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Abstract: Providing useful resources to patients is essential in achieving the vision of participatory
medicine. However, the problem of identifying pertinent content for a group of patients is even
more difficult than identifying information for just one. Nevertheless, studies suggest that the group
dynamics-based principles of behavior change have a positive effect on the patients’ welfare. Along
these lines, in this paper, we present a multidimensional recommendation model in the health domain
using collaborative filtering. We propose a novel semantic similarity function between users, going
beyond patient medical problems, considering additional dimensions such as the education level,
the health literacy, and the psycho-emotional status of the patients. Exploiting those dimensions,
we are interested in providing recommendations that are both high relevant and fair to groups
of patients. Consequently, we introduce the notion of fairness and we present a new aggregation
method, accumulating preference scores. We experimentally show that our approach can perform
better recommendations to small group of patients for useful information documents.
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1. Introduction

Medicine is undergoing a revolution that is transforming the nature of healthcare from reactive to
preventive. These changes came to pass due to new approaches to disease, which focus on integrated
diagnosis, treatment, and prevention of disease in individuals. One of the major challenges to this
path is the amount and the quality of information that is available online [1] considering that health
information is one of the most popular research field on the Web. Furthermore, there is a significant
increase to the number of people who search online for health and medical information. In the United
States, estimations show that ~80% percent of all adults have searched the Web for health information,
whereas in 2006, 23% of the Europeans were utilizing the Internet to be informed about their health
problems [2]. However, despite the increase in those numbers, it is very hard for a patient to accurately
judge how relevant the information is to their own health issues and additionally if the source of this
information is reliable.

A healthcare provider that is responsible for providing reliable sources to patients may be an
optimal solution for this problem [1]. This guided solution leads to patient empowerment, meaning
that a patient receives information from accurate sources, which increases the understanding of their
problems and their way of thinking about them. Accordingly, the patients depend less on the doctors
for the appropriate information. Additionally, patients feel autonomous and more confident about the
management of their disease [3]. Most primary care providers have their patients’ health background
and interests in paper, electronic, or mental records. This helps them determine what information
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would be the most constructive for each individual patient. However, the amount of time that a health
provider can dedicate to each patient has greatly declined. Consequently, they have an even more
difficult task in guiding their patients.

Aside from the guidelines provided by health providers, another support for the patients is their
social circle. The use of group dynamics-based principles of behavior change have been shown to
be highly effective in enhancing social support, e.g., through promoting group cohesion in physical
activity [4] and in reducing smoking relapse [5]. Especially for cancer, the latest studies [6] suggest
that group therapy improves the well-being of cancer patients because of enhanced discussion and
social support. In these counseling meetings, the patient is directed towards the most informative
and reliable sources on the Web. However, the effort of locating pertinent information for a group of
participants is far greater than identifying information for just one patient.

This motivates us to concentrate our efforts on recommending to a group of patients relevant and
interesting health documents that were selected by health professionals. We utilize the collaborative
filtering (CF) recommendation model for this task. Our motivation for this work is to offer to a caregiver
that is in charge for a group of patients a recommendation list that consists of health documents that
are relevant to the group members. The relevance of the recommended documents is calculated based
on the patients’ current health profiles. In addition, we would like to identify information that is
equally fair to all members, meaning no member in the group is unsatisfied.

We incorporate fairness during the aggregation phase of our recommendation model. To produce
group recommendations, one must first produce recommendation lists for each group member and
then aggregate those into one list that is then reported back to the group. There are many methods
to ensure that the aggregation is done fairly [7,8]. Intuitively, to achieve fair recommendation we
consider that all the group members are equal to each other. Therefore, the group score for an item i is
the average score across all the group members’ preference scores for that item. Such an approach,
however, can easily ignore the opinion of the minority. For example, in a group that consists of
three patients, if for all items two of the members have high relevance score, but the third is low,
then the opinion of the third member is overshadowed by the other two. To counter such a drawback,
we propose a new aggregation method that is done in phases. In each phase, we select one item to
include in the group recommendation list. At the beginning of each phase, if there is a member that is
not as satisfied as the rest of the group, we select an item based on two criteria. First, it has to have
high relevance for that user, and second, it is the best one available for the rest of the group.

As we have already mentioned, to generate these recommendations we use the collaborative
filtering method. The basic principle of CF is to find similarities between users. Given a target
user, we locate other similar users, who are often called peers or neighbors, and utilizing the ratings
that peers have given, we estimate relevance scores for the items that the target user has not yet
rated. In our work, to calculate similarities between two patients, we consider their health profiles.
The information that is included in these health profiles is the following; the ratings that the patient
has given to health documents and the health problems they have. Additionally, each patient has been
questioned about their education level and their health literacy—meaning to what degree they are
able to understand basic information and services related to the health domain. Furthermore, they
are periodically questioned about their psycho-emotional status. Specifically, they regularly fill in a
questionnaire about their anxiety levels and cognitive closure, meaning the patient’s need when faced
with a decision, to have an answer instead of continued uncertainty. We propose a new similarity
measure that combines all these different sources of information to different degrees to find similarities
between patients across all dimensions.

In the past, we have proposed a semantic similarity function that takes into account the patients
medical profiles, showing its superiority over a traditional measure [9,10] in group recommendations in
the health domain. In addition, we have focused on the notion of fairness [11], devising an aggregation
method for ensuring that if the group recommendation list provides a high relevant document for a
patient, then that patient may be tolerant of the existence of documents that are not relevant to him/her.
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However, although usually health professionals target closely related health problems, the education
level, health literacy level, and psycho-emotional status of the group are of high importance, as the
content that the health professional should recommend, should be based on the aforementioned
axes. To this direction we further extend the dimensions considered for finding similar users and we
introduce a new aggregation method called AccScores, outperforming existing ones.

More specifically, the contributions of our work are the following.

1. We demonstrate a multidimensional group recommendation model in the health domain, using
collaborative filtering.

2. We propose a novel semantic similarity function that takes into account, in addition to the patients
medical problems, the education, the health literacy and the psycho-emotional status of the
patients, showing its superiority over a traditional measure.

3. We introduce a new aggregation method accumulating preference scores, called AccScores,
showing that it dominates other aggregation methods and is able to produce fair recommendations
to small groups of patients.

4. We experimentally show the value of our approach, introducing the first synthetic dataset with
such information for benchmarking works in the area.

This paper significantly extends our previous work in [11], by introducing two new similarity
measures and a way to combine the different similarities functions into one. Furthermore, we introduce
a new aggregation method and we present the relevant experiments. To our knowledge, this is the first
work in group recommendations in the health domain considering multiple dimensions for increasing
the quality of the proposed recommendations. The requirements for generating such a tool originally
came from the iManageCancer [12] and the BOUNCE [13] H2020 EU research projects.

The rest of this paper is structured as follows. Section 2 presents related work. Section 3 focuses on
identifying similarities between users and on how to produce single user recommendations. Section 4
focuses on the group recommendations model, and Section 5 presents the synthetic dataset constructed
for evaluation. Finally, Section 6 presents experimental evaluation, and Section 7 concludes the paper.

2. Related Work

Typically, recommendation approaches [14] are distinguished between content-based, which
recommends items similar to those the user previously preferred (see, e.g., [15]), and collaborative
filtering, which recommend items that users with similar preferences like (see, e.g., [16]). Nowadays,
recommendations have more broad applications [17], beyond products, like links (friends)
recommendations [18], query recommendations [19], open source software recommendations [20],
diverse venue recommendations [21], sequential recommendations [22,23], or even recommendations
for evolution measures [24,25].

Although traditional research on recommender systems has almost exclusively focused on
providing recommendations to single users, there exist many cases where the system needs to suggest
items to groups of users [26,27]. As an example consider a group of friends deciding to dine at a
restaurant. Typically, for producing group recommendations, we first compute recommendations for
each group member separately, and then employ an aggregation strategy across them to compile the
group recommendations (see, e.g., [28,29]). Various aggregation strategies can be applied to find a
consensus between users for particular items, by minimizing, for instance, the disagreements between
the group members. More recently, the authors of [30] analyze the problem of recommending sets of
items to groups incorporating factors, like user impact, viability, and fairness.

Recommendations in the Health Domain

Nowadays, patients turn towards the Web to inform themselves about their diseases and their
possible treatment. This suffers from two main problems. First, the information found on the Web is not
always accurate, and second, it is very diverse. To face these problems a personalized recommender
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would allow the users to have a seamless, secure, and consistent bidirectional linking of clinical
research and clinical care systems, and thus empowering the patients to extract the relevant data out
of the overwhelming large amounts of heterogeneous data and treatment information. The authors
of [31] portray the requirements that a Health Recommender System (HRS) needs to fulfill, whereas
the authors of [32] analyze common pitfalls of such systems. For a recent survey for recommender
systems for health promotion, the interested reader is forwarded to [33].

In this line of work, there have been already developed many recommendation systems focusing
on citizen’s wellbeing. For example, the authors of [34,35] propose web-based recommender systems
that provides individualized nutritional recommendations according to the user’s health profile
defined, by following the main guidelines furnished by a medical specialist, whereas the authors
of [36] suggest messages relevant to the user to support the smoking cessation process. The work
in [37] is a recommender system proposing physical activities using only user’s history and employing
machine learning, whereas for chronic conditions, other works focus on integrating recommender
systems with electronic health records [38,39], proposing the best course of treatment. Other approaches
adapt past recommendations to the current state of the user for Diabetes patients [40] or propose
context-aware recommendation methods [41] to establish personalized healthcare services. However,
all these works use techniques that are principally found in pure group recommendations systems for
composing the group recommendation list. However, we have tailored our recommendations for the
health domain, exploiting the semantically annotated PHR profile of the users. This directly allows us
to endorse documents that are relevant to a user not only on the level of appreciation (meaning the
ratings that each item has gained), but also on the level of his personal health profile (we recommend
items relevant to him because of related health artifacts). Furthermore, by introducing the concept of
fairness in our approach, we make sure that the output of the group recommendation process, remains
fair and unbiased towards all group members. This is particularly important in our domain, where we
explicitly want all members of the group to be satisfied.

More similar works to our approach are [42–46]. In [42], the authors combine two health
information recommendation services—a collaborative filtering and a physiological indicator-based
recommender—providing to the users useful health information. The authors of [43,44] present a
tool aiming to empower patients to extract relevant data out of the overwhelmingly large amounts of
heterogeneous data and treatment information, by semantically annotating both the patient profiles
and the past user queries. From a different perspective, the authors of [45] decouples users and items,
considering properties related to users and items, based on which a collaborative filtering model is
defined. On the other hand, the authors of [46] focus on helping help health providers acquire new
knowledge in real-time. However, even in those works, notions like group recommendations and
fairness are not considered, nor interesting profile dimensions like the educational level, the health
literacy, and the psychoemotional status.

For groups there have been only a small amount of works. The authors of [47] focus on
recommending video content in group-based reminiscence therapy. Besides this work, in our previous
line of work, we focused on group recommendations in the health domain [9,10] by proposing
a semantic similarity function that takes into account the patients medical profiles, showing its
superiority over a traditional measure in group recommendations, and by introducing the notion of
fairness [11], paving the way for our contribution in this paper. Nevertheless, we are not aware of any
other work in the area considering dimensions like the educational level, the health literacy, and the
psychoemotional status of the patients for recommending high-quality information.

3. Single User Recommendations

Assume a set of documents I and a set of patients U in a health-related recommender system.
Each patient is associated with a personal profile that contains the user’s personal health information.
Each user is able to score documents that they have read in the past. This set of ratings is also contained
in the user’s profile.
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For the documents that a user has not seen previously, the recommender estimates a relevance
score relevance(u, i), u ∈ U, i ∈ I. For computing relevance scores, in this line of work, we apply the
collaborative filtering approach. That is, given a user, we first look for similar users/patients employing
a similarity function that evaluates their proximity (Section 3.2). Then, we compute the documents
relevance scores using the most similar users to the user in question (Section 3.3). In this paper,
in addition to traditional similarity functions, we exploit the patient profiles for finding similarities,
targeting at improving the quality of the recommendations.

3.1. User Profiles

To take advantage user profile information, we need as a first step to be able to record it.
For this reason, besides capturing patient problems, specific short validated questionnaires (i.e.,
the ALGA-C questionnaire [48]) have been employed that are being answered by the members of a
group. All information obtained is then modeled and stored by exploiting an ontology. The answers
of the questionnaires are then used to automatically compute particular values that are stored in
the patient profiles, regarding key profile areas. Among others, numerical scores (1 to 5) exists
for health literacy level, educational level, cognitive closure, and anxiety that we further use for
providing recommendations. Health literacy is the degree to which individuals have the ability to obtain,
process, and understand basic information and services related to the health domain, needed to make
appropriate health decisions [49]. Although initially the term was related to the individual educational
level, it is has now been acknowledged as an inconsistent indicator of skill level [50] and, as such,
we believe it should be captured individually. Cognitive closure, on the other hand, characterizes the
extent to which a person, faced with a decision, prefers any answer in lieu of continued uncertainty [51].
Cognitive closure and anxiety have been related with more rapid and lower quality of decision-making
and as such different type of information should be recommended to those patients.

Besides user profiling, the documents also need to have information regarding the target
population concerning the aforementioned dimensions. As such, all documents entered by the
caregivers are annotated with numbers regarding target population health literacy and education level.
In addition, the documents are automatically annotated using ICD-10 (http://www.icd10data.com/)
ontology, and all annotations are stored into the document corpus.

Concerning the rating dataset the patient, u ∈ U might rate a document i ∈ I with a score r(u, i),
in the range of [1, 5]. Commonly, patients give ratings only for a few documents, whereas, concurrently,
the cardinality of I is high. We denote the subset of patients that rated a document i ∈ I as U(i),
and the subset of documents rated by a user u ∈ U as I(u).

3.2. User Similarities

The information that is available to us to find similarities between users is diverse. First, we have
the ratings that each user has given to documents. Second, we can utilize the users’ personal
information; their health problems, health literacy, and education levels; as well as their anxiety
and cognitive closure scores. Because the knowledge that we gain from each source is distinct, we can
define four different similarity functions. To better utilize all of our data, the final similarity score
between two users will be the combination of the similarity scores from these four methods.

3.2.1. Similarity Based on Ratings

We assume that two patients have similar interests, and in turn are similar, if they gave similar
ratings to the documents of the recommender. We employ here the Pearson correlation measure [16],
which is fast to compute and performs very well in the case of collaborative filtering. It directly

http://www.icd10data.com/
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calculates the correlation between two users with a score from −1 for entirely dissimilar users, to 1 for
identical users.

RatS(u, u′) =
∑
i∈X

(r(u, i)− µu)(r(u′, i)− µu′ )√
∑
i∈X

(r(u, i)− µu)
2
√

∑
i∈X

(r(u′, i)− µu′ )
2

(1)

where X = I(u) ∩ I(u′), µu denotes the mean of the ratings in I(u).

3.2.2. Similarity Based on Health Information

It is quite common in health-related informatics to consider people as similar if they have similar
health problems, which in turn leads to similar consumption of health documents. In this work,
we use the International Statistical Classification of Diseases and Related Health Problems (ICD10),
which is a standard medical classification list maintained by the World Health Organization, to keep
track of and recognize similarities between health problems and users. We describe ICD10 as a tree,
with health problems as its nodes. We use the 2017 version of ICD10, which includes four levels in tree
representation, plus one for the root level. Because of the structure of the taxonomy (acyclic), there is
only one path that connects two individual nodes. Another characteristic of the structure is that sibling
nodes that appear at lower levels have greater similarity than siblings in the upper levels.

Table 1 presents an example of four pairs of sibling nodes from the ICD10 ontology, with their
code id, their description, and the level they belong to. From their descriptions, we can identify
that the siblings that reside in the forth level share a far greater similarity than the ones in the first
level. Because of this discrepancy of the similarity of the health problems at different levels, we
assign different weights to nodes taking into account their level. These weights will allow us manage
differently sibling nodes at various levels. Intuitively, the goal is to have sibling nodes in the higher
levels with greater similarity than those in the lower levels.

Table 1. An instance of the ICD10 ontology.

Code ID Description Level

S27 Injury of other and unspecified intrathoracic organs 1
S29 Other and unspecified injuries of thorax 1

S27.3 Other injury of bronchus, unilateral 2
S27.4 Injury of bronchus 2

S27.43 Laceration of bronchus 3
S27.49 Other injury of bronchus 3
S27.491 Other injury of bronchus, unilateral 4
S27.492 Other injury of bronchus, bilateral 4

Definition 1 (Weight). Let A be a node in the ontology tree. Then,

weight(A) = w ∗ 2maxLevel−level(A) (2)

where w is a constant, maxLevel is the maximum level of the tree, and level(A) is a function that returns the
level of each node.

Moreover, assume that anc(A) is the direct ancestor of A. Intuitively, we need a formula that not
only takes into account the distance between two nodes, but also the level that those nodes belong.
To achieve that, we make use of the notion of the lowest common ancestor (LCA).

Definition 2 (LCA). Let T be a tree. The lowest common ancestor LCA(A,B) of two nodes A and B in T is the
lowest node in T that has both A and B as descendants, where each node can be a descendant of itself.

Then, for counting the distance between A and B, we calculate their distance from LCA(A, B).
For doing so, we identify first the path that connects A (and B, respectively) with LCA(A, B).
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Definition 3 (Path). Let T be a tree, and A and B two nodes in T, with LCA(A, B) = C. path(A, C) returns
a set of nodes including A, its direct ancestor anc(A), its direct ancestor anc(anc(A)), and so on, until we
reach C, without including C in the set.

The distance between A and C is computed as the summation the weight of each node in the path:

dist(A, C) = ∑
n∈path(A,C)

weight(n) (3)

Overall, for computing the similarity between two nodes A and B, we use the following formula.

Definition 4 (simN). Let T be a tree, and A and B two nodes in T, with LCA(A, B) = C. Then,

simN(A, B) = 1− dist(A, C) + dist(B, C)
maxPath ∗ 2

(4)

Note that we divide the sum of the two distances with maxPath ∗ 2, to normalize the overall
similarity, so that the function simN, returns a value in the range of [0,1]. We define maxPath as follows.

Definition 5 (maxPath). Let T be a tree, and A and B two nodes in T, with A being a node in the highest level
and B the root. Then,

maxPath = dist(A, B) (5)

Figure 1 presents a snippet of the ICD10 ontology tree, where each node is associated with a
weight (in this example, w = 0.1). The root has not been assigned a weight, because when calculating
the path that connects a node with its ancestor, we do not include the actual ancestor in the path.
Table 2 presents various similarities between nodes from Figure 1.

Figure 1. A snippet of the ontology tree along with the assigned weights in parenthesis.

Table 2. Examples of similarities between nodes using Figure 1.

Node A Node B LCA(A,B) simN(A,B)

S27.43 S27.49 S27.4 1− (0.2 + 0.2/3) = 0.87
S27 S29 root 1− (0.8 + 0.8/3) = 0.47

S27.492 S27.49 S27.49 1− (0 + 0.1/3) = 0.97
S27.3 S27.49 S27 1− (0.4 + 0.6/3) = 0.67

S27.492 S29.001 root 1− (1.5 + 1.5/3) = 0
S27.491 S27.492 S27.49 1− (0.1 + 0.1/3) = 0.93

Overall Semantic Similarity Between Two Users

Using the measures described above, we can compute the similarity between two health problems.
However, a patient typically has more than one health problem in his/her profile.

Let Problems(u) be the set of health problems of a patient u ∈ U. Given two patients, u and
u′, their overall similarity is calculated by considering all possible pairs of health problems between
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them. Then, for each single problem from u, we consider only the health problem of u′ with the
maximum similarity.

Definition 6 (SemS). Let u and u′ be two patients in U. The similarity based on semantic information between
u and u′ is defined as

SemS(u, u′) =
∑iεProblems(u) ps(i, u′)
|Problems(u)| (6)

where
ps(i, u′) = max(∀jεProblems(u′){simN(i, j)}) (7)

Instead of the maximum function used in the above process, one can employ the average function.
However, according to our experiments, such an approach leads to a large number of unrelated pairs
of health problems.

3.2.3. Similarity Based on Education and Health Literacy Level

Nowadays, there are a lot of sources where users can receive information about their health
problems. These sources can vary in terms of how complex and how in-depth they go to showcase
the problem. A user will be more attractive to sources that are inline with his/her health literacy and
education level. For example, a patient with a low health literacy score will not be interested in a
document that describes their health problem in great detail, but will be drawn to a document with a
clear description of how to manage it. On the other hand, a patient with a high literacy score will be
far more interested in the first document.

For documents regarding the same information, people have similar interests in health documents
that require the same educational and health literacy level to be comprehended. As such, the similarity
between two patients is calculated by the Euclidean distance between their corresponding values.

EducStatusS(u, u′) = 1−
√
(HLit(u)− HLit(u′))2 + (EducLvl(u)− EducLvl(u′))2√

2 ∗maxDi f 2
(8)

HLit(u) is a function that reports the health literacy level of user u and Educlvl(u) reports his/her
education level. To better combine these scores with the ratings and health problems similarity scores,
we normalize them so that the function returns values in the range of [0, 1]. The variable maxDi f
represents the maximum difference between the two education or health literacy scores. Finally, as we
want the similarity score and not the distance between the users we subtract the distance score from 1.

3.2.4. Similarity Based on Psycho-Emotional Status

Finally, anxiety and cognitive closure have an important impact on the documents preferred by
people in specific periods of time, as anxiety and cognitive closure can change over time. As such, we use
the Euclidean distance between the values of those two properties. As psychoemotional questionnaires
are being answered periodically, we consider each time only the latest measurements on these.

PhychStatusS(u, u′) = 1−
√
(Anxiety(u)− Anxiety(u′))2 + (CognCl(u)− CognCl(u′))2√

2 ∗maxDi f 2
(9)

Anxiety(u) is a function that provides the anxiety level of user u and CognCl(u) provides his/her
cognitive closure status. Similarly with the similarity based on education and health literacy levels,
we normalize the euclidean score and subtract it from 1 to get the similarity score.
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3.2.5. Similarity between Users

Having defined all the different methods to compute similarity scores between two users, we need
a way to combine all the different values into a final similarity score. We propose that not all different
information perspectives are equally important to all aspect of collaborative filtering, so we assign
weights on each similarity score which determines their significance.

S(u, u′) = α ∗ RatS(u, u′) + β ∗ SemS(u, u′) + γ ∗ EducStatusS(u, u′) + δ ∗ PhychStatusS(u, u′) (10)

where α + β + γ + δ = 1.

3.3. Single User Rating Model

Let Pu define the set of the most similar patients to u. Here, we refer to Pu as the peers of
u. Formally:

Definition 7 (Peers). Let U be a set of patients. The peers Pu of a patient u ∈ U include the patients u′ ∈ U
that are similar to u with respect to a similarity function S(u, u′) and a threshold δ, that is, Pu = {u′ ∈ U :
S(u, u′) ≥ δ}.

Given a patient u and his/her peers Pu, if u has no liking for a document i, the relevance of i for u
is computed as

relevance(u, i) = µu +
∑u′∈(Pu∩U(i)) S(u, u′)(r(u′, i)− µu′)

∑u′∈(Pu∩U(i)) |s(u, u′)| (11)

where µu denotes the mean of the ratings in I(u). Typically, after computing the relevance scores of
the unrated documents for a user u, the documents Au with the top-k scores are presented to u.

4. Group Recommendations

We are not only interested in recommending valuable suggestions to single patients, but to groups
of patients via the caregivers who are responsible for the groups. Specifically, we focus on suggestions
that are both related and fair to the group members. In Section 3.2, we discussed about the similarity
functions and the relevance function was mentioned in Section 3.3. In this section, we will examine
four different aggregation methods.

4.1. Group Rating Model

Typically, the related work in recommender systems targets at satisfying the interests of individual
users. Recently, group recommenders that produce suggestions for groups of users (see, e.g., [29,52])
that are in the focus of the research literature. Commonly, group recommenders predict relevance
scores for the unrated items for each group member, separately, and aggregate these scores to estimate
the suggestions for the group. Formally, the relevance of an item for a group is defined as follows.

Definition 8 (Relevance). Let U be a set of patients and I be a set of documents. Given a group of patients G,
G ⊆ U, the group relevance of a document i ∈ I for G, such that, ∀u ∈ G, @rating(u, i), is

relevanceG(G, i) = Aggru∈G(relevance(u, i)) (12)

With respect to the items relevance scores, the items with the top-k best scores for the group are
reported to the group.

4.2. Fairness in Group Recommendations

In this work, our aim is to identify and suggest documents highly related and fair to the patients
of the group. Specifically, given set of recommendations for a group to its caregiver, it is possible to
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have a patient u that is the least satisfied one in the group for all documents in the recommendations
list, that is, all items are not relevant to u. That is, this set of documents is not fair to u. In real life,
the caregiver is responsible for the needs of all group patients, and the recommender should suggest
documents that are relevant and fair to the majority of the group. Inspired by work in [30], to increase
the quality of the recommendations, we exploit a fairness definition that evaluates the quality of the
recommendations set. Therefore, given a patient u and a set of recommendations D, we define the
degree of fairness of D for u as

f airness(u, D) =
|X|
|D| (13)

where X = Au ∩ D. Remember, Au are the items with the top-k relevance scores for u. Note that
we only consider the intersection of the two lists as only those are going to be given to the patient.
The group list is actually suggested to a caregiver, who then distributes the documents to the rest of
the group according to how relevant they are to each patient. This is also why we do not take into
account the ranking of each document in the group recommendation list.

To better determine the group cohesion and to understand if any member of the group is biased
against, we define the group discord as the difference between the maximum and minimum fairness in
the group.

groupDiscord(G, D) = maxu∈G f airness(u, d)−minu∈G f airness(u, d) (14)

The group discord takes values from 0 to 5. Ideally, we want group discord to take low values, as this
will mean that the member of the group are treated equally. High values will indicate that at least one
member is not as satisfied as the rest.

4.3. Aggregation Designs

For the aggregation method Aggr, we employ four different designs, each one carrying different
semantics. Specifically, we divide the designs into the score-based and rank-based ones.

Score-based design predictions for documents are calculated with respect to the relevance of the
documents for the group members.

In the case of the average aggregation method, our goal is to indulge the the majority of the group
and report the average relevance for each document. Namely, relevance is computed as

relevanceG(G, i) = ∑
u∈G

relevance(u, i)/|G| (15)

In turn, a rank-based design aggregates the patients recommendations lists using the positions of
their elements. Here, we follow the Borda count method [53], based on which each document gets 1
point for each last place in the ranking, 2 points for each next to last place, and so forth, all the way up
to k points for the first place in the ranking. The document with the more points takes the first position
in the list, the item with the next more points gets the second position, and so on, up to collect the best
k items. The points of each document i for the group G is calculated as follows,

points(G, i) = ∑
u∈G

(k− (pu(i)− 1)), (16)

where pu(i) defines the position of item i in Au.
The Fair method [11] belongs as well to the rank-based methods. Fair considers pairs of patients in

the group to make predictions. Specifically, a document i belongs to the top-k suggestions for a group
G, if for a pair of patients u1, u2 ∈ G, i ∈ Au1

⋂
Au2 , and i is the document with the maximum rank

in Au2 .
To produce recommendations, Fair incrementally creates an initially empty set D by choosing

for each pair of patients ux and uy, the document in Aux with the maximum relevance score for uy

(Algorithm 1). If k (i.e., documents to be reported to the group) is greater than the documents, we are
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able to find recommendations using the method above: we add documents to D by iterating the Au

lists of the group members and adding each time the document with the maximum rank that does not
appear in D.

Algorithm 1: Fair Group Recommendations Algorithm
Data: A group of users G = {u1, . . . , un}, the sets of recommendations Aux , ∀ux ∈ G.
Result: The z documents in the recommendations list D for G.

1 D ← ∅

2 while |D| < z do
3 for x = 0; x < n; x++ do
4 for y = 0; y < n; y++ do
5 if x 6= y then
6 Locate the document i ∈ Auy with the max relevance(ux, i)
7 D = D ∪ i
8 end
9 end

10 end
11 end
12 return D

In addition, we propose a new aggregation method, called AccScores method, which is inspired
by the Borda method, but instead of accumulating the points of each item, we accumulate the scores of
the items. We add the scores as they appear in the Au of all the group members in a set called accDoc.
The first item we select to include in the group recommendation list is the one with the highest score
in accDoc. After each selection, we update a helper structure accUser that consists of the users and
their accumulating preference scores. For each user, we accumulate the scores of the items that were
selected as they appear in the individual preference list Au. If there is a user u that has a lower score
than the rest, in the next selection, we will choose an item that exists in the Au and at the same time
has the highest possible score in the accDoc. If many users have the same lowest score, we select the
user that has been chosen the least amount of times. This process is shown in Algorithm 2.

In Lines 1–10, we populate the sets accDoc and accUser. If all the users have the same accumulated
score (Line 12), then we select the item with the highest score in accDoc (Line 13). Otherwise, we find
the user with the lowest score (Line 15), and then we locate the item that appears both in the user’s
preference list and has the highest possible score in accDoc (Line 16). Then, we add to the structure
accUser the score of the selected item for each member (Lines 18-20). Finally, we include the item in
the group recommendation list D.
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Algorithm 2: AccScores Group Recommendations Algorithm
Data: A group of users G = {u1, . . . , un}, the sets of recommendations Aux , ∀ux ∈ G.
Result: The z items in the recommendations list D for group G.

1 for u ∈ G do
2 for i ∈ Au do
3 if i ∈ accDoc then
4 accDoc[i] = accDoc[i] + relevance(u, i) ;
5 else
6 accDoc[i] = relevance(u, i) ;
7 end
8 end
9 accUser[u] = 0;

10 end
11 while |D| < z do
12 if allEqual(accUser) then
13 id = addTop(accDoc);
14 else
15 p = f indMinUser(accUser);
16 id = addMaxDoc(Ap, accDoc);
17 end
18 for u ∈ G do
19 accUser[u] = accUser[u] + relevance(u, id);
20 end
21 D = D ∪ id;
22 end
23 return D;

5. Dataset

Nowadays, it is quite common for patients to search for information related to their health
problems, as well as to rate the related documents that appear on the Web. However, the profiles of
such patients are not accessible and linked to those documents. For several reasons, including ethical
and legal constraints, the collection and use of such a data is prohibited.

To experiment with such a dataset, we initially exploited 10,000 chimeric patient profiles [54].
These profiles contain characteristics similar to the ones existing in a real medical database.
For example, we consider the patients’ admission details, demographics, socioeconomic details,
labs, and medications. Additionally, we use the ICD10 ontology for describing the health problems for
each patient, making this dataset ideal for our semantic similarity approach.

Then, by exploiting these profiles, we create a synthetic dataset that includes a document corpus
and user ratings. Specifically:

• Document Corpus

– Create document corpus. Initially, we generated numDocs documents for each node in
the second level of the ontology tree that represents the ICD10 ontology. For each such
document, we selected randomly numKeyWords words from the nodes descriptions in each
subsequent subtree.

– Assignment of Education and Health Literacy Levels. We divide the documents based on five
percentage scores eduHLit1 . . . eduHLit5 that correspond to the five different education
levels. We assign to the documents in each subgroup their corresponding education level.
We propose that a document cannot have a vastly different education and health literacy
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score. A document that has high education level is improbable to be for users with low
literacy score and, similarly, a document with high health literacy is not probable to have a
low education level. Therefore, with equal probability, we assign to each document a health
literacy score that is the same, one highest or one lowest level than that of its education level.

• Rating Dataset

– Divide the patients into groups. We assume that all patients have assigned numRatings
ratings to documents. For doing so, we distinguish the patients between occasional, regular,
and dedicated. The users in each group gave few, average and a lot of ratings, respectively.

– Assignment of Education and Health Literacy Levels. The procedure to assign education and
health literacy levels to the patients is the same as the one to assign them to the documents.

– Assignment of Anxiety and Cognitive Closure. Anxiety and cognitive closure scores are regularly
measured for each patient since these tend to change rapidly. This is why in our methods
we only take into account the most recent ones. Therefore, in our dataset, we generate one
anxiety and cognitive closure score for each patient. We follow a similar method as the one
for education and health literacy levels and divide the patients based on five percentage
scores AnxCognCl1 . . . AncCognCl5. However, now anxiety will be the score that will define
cognitive closure. The more anxious a person is about their health problems the more he/she
needs to understand them.

– Simulate a power law rating distribution. When ranking documents with respect to real users
preferences, the documents typically follow the power law distribution. To show this, we
randomly chose popularDocs documents and consider them as the most popular.

– Generate documents to rate. For each patient, we distinguished the ratings that he/she will
give between healthRelevant and nonRelevant. Given the assumption that patients are
interested in both documents related to their health problems, as well as to other documents,
we assigned ratings to both such groups of documents.

– Generate ratings. Last, for each item generated above, we randomly assigned a rating from 1
to 5.

The parameters that were used to generate the datasets needed for our experiments are shown is
Tables 3 and 4, which contain the parameters for the document corpus and rating dataset, respectively.
The education percentages eduHLit1 . . . eduHLit5 are only showcased in Table 4, but the same values
were used for the generation of document corpus.

Table 3. Input parameters for generating the document corpus.

Parameter Name Explanation Value

numDocs # of documents generated for each category of health problems. 200
numKeyWords # of keywords appended to documents. 10
popularDocs The # of the most popular documents in each category, for simulating a power law distribution. 70
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Table 4. Input parameters for generating the ratings dataset.

Partitions Parameter Name Explanation Value

Group Partition
Group occasional # of ratings given by patients in this group is 20 to 100 50% of all patients

Group regular # of ratings given by patients in this group is 100 to 250 30% of all patients
Group dedicated # of ratings given by patients in this group is 250 to 500 20% of all patients

Education Levels

EduHLit1 Patients with Education Level 1 5% of all patients
EduHLit2 Patients with Education Level 2 10% of all patients
EduHLit3 Patients with Education Level 3 40% of all patients
EduHLit4 Patients with Education Level 4 30% of all patients
EduHLit5 Patients with Education Level 5 15% of all patients

Anxiety Scores

AnxCognCl1 Patients with Anxiety Score 1 30% of all patients
AnxCognCl2 Patients with Anxiety Score 2 40% of all patients
AnxCognCl3 Patients with Anxiety Score 3 15% of all patients
AnxCognCl4 Patients with Anxiety Score 4 10% of all patients
AnxCognCl5 Patients with Anxiety Score 5 5% of all patients

Scores Partition

One # of ratings that have as score 1 20% of all ratings
Two # of ratings that have as score 2 10% of all ratings

Three # of ratings that have as score 3 30% of all ratings
Four # of ratings that have as score 4 20% of all ratings
Five # of ratings that have as score 5 20% of all ratings

Ratings Partition

healthRelevant # of relevant to some health problems documents each user will
rate

40% of ratings from
each user

nonRelevant # of non relevant to any health problems documents each user
will rate.

60% of ratings from
each user

6. Evaluation

In this section, we present the metrics we used for the experimental evaluation of the similarities
functions and aggregation methods as well as the results of these evaluations.

6.1. Evaluation Measures

To evaluate the similarity functions, we used the normalized Discounted Cumulative Gain [55].
The nDCG values for all users’ recommendation lists can be averaged to get a measure of the average
performance of a recommendation system. The nDCG can be calculated as follows,

nDCGu =
DCGu

IDCGu
(17)

where

DCGu =
k

∑
i=1

2relevance(u,i) − 1
log2(i + 1)

(18)

and

IDCGu =
k

∑
i=1

2r(u,i) − 1
log2(i + 1)

(19)

The DCGu part of the equation calculates the relevance of the items that appear in the
recommendation list of a user and the IDCGu calculates the relevance of the items in an ideal scenario.
Note that in an ideal recommendation list, DCGu equals to IDCGu producing an nDCG of 1.0. Then,
nDCG scores are relative values on the interval 0.0 to 1.0.

To evaluate the top-k results of each aggregation method, we counted the average of the distance
between the top-k recommendation list produced for the group and the list produced for each user
separately. For computing the distance, we used the Kendall tau distance that numerates the number
of pairwise disagreements between two ranking lists [56].

K(t1, t2) =|{(i, j) : i < j, (t1(i) < t1(j) ∧ t2(i) > t2(j))

∨ (t1(i) > ti(j) ∧ t2(i) < t2(j))}| (20)
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where t1(i) and t2(i) are the rankings of the element i in t1 and t2, respectively.

6.2. Evaluation Results

6.2.1. Evaluation of Similarity Functions

To evaluate the proposed similarity functions, we used the recommendations produced for single
users. We used 50 users, for which we hidden 20% percent of their ratings. We then applied the
recommendation algorithm using different values for the variables α, β, γ, and δ and predicted a
score for them. We used the hidden items as the ground truth for the calculation of the IDCG. Finally,
we averaged these scores. The results are shown in Figure 2. In our experiments, for computing the
semantic similarity function SemS, we used the value of 0.1 for constant w that is needed in Definition
1. As a reminder, α is the weight that corresponds to the rating similarity RatS, β to health problems
similarity SemS, γ to education/health literacy similarity EducStatusS, and δ to anxiety/cognitive
closure similarity PhychStatusS.

Figure 2. nDCG values for different values of α, β, γ, and δ.

In our previous work [11], we showed that SemS outperforms RatS. We now want to focus
on what effect the EducStatusS and PhychStatusS has on them. When we introduce the two new
similarities to the old ones, we can still observe that the SemS gives better results. However, if we
combine all the similarities we get the best nDCG values. The SemS and RatS similarities can
compensate for the faults of each other. SemS can find patients with similar health problems which
means that they have an interest in the same documents. RatS can find all the other patients that
are not necessarily related with similar health problems, but have a similar interest in documents.
The results improve further when we EducStatusS and PhychStatusS. They further refine the selection
of the peers, so the recommendations are more accurate.

We did not make any evaluations for γ and δ on their own as the EducStatusS and PhychStatusS
similarities offer more auxiliary and not defining information for the patients. They need another
similarity to augment their knowledge in order to function as intended.

6.2.2. Evaluation of Aggregation Methods

To evaluate the effectiveness of each aggregation method, in regards to the construction of the
final group recommendation list, we use the Kendall tau distance. In more detail, we calculate the
distance between the top-k list of each group member, and the recommendation list for the group.
Additionally, we have normalized all distance scores to the range of [0,1]. Intuitively, a low distance
score between the two lists, meaning that the recommender system suggests close to optimal items
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for that user. In this way, we can estimate the difference between the lists, and consequentially how
many of the most highly recommended documents for each user, have been included in the group
recommendations. These experiments help us identify whether each aggregation method makes
adequate use of the individual top-k list of the members of the group.

To produce these results, we selected randomly 40 different groups with approximately the
same group similarity. Group similarity is defined as the summation of the similarity of all pairs
of users in the group, averaged over the number of the pairs. As our working study case is for
a care provider responsible for a group of patients, it makes sense for these patients to be similar.
Furthermore, we propose that during the formation of the groups the most important factor is the
health similarity followed by their education/health literacy similarity. Their anxiety levels (which are
ephemeral) or their ratings (personal preferences) are not of equal importance when we want to group
people that will be cared for by just one person. We assign the following weights to Equation (10):
α = 0.25, β = 0.4, γ = 0.3, δ = 0.05.

After generating the group recommendation list, we compute for each group member the distance
between the individual top-k list and the group recommendation list. The distance score for one group
for each aggregation method is the average score of the sum of these distances over the size of the
group. After following the same process for all 40 groups, the overall score for each aggregation
method is the mean of the previously calculated scores, over the number of groups. We set k to be 20,
meaning the group recommendation list consists of 20 items. Figures 3 gives the results for groups with
similarity 0.6. This figure will give a general overview of the effectiveness of each aggregation design.

Figure 3. The Kendal tau Distances for groups with group similarity 0.6.

We can see that both the Borda and AccScores aggregation methods perform the best, followed by
the Fair method. Average has the worst results. However, the differences between the aggregation
methods are minuscule. Due to our case study, all the group members are similar to each other
to a degree. When trying to aggregate their top-k recommendations, regardless of the aggregation
design, the most relevant items to the group are suggested. Additionally, as we calculate the average
distance score for each group, it is expected to have higher values of distance scores for each method.
Although the methods identify many of the users relevant documents, the high distance scores mostly
correspond to the difference in the positions of the items between the two lists. What we are more
interested in is the individual satisfaction of each group member. Remember this group does not ask
for recommendations before proceeding to make a decision. We give a list of recommended items to a
carer who proceeds to distribute them to a group of patients that he/she is responsible for.

To better understand the individual impact of the recommendation list to each group member,
we have calculated the group discord. Ideally, we want all the members to be treated equally, meaning
that the group recommendation list should be fair to all group members. This is especially important in
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the health domain, where information about people’s health should be as accurate as possible. In that
regard, the system should not return a list that is biased against one member. Therefore, the lower
group discord values an aggregation method generates, the better it is for our purposes.

Figure 4 shows the group discord values for the same 40 groups we used in the previous experiment.
Even though the previous experiment did not show any huge difference in the behavior of the aggregation
methods, when we compare their fairness aspect, there is a distinct disparity between them. This higher
variance in the group discord scores of the different aggregation methods compared to the ones from the
distance measure is attributed to the different natures of the two measures. Kendall tau distance not only
takes into account the existence of an item in the two lists, but also their position. On the other hand, our
fairness method (Equation (13)) only considers if two items are present in both lists.

Figure 4. Group Discord for groups with group similarity 0.6.

The AccScores method manages to identify a set of items that are almost equally fair to all
members (group discord is lower than 0.5), whereas the Average method has the worst results with
values above 2.5. Borda and Fair methods offer median results, with Borda being slightly better than
Fair. This experiment makes more apparent the advantage of the AccScores method over all the
rest. Even though in the previous experiment it had the same scores as the Borda method, AccScores
manages to be fairer to the members of the group. For our case study, being fair to all members is a top
priority for any system.

7. Conclusions

In this work, we focus on multidimensional group recommendations in the health domain, using
collaborative filtering. For identifying similarity among patients, we go beyond ratings to also consider
the medical problems, the education, the health literacy, and the psycho-emotional statues of the
patients, all available in their personal profile. Based on those dimensions, we introduce a new
aggregation method accumulating preference scores and we experimentally show that it manages to
identify set of items that are almost equally fair to all members of the group.

The semantic similarity measure proposed assumes that the health information of a patient is
captured using standard terminologies. Although this is a common practice nowadays, there is still a lot
of textual information that are not always mapped to standard terminologies. Nevertheless, today there
exist many tools that annotate effectively textual descriptions to terminological terms. For example,
the Bioportal Annotator (https://bioportal.bioontology.org/annotator) exposes programmatically
an API for annotating textual information with multiple terminologies. An extension of our work
could use this API to annotate textual descriptions as well. The same assumption holds for the
interesting documents recommended to the patients. Additionally, as future work, we intend to

https://bioportal.bioontology.org/annotator
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explore whether introducing additional patient characteristics (e.g., gender, stress, and medications) to
our recommendation model can further improve the quality of the recommendations.
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