

This offline identification has been repeated in Figure 6 for larger, temporally slowly varying
hydrogen mass flows ṁH2,in,k at the anode inlet. Again, the same analytic expressions, Equations (2)
and (3), were used to compute reasonably accurate approximations. The corresponding numerical
parameter values are summarized in Table 2. For both scenarios, they have been computed by a
linear least-squares parameter identification similar to the one used in [22] for the dynamics of the
electrochemical fuel cell behavior.
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Figure 6. Offline identification of the current–voltage and current–power characteristic for larger,
temporally varying hydrogen mass flows ṁH2,in.
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Table 2. Offline identified parameters of the current–voltage and current–power characteristics as a
function of the stack current Ik and the hydrogen mass flow ṁH2,in,k.

Parameter Value

a0 −1.38 · 104

a1 −1.13 · 103

a2 1.603 · 101

a3 9.977 · 103

a4 1.926 · 107

a5 −5.475 · 105

a6 5.198 · 103

For that purpose, Equation (2) has been re-written in the following matrix-vector form

UK = DK · a , (4)

where the vector
UK =

[
U1 . . . UK

]T
(5)

consists of all voltage measurements over a time window k ∈ {1, . . . , K}, where K denotes a sufficiently
large number of (typically a few hundred) measurement points.

In addition, current and mass flow measurements are included in the data matrix

DK =


1 I1 I2

1 ln (I1) ṁH2,in,1 I1 · ṁH2,in,1 I1 · ṁ2
H2,in,1

...
...

1 IK I2
K ln (IK) ṁH2,in,K IK · ṁH2,in,K IK · ṁ2

H2,in,K

 , (6)

while
a =

[
a0 a1 a2 a3 a4 a5 a6

]T
(7)

denotes the parameter vector to be identified. This identification is performed by the classical
least-squares solution expressed in terms of

a = D+
K ·UK , (8)

where D+
K is the left pseudo inverse of the data matrix DK according to

D+
K =

(
DT

K ·DK

)−1
·DT

K . (9)

Note, both experimental datasets and the presented analytic representations for the current–power
characteristic are used for validating the filter-based identification and maximum power point tracking
procedure in the remainder of this paper. For this maximum power point tracking, it is essential to
estimate variations of the current–voltage as well as current–power characteristics in real time, as
soon as new measured data become available. This task can be solved partially by classical recursive
formulations of least-squares estimation schemes. Suitable references for such approaches can be
found in [23]. However, without extensions to a stochastic framework, as presented in the following
subsection by means of a Kalman filter synthesis, classical recursive least-squares estimators do not
provide information about the accuracy of the coefficient vector a. This issue is solved in this paper
by computing the respective (co-)variances of all estimated parameters as described in the following
subsection.
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2.2. Simplified model and Kalman filter design

To implement an instationary Kalman filter [24–26] with the general discrete-time dynamic system
model

xk+1 = Akxk + Ekwk (10)

and the measurement equation
yk = Ckxk + vk , (11)

the electric power characteristic of the SOFC is first approximated by a polynomial of order two
according to

PEL,k ≈
[

I0
k I1

k I2
k

]
· xk with xk =

[
x1,k x2,k x3,k

]T
∈ R3 (12)

at each time instant tk.
The vector xk (serving as a simplification of the previously introduced parameter vector a) is

treated in the following as the state vector of the Kalman filter to adapt the locally valid quadratic
approximation of the current–power characteristic in terms of the available measurements and to
account for dependencies of the power curve that are caused by effects other than the current Ik. In
what follows, the power PEL,k serves as a scalar realization of the general output vector yk.

In general, the Kalman filter for the system model in Equation (10) with Equation (11) consists of
the prediction step

µ
p
x,k+1 = Akµe

x,k + Ekµw,k (13)

Cp
x,k+1 = AkCe

x,kAT
k + EkCw,kET

k (14)

as well as the measurement-based innovation

µe
x,k = µ

p
x,k + Lk ·

(
ŷk −Ckµ

p
x,k − µv,k

)
(15)

Ce
x,k = Cp

x,k − LkCkCp
x,k (16)

with the time-varying Kalman gain

Lk = Cp
x,kCT

k

(
CkCp

x,kCT
k + Cv,k

)−1
. (17)

Here, the noise processes wk and vk are assumed to be given by the stochastically independent
normal distributions N

(
ξ, µξ , Cξ

)
, ξ ∈ {wk, vk}, ξ ∈ Rnξ with

N
(
ξ, µξ , Cξ

)
=

1√
(2π)nξ · det

(
Cξ

) · exp
(
−1

2
(ξ − µξ)

TC−1
ξ (ξ − µξ)

)
(18)

and the corresponding mean vectors and covariances µξ and Cξ , respectively.
Because the vector xk describing the current–power characteristic of the SOFC is typically slowly

varying, the system matrix Ak in Equation (10) is set to the identity matrix I3×3 ∈ R3×3 in order to
represent the neglected system dynamics in terms of a discrete-time integrator disturbance model.
In this context, discrete-time integrator disturbance models according to xk+1 = xk + wk, in which
the zero-mean process noise wk is included in additive form, provide an effective means to represent
temporally slow variations of the quantities xk, where their typical variability (without any a priori
knowledge concerning a preferred direction of change) is expressed by the process noise covariance of
wk.

In (10), the process noise wk is assumed to consist of three independent Gaussian noise processes
with zero mean µw,k = 0 with the constant disturbance input matrix Ek = I3×3 and the associated
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diagonal covariance matrix Cw,k = diag
{[

σ2
w,1 σ2

w,2 σ2
w,3

]}
with the standard deviations σw,i, i ∈

{1, 2, 3} of the state variability between two subsequent sampling steps.
According to this integrator disturbance model, the predicted parameters of the current–power

characteristic can be described by their expected value E {xk+1} = µ
p
x,k+1 as well as their covariance

matrix Cp
x,k+1 according to

µ
p
x,k+1 = µe

x,k (19)

Cp
x,k+1 = Ce

x,k + Cw,k , (20)

where all variables denoted with the superscript e refer to the outcome of the previous innovation step.
Accounting for the specific structure of the scalar power measurement in Equation (12), the innovation
step at the time instant k can be expressed with the help of a zero-mean Gaussian approximation
of the power measurement noise (since precise knowledge about the measurement noise variance
is crucial for an effective Kalman filter design, it has been determined for the available test rig by
means of experiments within the voltage and current measurement range considered in the following
investigation) with the variance Cv,k. This innovation step precedes the prediction in Equations (19)
and (20) and is given by the expectation and covariance update

µe
x,k = µ

p
x,k + Lk ·

(
ŷk −

[
I0
k I1

k I2
k

]
· µp

x,k

)
(21)

Ce
x,k = Cp

x,k − Lk ·
[

I0
k I1

k I2
k

]
·Cp

x,k (22)

with the gain vector

Lk = Cp
x,k ·

I0
k

I1
k

I2
k

 ·
[I0

k I1
k I2

k

]
·Cp

x,k ·

I0
k

I1
k

I2
k

+ Cv,k


−1

∈ R3 . (23)

A forecast of the uncertainty in the approximation of the current–power characteristic is based on
an evaluation of the respective standard deviation given by

σPEL,k =

√
E
{(

PEL,k − E
{

PEL,k
})2
}

=

√
E
{[

I0
k I1

k I2
k

]
·
(

xk − µe
x,k

)
·
(

xk − µe
x,k

)T
·
[

I0
k I1

k I2
k

]T
}

=

√[
I0
k I1

k I2
k

]
· E
{(

xk − µe
x,k

)
·
(

xk − µe
x,k

)T
}
·
[

I0
k I1

k I2
k

]T

=

√[
I0
k I1

k I2
k

]
·Ce

x,k ·
[

I0
k I1

k I2
k

]T
.

(24)

This value is used in the following section together with the trace

τk := trace
{

Ce
x,k

}
(25)

of the estimated, strictly positive definite covariance matrix to determine whether the online estimation
of the electric power characteristic has already converged sufficiently close to the actual power in the
respective operating point so that the approximation in Equation (12) can be used to update the current
Ik+1 in a future discretization point. The aim of this update is to attain the maximum power point as
closely as possible without overshooting.
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Remark 1. Note, thus far only the dependency of the electric power characteristic on the stack current Ik is
explicitly included in the real-time identification model. Variations of the (average) stack temperature ϑFC,k, the
anode and cathode gas inlet temperatures ϑAG,k and ϑCG,k, and the hydrogen mass flow ṁH2,in,k are currently
treated implicitly in a model-free manner by the time-independent process noise covariance Cw,k. To include
these further dependencies directly in the identification model, aiming at a recursive stochastic identification,
Equation (12) can be replaced straightforwardly by using the matrix Kronecker product ⊗ in terms of

PEL,k ≈
(

I[m1−1]
k ⊗ ṁ[m2−1]

H2,in,k ⊗ ϑ
[m3−1]
AG,k ⊗ ϑ

[m4−1]
CG,k ⊗ ϑ

[m5−1]
FC,k

)
· x̃k (26)

with the augmented state vector x̃k ∈ R∏5
i=1 mi . To account for the aforementioned physical dependencies, the

vectors
I[m1−1]

k =
[

I0
k I1

k I2
k . . . Im1−1

k

]
, (27)

ṁ[m2−1]
H2,in,k =

[
ṁ0

H2,in,k ṁ1
H2,in,k ṁ2

H2,in,k . . . ṁm2−1
H2,in,k

]
, (28)

ϑ
[m3−1]
AG,k =

[
ϑ0

AG,k ϑ1
AG,k ϑ2

AG,k . . . ϑm3−1
AG,k

]
, (29)

ϑ
[m4−1]
CG,k =

[
ϑ0

CG,k ϑ1
CG,k ϑ2

CG,k . . . ϑm4−1
CG,k

]
, (30)

and
ϑ
[m5−1]
FC,k =

[
ϑ0

FC,k ϑ1
FC,k ϑ2

FC,k . . . ϑm5−1
FC,k

]
(31)

of monomials of Ik, ṁH2,in,k, ϑAG,k, ϑCG,k, and ϑFC,k need to be included in the extended model in Equation (26)
to which the Kalman filter design can be generalized easily.

Remark 2. To achieve a suitable convergence of the vectors xk (respectively, x̃k) towards a reasonable
approximation of the actual current–power dependency, measured data need to be gathered so that the dependency
between the variables to be estimated and the electric fuel cell power is sufficiently excited in a persistent form. A
corresponding strategy for the fundamental model in Equation (12) is presented in Section 3.

3. Real-time capable robust maximum power point tracking

3.1. Algorithm for combined parameter identification and maximum power point tracking

The proposed algorithm for the real-time capable robust maximum power point tracking
summarized in Figure 7 consists of two phases, where only scalar and low-dimensional matrix-vector
operations are involved. This leads to computing times that are much smaller than the typical sampling
rates of any SOFC controller.
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Set FIRST_RUN=TRUE

Definition of an open-loop parameter identification experiment as a sequence of piecewise constant currents Ik
with ṁH2,k = const

Initialization of the Kalman filter by the normal distribution N
(

x0, µe
x,0, Ce

x,0

)
While standard deviation σPEL,k > σPEL,min, τk > τmin, and FIRST_RUN==TRUE

Set k := k + 1 and apply the new piecewise constant current Ik

Perform the Kalman filter prediction according to (19) and (20)

Gather new voltage and current measurements (Uk, Ik) and compute the instantaneous power PEL,k

Perform the Kalman filter innovation according to (21) and (22)

Update the standard deviation σPEL,k > σPEL,min for the estimate of the current-power characteristic

Z
Z
ZZYes

Estimation error covariance below theshold?
�
�
��

No

Set FIRST_RUN=FALSE Continue with the Kalman filter-based parameter
identification

While end of the experiment has not been reached

Perform the incremental update of the current Ik in the maximum power point according to (34)–(36)

Set k := k + 1 and apply the new piecewise constant current Ik

Perform the Kalman filter prediction according to (19) and (20)

Gather new voltage and current measurements (Uk, Ik) and compute the instantaneous power PEL,k

Perform the Kalman filter innovation according to (21) and (22)

Update the standard deviation σPEL,k to monitor the reliability of the estimated current-power characteristic

Figure 7. Structure diagram of the Kalman filter-based parameter identification and maximum power
point tracking.

In the first phase, the online identification of the current–power characteristic using the Kalman
filter summarized in Section 2 is initialized and executed. For that purpose, a sufficiently rich excitation
signal for the electric current is required.

In the scenario under investigation, this input signal is given by a piecewise constant current Ik
that increases and decreases successively, typically chosen from the desired operating region of Ohmic
polarization. In each temporal discretization step, the Kalman filter with the prediction and innovation
steps in Equations (19) and (20) as well as Equations (21) and (22), respectively, is evaluated. This
open-loop identification is continued up to the point, where the computed standard deviation σPEL,k
falls below the threshold value σPEL,min for the first time. The same has to hold for the matrix trace τk
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defined in Equation (25) to ensure sufficiently small uncertainty in the estimated coefficients of the
approximated current–power characteristic in Equation (12).

As soon as this point has been reached, the second phase of the algorithm is initialized. Instead of
using a predefined current variation Ik, changes in the current now result form an online maximization
of the power characteristic. In an uncertainty-free setting, the current I∗k at the maximum of the power
curve in Equation (12) would be given by the necessary optimality condition

∂PEL,k

∂Ik
=
[
0 1 2I∗k

]
· xk = 0 (32)

leading to the optimal current value

I∗k = −
x2,k

2x3,k
. (33)

However, uncertainty in the estimated parameters xk for the locally approximated current–power
characteristic may lead to an undesirable overshoot over the maximum, corresponding to currents
in areas in which the power curve has a negative slope. To prevent this phenomenon, the variance
estimates for the second and third element of xk are taken into account in the current update according
to

I∗k =
−µe

x,2,k + η ·
√

eT
2 ·Ce

x,k · e2

2 ·
(

µe
x,3,k − η ·

√
eT

3 ·Ce
x,k · e3

) , (34)

where η > 0 represents a user-defined safety margin and e2 =
[
0 1 0

]T
and e3 =

[
0 0 1

]T
.

To further smoothen the variation of the current update (avoiding the excitation of non-modeled
high-frequency dynamics in the power characteristic violating the assumption of the integrator
disturbance model for the system dynamics in Equation (10)), the actual current for the subsequent
time step is chosen as the low-pass filtered system input

Ik+1 =

{
Ĩk+1 for Ĩk+1 ≤ I∗k
I∗k −

∣∣ Ĩk+1 − I∗k
∣∣ else

(35)

with

Ĩk+1 = Ik + (I∗k − Ik) ·

√√√√√ eT
2 ·Ce

x,k · e2

trace
{

Ce
x,k

} . (36)

Remark 3. To guarantee feasible, i.e., non-negative optimized current values I∗k , the update rule in Equation (34)
needs to be parameterized by a suitable combination of η and σPEL,min such that both inequalities

− µe
x,2,k + η ·

√
eT

2 ·Ce
x,k · e2 < 0 (37)

and
µe

x,3,k − η ·
√

eT
3 ·Ce

x,k · e3 < 0 (38)

are satisfied, while concavity of the approximated current–power characteristic is ensured for each estimate with
µe

x,3,k < 0, making Equation (38) satisfied. If possible violations of the condition in Equation (37) are detected
during the application of the maximum power point tracking, the computed current I∗k is rejected and the a priori
chosen value of η is reduced by a line search procedure to make the inequality in Equation (37) feasible.

Remark 4. If the extended system model in Equation (26) is used as a substitute for the quadratic
approximation in Equation (12), analytic solutions such as Equation (32) usually no longer exist. The
maximization of Equation (26) can then be performed by numerical techniques such as gradient-based or
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gradient-free extremum seeking approaches [27]. In such cases, real-time capability can be achieved by means of
implementations that are based on an online sensitivity analysis (cf. [14,15]).

3.2. Kalman filter-based online parameter identification

Before results for the real-time capable maximum power point tracking procedure are summarized
in the following subsection, the accuracy of the Kalman filter-based online parameter identification
was validated. For that purpose, the measured data from Figure 5 were employed. Initially, the vector
of expected values µe

x,0 was chosen as

µe
x,0 =

[
−501.9 286.1 −30.31

]T
, (39)

resulting from a second-order Taylor series expansion of Equation (3) at the arbitrarily selected point
I = 4.7 A. Due to the large deviation from the initial current I0 ≈ 2 A (cf. Figure 5(a)), the covariance
was set to the large initial entries

Ce
x,0 =

1
4
· diag

{[(
µe

x,1,0

)2 (
µe

x,2,0

)2 (
µe

x,3,0

)2
]}

. (40)

Despite this significant initial uncertainty and the measurement variance Cv,k = 9 W2, the
approximation for the current–power characteristic converged quickly to the true values, as seen
by a comparison of the Kalman filter outputs (the surface in Figure 8) with the measured data as well as
with the offline identification result of Figure 5(e) included in the same graph. Obviously, the Kalman
filter provides an accurate second-order polynomial approximation of the true power characteristic at
the currently measured data point.
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Figure 8. Kalman filter-based online parameter identification for the measured data in Figures 5(a)–5(c);
black dots represent the power measurements in Figure 5(c); the red curve at the final time instant
corresponds to the offline identified current–power characteristic in Figure 5(e).

Additionally, the accuracy of the Kalman filter estimates can be quantified with the help of σPEL,k
defined in Equation (24). According to Figure 9, points with the largest uncertainty coincide with those
operating conditions at which the step-like current variations depicted in Figure 5(a) occur. Hence,
at those points, the Kalman filter directly provides a hint about the reduced approximation quality
of the power curve in the respective situations. Besides a visualization of the absolute values of the
estimated standard deviation σPEL,k in Figure 9(a), the percentage

σPEL,k
PEL,k

· 100% is shown in Figure 9(b)
to highlight the efficiency of the proposed estimator. Even in transient phases, during which the
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uncertainty increases inevitably, the relative estimation uncertainty does not exceed the range of 6%
from the currently measured power.
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(a) Standard deviation of the estimated
power.
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(b) Deviation of the estimated power in
percent.

Figure 9. Quantification of the accuracy of the estimated electric fuel cell power.

3.3. Numerical validation of the maximum power point tracking procedure

After the capability of the Kalman filter with respect to the accurate online identification of locally
quadratic approximations for the current–power characteristic of SOFCs was confirmed, the complete
algorithm from Figure 7 was executed. Here, the first phase was based on linearly increasing currents
with the upper bound 17 A up to the point where both threshold relations σPEL,k ≤ σPEL,min, and
τk ≤ τmin were satisfied.

According to Figure 10(a), this first phase takes approximately 100 discretization steps, if the
same initialization as in the previous subsection is used for the Kalman filter. However, to validate
the maximum power point tracking capabilities, measured data were now replaced with randomly
disturbed values taken from the analytic representation of the current–power map in Figure 6(b) with
a slowly increasing hydrogen mass flow. Both the hydrogen mass flow and the power data were
corrupted by zero-mean Gaussian noise with the same standard deviations that appear at the available
test rig before they are provided to the estimator and optimization procedure.
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(a) Visualization of the transition point
between pure online identification and
maximum power point tracking.
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(b) Estimation accuracy of the optimum
electric current Ik+1 in Equation (35).
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(c) Estimation accuracy of the optimum
electric power.
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(d) Relative accuracy of the optimum
electric current Ik+1 in Equation (35).
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Figure 10. Validation of the Kalman filter-based maximum power point tracking procedure; relative
deviations in Figures 10(d) and 10(e) are only reasonable for the phase in which the maximum power
point tracking (MPPT) is active. In inactive phases, they are purposefully set to zero.

As soon as the second phase started (indicated also by arrows in Figures 10(b) and 10(c)), the
proposed algorithm allowed for a simultaneous online identification of the power characteristic and
for an almost perfect tracking of the optimal operating state. These excellent tracking capabilities are
visualized in terms of both the absolute power in Figure 10(c) and the relative deviations in percent in
Figures 10(d) and 10(e). These figures depict the absolute values of the deviations in percent between
the true optima and the corresponding estimates for the electric current and power. Despite the use of
noisy data during the maximum power point tracking, the estimation accuracy remained unchanged
in comparison with Figure 9, where the pure filter-based identification task was considered.

In this case study, robust overshoot prevention over the maximum power point despite noisy
data was achieved by selecting the safety margin η = 0.25 in the optimality condition in Equation (34).

4. Conclusions and outlook on future work

In this paper, a novel Kalman filter-based online identification and maximum power point tracking
algorithm is proposed. It was validated experimentally by using measured data from a real-life SOFC
test rig. Due to the small computational burden of this algorithm, it is readily applicable to industrial
applications and typically outperforms offline identified multivariate look-up table solutions. The
advantage of the proposed procedure can not only be seen by its reduced memory demand but also
due to the inherent ability to track variations of the power characteristic resulting from instationary
thermal and fluidic operating conditions of the SOFC.

Future work will deal with interfacing this estimation and optimization procedure with
model-based power control strategies [17]. Moreover, the potential performance increase and resulting
robustness of the augmented system representation in Equation (26) will be investigated. The aim
of this investigation will be specifically the reduction of the transient first phase of the proposed
algorithm with the goal to determine the optimal operating point as quickly as possible.
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As mentioned in the Introduction, maximization of the electric power by means of current
adaptations, for the case of predefined, or slowly varying hydrogen mass flows is not the only possible
optimization task that can be solved by the proposed technique. Future work can also deal with
defining an extended cost function, in which the percentage of non-utilized fuel—easily computable by
means of Faraday’s law, as shown in [9]—is added in terms of a weighted square norm onto the power
to be maximized. Then, using Equation (26) as the augmented system model, it becomes possible
to perform a two-parameter optimization task, which determines not only the optimal current for a
predefined hydrogen mass flow but allows for optimizing this second input as well. There, it should be
assumed that a subsidiary control loop for controlling the hydrogen mass flow exists, either in the case
of a direct gas supply (as considered in this paper) or in terms of an external gas reformation process.

Due to its generality, the proposed procedure is not only applicable to the maximization of the
electric fuel cell power, but it is also straightforward to transfer this algorithm to any other real-time
optimization task on the basis of noisy data, as long as the cost functions under investigation can be
identified in terms of expressions that depend linearly on slowly varying estimated parameters as well
as have a unique, regular extremum in the interior of the admissible operating domain.
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Automation & Robotics (MMAR), Międzyzdroje, Poland, 26–29 August 2013.

16. Kunusch, C.; Puleston, P.; Mayosky, M. Sliding-Mode Control of PEM Fuel Cells; Springer: London, UK, 2012.
17. Frenkel, W.; Rauh, A.; Kersten, J.; Aschemann, H. Power control of a solid oxide fuel cell. Algorithms 2020,

in press.
18. Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K. Framework of Maximum Power Extraction From Solar PV

Panel Using Self Predictive Perturb and Observe Algorithm. IEEE Trans. Sustain. Energ. 2018, 9, 895–903.
19. Li, C.; Chen, Y.; Zhou, D.; Liu, J.; Zeng, J. A High-Performance Adaptive Incremental Conductance MPPT

Algorithm for Photovoltaic Systems. Energies 2016, 9. 288.
20. Burstein, G. A Hundred Years of Tafel’s Equation: 1905–2005. Corrosion Sci. 2005, 47, 2858–2870.
21. Tafel, J. Über die Polarisation bei kathodischer Wasserstoffentwicklung. Zeitschrift für physikalische Chemie

1905, 50, 641–712. (In German)
22. Frenkel, W.; Rauh, A.; Kersten, J.; Aschemann, H. Optimization Techniques for the Design of Identification

Procedures for the Electro-Chemical Dynamics of High-Temperature Fuel Cells. In Proceedings of the
24th IEEE Intl. Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje,
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