
algorithms

Article

Adaptive Tolerance Dehazing Algorithm Based
on Dark Channel Prior

Fan Yang * and ShouLian Tang

School of Economics and Management, Beijing University of Posts and Telecommunications,
Beijing 100876, China; tangshoulian@263.net
* Correspondence: yangfanyf123@yeah.net

Received: 20 January 2020; Accepted: 19 February 2020; Published: 20 February 2020
����������
�������

Abstract: The tolerance mechanism based on dark channel prior (DCP) of a single image dehazing
algorithm is less effective when there are large areas of the bright region in the hazy image because
it cannot obtain the tolerance adaptively according to the characteristics of the image. It will lead
to insufficient improvement of the transmission of image, so it is difficult to eliminate the color
distortion and block effects in the restored image completely. Moreover, when a dense haze area or
a third-party direct light source (sunlight, headlights and reflected glare) is misjudged as sky area,
the use of tolerance will cause an inferior dehazing effect such as details lost. Regarding the issue
above, this paper proposes an adaptive tolerance estimation algorithm. The tolerance is obtained
according to the statistic characteristics of each image to make the estimation of transmission more
accurately. The experimental results show that the proposed algorithm not only maintains high
operational efficiency but also effectively compensates for the defects of the dark channel prior to
some scenes. The proposed algorithm can effectively solve the problem of color distortion recovered
by the DCP method in the bright regions of the image.
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1. Introduction

Haze is a common natural phenomenon. Even on a clear summer day, distant targets are
affected by haze due to the evaporation of surface water vapor. In weather conditions such as haze,
the horizontal visibility [1] is significantly reduced due to the scattering of a large number of tiny
droplets or aerosols suspended in the atmosphere. This change creates considerable difficulties in
outdoor monitoring, automatic navigation, target tracking, etc., resulting in outdoor vision systems
working improperly. Therefore, it is very important to study how to effectively treat the degraded
images obtained in severe weather conditions.

The processing of hazy images generally falls into two categories: enhancement-based algorithms
and physics-based algorithms. Histogram equalization [2], homomorphic filtering [3] and Retinex [4]
are all based on image enhancement algorithms. These algorithms can effectively improve the contrast
of hazy images and highlight certain information in the image, but they do not consider the formation
principle of hazy images and the degradation mechanism of the images. Another category is based
on the atmospheric scattering model [5]. By analyzing the inverse process of the image degradation
process and obtaining the relevant parameters of the degradation process, a clear image is recovered.
The image restored by this method is real, and the image information can be more completely preserved.
Therefore, a single image dehazing technology based on physical models has gained broad attention.
Fattal [6] proposed removing haze from color images based on independent component analysis (ICA).
However, ICA is ineffective for thicker hazy images due to the lack of color information. Tarel [7]
used a median filter to calculate the minimum color component of the atmospheric veil. The median
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filtering of this method does not preserve the edges well, and the desired results cannot be obtained
at deep discontinuous edges. He et al. [8] proposed a dark channel prior, first calculating the rough
transmission according to the atmospheric scattering model and the dark channel prior and then
using the soft matting algorithm [9] to optimize the transmission to obtain haze-free images. To solve
the issues of edge loss and halo artifacts in haze-free images, Dilbag et al. proposed a series of
DCP-based methods to enhance the estimation of atmospheric light, such as a modified joint trilateral
filter (MJTF)-based DCP method [10], a modified gain intervention filter-based DCP method [11],
and a fourth-order partial differential equation-based trilateral filter (FPDETF) dehazing method [12].
To reduce the color distortion, the DCP restoration model was also redefined. Recently, with the
continuous development of deep learning, an increasing number of neural network algorithms have
been used in the field of image processing and have achieved good results. Therefore, algorithms based
on deep learning can be considered the third kind of dehazing algorithm. The existing learning-based
dehazing algorithms mostly use deep learning to intelligently learn the haze feature and output the
medium transmission map, and then recover the haze-free image through the atmospheric scattering
model. For example, Cai et al. [13] proposed a trainable end-to-end system, DehazeNet, for medium
transmission estimation. Li et al. [14] proposed a dehazing algorithm based on residual depth CNN.

Among the above algorithms, the DCP method proposed by He [8] has been extensively studied
due to its simple principle and superior results. However, this method has two drawbacks. (1) The soft
matting algorithm [9] needs to perform iterative calculations, which leads to high algorithmic complexity.
To improve the computational efficiency, He [15] proposed a guided filter with edge-maintaining
characteristics instead of the soft matting algorithm to refine the transmission map. However, the edge
smoothing technique of local filtering suffers from halo artifacts, so the improved algorithms [16–21]
were proposed for this problem. (2) If the image scene contains a large area of the sky or a bright
white object, the dark channel prior will invalid, resulting in severe distortion of the restored image.
To improve this phenomenon, Wang et al. [22] estimated the transmission map of the sky and non-sky
areas and then combined it with the refined transmission map to remove the haze. Although the
visibility of the sky area can be improved, this approach generally reduces the recovery performance
among adjacent boundaries. Liu et al. [23] proposed a large sky region detection algorithm based
on SVM classification, which uses two different strategies to obtain more accurate atmospheric light
according to its detection results. Finally, the multiscale open dark channel model is used to adaptively
calculate the dark channel for dehazing. Zhang et al. [24] proposed saliency prior to hazy imaging,
which can distinguish white objects from dense haze by saliency detection. On the basis of the saliency
prior, both an accurate airlight and a correct transmission map can be obtained from images containing
large white objects, and finally, these images can be restored successfully. In addition, some authors
have proposed tolerance mechanisms to correct the transmission of false estimates for such bright
regions. The tolerance mechanism mainly refers to using this as a threshold to judge whether there
is a bright area in the haze image and then performing segmentation processing on the sky and
other areas of the image to achieve accurate correction of the transmittance image [25]. However,
the tolerance values in their algorithms are generally the best or empirical values obtained by trial and
error. In this paper, an adaptive tolerance mechanism is studied to adaptively determine the tolerance
value according to the characteristics of the image to achieve the best dehazing effect. The simulation
results showed that the improved algorithm greatly improves the dehazing performance. Not only is
the restored image clear and natural, but the useful information in the image is not lost.

The remainder of this paper is organized as follows. Section 2 first introduces the dark channel
prior dehazing algorithm and its defects. Then, in Section 2.4, we describe the tolerance mechanism
algorithm to solve the defect of the dark channel prior and its deficiency. In Section 3, we describe the
details of the improved algorithm in this paper. In Section 4, we present and analyze the experimental
results. Finally, we summarize this paper in Section 5.



Algorithms 2020, 13, 45 3 of 15

2. Related Work

2.1. Atmospheric Scattering Model

To describe the formation of hazy images, McCartney [5] proposed an atmospheric scattering
model in 1976. Later, Narasimhan and Nayar [26,27] further derived the model, which describes
the degradation process of the hazy images and is widely used in the dehazing of hazy images.
Mathematically, the atmospheric scattering model can be described as:

I(x) = J(x)t(x) + A(1− t(x)), (1)

where I(x) is a hazy image, J(x) is a clear image, A is the atmospheric light, and t(x) is the transmission.
The process of dehazing is actually that of calculating A and t(x) from hazy image I(x) to restore J(x)
through the atmospheric scattering model. The transmission t(x) can be expressed as:

t(x) = e−βd(x), (2)

where β is the atmospheric scattering coefficient, which is related to the wavelength of visible light,
d(x) is the depth of the scene, which is the distance between the imaging device and the scene.

2.2. Dark Channel Prior Dehazing Algorithm

He [8] obtained a law by statistical analysis of a large number of outdoor haze-free images, that is,
in most non-sky local regions, at least one color channel has some pixels whose intensities are very low
and close to zero. This phenomenon is defined as the dark channel prior. These low pixel values are
produced by shadows, colored objects, or the surfaces of darker objects. For the outdoor haze-free
image J(x), the mathematical expression of the dark channel is:

Jdark(x) = min
y∈Ω(x)

( min
c∈{r,g,b}

Jc(y))→ 0, (3)

where Jdark is the dark channel image, which is always low in theory and infinitely close to zero. Jc is a
color channel of J, and Ω(x) is a local patch centered on x. It can be clearly seen from Equation (3) that
calculating the dark channel of a pixel is actually the process of finding the minimum twice.

It is known from the atmospheric scattering model that the transmission t(x) and the ambient
atmospheric light value, A, of the image must be known before recovering the haze-free image. First,
the dark channel map of the hazy image can be solved by the dark channel theory:

min
y∈Ω(x)

( min
c∈{r,g,b}

(Ic(y)) = t(x) min
y∈Ω(x)

( min
c∈{r,g,b}

(Jc(y)) + A(1− t(x)) (4)

Both sides of the above formula are simultaneously divided by A as follows:

min
y∈Ω(x)

( min
c∈{r,g,b}

(
Ic(y)

A
) = t(x) min

y∈Ω(x)
( min

c∈{r,g,b}
(

Jc(y)
A

) + A(1− t(x)) (5)

Assuming that atmospheric light A is a known value, the image transmission t(x) can be estimated
by Equations (3) and (5):

t(x) = 1− min
y∈Ω(x)

( min
c∈{r,g,b}

(
Ic(y)

A
)) (6)

He [8] mentioned in the paper that even on sunny days, there are always some particles in the
air. Generally, if you look at distant objects with the naked eye, you will still feel that the scenery is
blurred. People can feel the depth of field in the scene through the haze. To be consistent with reality,
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a constant factorω (0 <ω < 1) can be introduced in Equation (6) to retain some of the haze particles in
the distance:

t(x) = 1−ω min
y∈Ω(x)

( min
c∈{r,g,b}

(
Ic(y)

A
)) (7)

The smaller theω value is, the less obvious the dehazing effect will be. According to experience,
ω generally takes a value of 0.95.

The dark channel prior assumes that the transmission characteristics of the light in the local
area are consistent, but this assumption is often not satisfied in the edge regions where the depth is
inconsistent due to the discontinuity of the scene depth. For a hazy image, when the depth of the object
in the local area Ω(x) is the same, the dark channel image can be accurately obtained. However, when
the depth of the field difference at the edge of the object in the local region Ω(x) is large, the transmission
value estimation in the local region is not accurate. Therefore, it is necessary to refine the transmission
map so that the haze-free image can be better transitioned at the edge of the scene without the white
halos. At the same time, to improve the efficiency of the algorithm operation, this paper uses the
guided filtering algorithm proposed by He [15], instead of the soft matting algorithm [9], to optimize
the transmission map.

When both A and t(x) have estimates, the atmospheric scattering model can be used to obtain a
haze-free image. Since the transmission rate may be too small in some areas to cause the image J(x)
value to exceed 255, it is necessary to set a threshold t0 for t. In the study of He [8], t0 was taken as
0.1. When the obtained t is smaller than the threshold t0, the threshold t0 is taken. The final haze-free
image recovery formula is:

J(x) =
I(x) −A

max[t(x), t0]
+ A (8)

2.3. Defect of DCP

Through a large number of experimental results, it is known that for some images containing large
bright areas such as the sky and water surfaces, the dehazing results based on the dark channel prior
will show significant color distortion in the bright areas. In fact, for outdoor clear images, the bright
areas have a large pixel value, and channels with pixel values close to zero cannot be found in the area,
so the dark channel priors will invalid in these areas [28]. As shown in Figure 1, the sky area and some
bright white areas of the scene in the dark channel image have large pixel values.
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If the dark channel prior is not considered, the transmission derived from Equation (5) is

tactual(x) =
1− min

y∈Ω(x)
( min

c∈{r,g,b}
(

Ic(y)
A )

1− min
y∈Ω(x)

( min
c∈{r,g,b}

(
Jc(y)

A )
(9)
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For bright areas that do not satisfy the dark channel prior, the value of the dark channel cannot
be approximated to 0, so the denominator of the above formula is less than 1. From this, it can be
inferred that the actual transmission tactual(x) of the bright regions is greater than the transmission t(x)
estimated based on the dark channel prior. Therefore, the transmission map estimated based on the
DCP algorithm is limited to the bright region, and the pixel channel of the sky region is divided by
the relatively small t(x) (as shown in Equation (6)), which significantly increases the small difference
between the pixel channels of the sky area. This causes the color of the restored image to be distorted.

2.4. Tolerance Mechanism to Correct Transmission and Its Defects

As described in Section 2.3, the dark channel prior is ineffective in bright areas. This causes the
transmission rate to be underestimated and results in color distortion in the restored image. If you want
to eliminate color distortion, you must adjust the transmission of the bright area so that the estimated
t(x) more closely matches the actual transmission tactual(x). To solve this problem, a tolerance coefficient
K is introduced to determine the difference between the haze image I(x) and the atmospheric light factor
A. If the absolute value of the difference is less than K, the area is a bright area. The corresponding
transmittance of this area needs to be recalculated. If the absolute value of the difference is greater
than or equal to K, the area is a non-bright area and the transmission of this area is kept constant.
Formulated as follows:

t′(x) = min(max(
K∣∣∣I(x) −A

∣∣∣ , 1)•max(t(x), t0), 1) (10)

The recovery formula for a haze-free image is:

J′(x) =
I(x) −A

t′(x)
+ A (11)

Equation (10) is actually a supplement and improvement to the dark channel prior. The tolerance
mechanism is introduced to ensure that the calculated transmission of the bright region does not have
a large deviation from the actual transmission. After the simulation, for most images with sky regions,
the dehazing effect after introducing the tolerance mechanism is better than the algorithm using only
the dark channel prior. Many pieces of literature have done related experiments and found that most
of the haze images can obtain better dehazing effects when the tolerance K is 50. However, it is found
that there are two defects in introducing tolerance mechanism after analyzing Equation (10).

a). The value of the tolerance K directly affects the correction of the transmittance and the dehazing
effect. The fixed tolerance value does not effectively correct the transmittance of different image
features. As shown in Figure 2, the first image has the best dehazing effect when K = 80, and the
sky region appears distorted when K = 20. In the second image, the branches above the center lost
considerable detail when K = 80, and the image details were the best when K = 45. Observe the area at
the end of the road in the third image. The dehazing effect is best when K = 20.

b). If we only use the ratio of the fixed tolerance K to |I(x)-A| to determine whether the pixel point
I(x) belongs to the bright region, so as to determine whether tolerance is introduced in the restoration
of the pixel. It is easy to misjudge whether the pixel belongs to the bright region, and the dehazing
effect becomes worse due to the wrong adjustment of the transmission. Figure 3a shows an image with
a dense fog but no large-area sky area. Figure 3b shows the recovery result after the processing of
Figure 3a by the He’s algorithm without tolerance. Figure 3c is a restored image obtained by processing
Figure 3a after using the fixed tolerance value 50 to correct the transmittance based on the He algorithm.
It can be seen from Figure 3c that the tolerance mechanism is used to make the region lose a lot of
image details.
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3. Our Improved Method

3.1. Calculation of Adaptive Tolerance

It can be seen from Figure 2 that selecting a suitable value of tolerance can make the bright area of
the restored image undistorted and retain more effective information. Therefore, we need to calculate
an adaptive value of tolerance to recover the hazy images with different characteristics. After many
experiments, we find that the larger the proportion of bright areas in the whole image, the higher the K
value required to recalculate the transmission. When the bright area is small in the image (for example,
yellow clouds or branches and poles in the sky will reduce the proportion of the sky in the whole
picture), taking the smaller K value will retain more details. At this point, the problem is converted to
how to calculate the adaptive K value by the proportion of the bright area so that it can have a good
recovery effect for all images. Similar to introducing the tolerance K, we introduce |I(x)-A| to record the
difference between pixel I(x) in the hazy image and the atmospheric light A.

The average image contrast reflects the concentration of the haze to some extent. In addition,
through experiments, we further found that images with different contrasts have different dehazing
effects on images with different tolerance values. The average contrast of the images is positively
correlated with the tolerance value. The larger the average contrast of the image, the larger the tolerance
value. Therefore, we use the average contrast as the threshold parameter for calculating the tolerance,
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and use it as an index and compare it with |I(x)-A| to determine whether the pixel belongs to a bright
area. The formula is as follows:

K1 =

 (
∣∣∣I(x) −A

∣∣∣ < α•C)num
Inum

∗ 100

 (12)

The experimental results show that when α is set to 2, there is a better dehazing effect. In the
above formula, Inum is the number of pixels in the entire image, and the contrast α*C is a threshold,
which is used to determine whether the pixel belongs to the bright region. If the value of |I(x)-A| is less
than the threshold, it means that the pixel belongs to a bright area, and the numerator represents the
number of pixels belonging to the bright area in the entire picture. C is the contrast of the image, and
the calculation formula is as follows [29]:

C =

√
1

MN

∑N−1

i=0

∑M−1

j=0

(
Ii j − Imean

)2
, (13)

where intensities Iij are the i-th j-th element of the two-dimensional image of size M by N. Imean is the
average intensity of all pixel values in the image.

Figure 4 shows the transmission map and restored images obtained using different algorithms.
The first line is the dehazing effect after using the algorithms of He [8], and its transmittance image is
obtained directly by using Equation (7) after using the DCP algorithm. So the transmittance of the
distant sky area is close to zero, and it can be clearly seen that the color distortion of the sky area is
serious. The second line is the dehazing effect after introducing the empirical tolerance to correct the
transmission rate. It has some improvement compared with the algorithm of He [8]. The third line is
the transmission map and the restored image obtained by using the improved algorithm of this paper.
The adaptive tolerance K = 62 is calculated according to the characteristics of the image itself, as shown
in Equation (12). The transmittance value of the distant sky region of the second and third rows of
Figure 4 is calculated by the Equation (10) to be between 0 and 1. It can be seen from Figure 4 that the
improvement effect of the adaptive tolerance determined by the image feature on the color distortion
of the sky region is most obvious.
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3.2. Threshold of Tolerance Mechanism

We know that the value of adaptive tolerance K needs to be used to adjust the transmission
only when the dark channel prior is invalid in the sky area or in the bright area of the scene, while
other regions use the original dark channel prior to calculating the transmission, it can also obtain
a better dehazing effect. Unfortunately, when there is a dense haze area or a third-party direct light
source (sunlight, headlights, reflected glare, etc.) in the image, it is misjudged as sky area because the
brightness of these areas is similar to the brightness of the atmosphere. As a result, the transmission of
these regions is excessively increased, resulting in a serious loss of image detail in the region.

We find that the common feature of the bright areas of misjudgment is that the proportion in
the image is small, basically no more than 5% of the entire image’s pixel. Therefore, we must first
determine whether there is a large area of bright areas in the image before calculating the value of
tolerance K. If the bright area does not exceed 5% of the entire image’s pixels, indicating that there
is no large bright area in this image, then the value of tolerance should be as small as possible to
maintain the original transmission for the dehazing calculation. If the bright area exceeds 5% of the
entire image’s pixels, then there is a large area of the sky in this image. At this time, it is necessary to
calculate the value of adaptive tolerance K using Equation (12) to adjust the transmission. The final
formula of tolerance K is as follows:

K =

{
K1 thd > 5%
0.01 thd < 5%

(14)

thd =
(I(x) > Ith)num

Inum
, (15)

where the numerator in the formula is the number of pixels that satisfy the condition, and Inum is the
number of pixels in the entire image. We set the threshold Ith to 190 because the pixel values of the
bright regions are relatively average and high.

The 5% mentioned in Equation (14) is a threshold value to decide whether or not the image
introduces adaptive tolerance to modify the transmission function. This parameter was determined
after extensive experimental observation. As shown in Figure 5, the proportion of the bright areas
of the five images is 3.223%, 1.78%, 5.78%, 6.761%, and 27%, respectively. The first three images do
not have a large area of the sky, and the proportion of bright areas is less than 5%. The details of the
image can be saved without using a tolerance mechanism. The last three areas have sky areas, and the
bright areas account for more than 5%. Using the tolerance mechanism can reduce the distortion
of the sky area image. Figure 5 shows the restored image corresponding to the different judgment
values of whether or not to use the tolerance mechanism in this paper. Setting the threshold to 5% to
determine whether to introduce adaptive tolerance to modify the transmission function can enhance
the effectiveness of the proposed algorithm for different pictures.
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4. Comparison and Analysis of Experiential Results

He [8] calculated the first 0.1% of the pixel points from the dark channel image of the hazy image
according to the brightness and then calculated the value of atmospheric light A by looking for the
pixel-point of the corresponding position in the original image. However, if the picture has a third-party
direct light source such as sunlight, headlights, and reflected strong light. The value of the atmospheric
light obtained by He [8] is obviously too large, which will affect the final dehazing effect.

To overcome these limitations, this paper refers to the quad-tree subdivision method [30] to
estimate atmospheric light A. First, the input image is divided into four matrix regions, and the average
pixel value of each block is calculated. Then, the block with the largest average is selected and further
divided into four smaller matrix regions. This process is repeated until the size of the selected area is
less than a prespecified threshold (typically the threshold is set to 5%*w*h, where w and h represent
the width and height of the input image). The defogging algorithm in this paper is the result of the
quad-tree subdivision method and the adaptive tolerance correction transmittance. The transmittance
map and the restored image obtained by processing the haze image of Figure 4 by the improved
algorithm of the paper are as shown in Figure 6.
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Figure 6. (a) hazy image. (b) Transmission map. (c) Restored image with (b). (d) Magnification of
rectangle (c).

To verify the effectiveness of the proposed algorithm, we test various hazy images and compare
them with Tarel [7], Cai [13], He [8], and the algorithm of introducing fixed tolerance values.
The comparison includes a qualitative, subjective evaluation and quantitative, objective evaluation.
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4.1. Qualitative Comparison of Real-World Images

Figure 7 shows the recovery effect of the improved algorithm and the other four representative
dehazing algorithms on outdoor blurred images. The transmission map during the various dehazing
algorithms is shown in the first row of Figure 7. Figure 7a depicts the hazy images to be dehazed.
Figure 7b–e shows the results of Tarel [7], Cai [13], He [8] and the result of the introduced fixed
tolerance algorithm. As shown in Figure 7b, most of the haze is removed in Tarel’s results, and the
details of the scenes and objects are well restored. However, the result is clearly affected by over
enhancement, making the entire image much darker than what it should be. In contrast, the results of
He’s image are much better visually (see Figure 7c). However, in the first two pictures, the sky area still
shows significant distortion. This is because the method of He’s transmission rate estimation is based
on the dark channel prior, and the accuracy of the estimation largely depends on the validity of the
dark channel prior. Unfortunately, the dark channel prior is ineffective when the scene brightness is
similar to the atmospheric light. As shown in Figure 7d,e, the distortion of the sky region is improved.
However, as shown in the sixth line and its enlarged image, the restored images of the two algorithms
have lost detail in the region of dense haze. Compared with the results of these four algorithms, our
results are not over-saturated and better preserve the details of the image. As shown in Figure 7f,
the sky area in the picture is clear, and the details of the mountains and leaves are well preserved.
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Figure 7. Qualitative comparison of different dehazing algorithms for outdoor images. (a) The hazy images.
(b) Tarel’s results. (c) He’s results. (d) Cai’s results. (e) Results of used fixed tolerance. (f) Our results.
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4.2. Qualitative Comparison of Synthetic Images

In Figure 8, the five algorithms, including the proposed algorithm, are tested on the stereo images
where the ground truth images are known. Figure 8a shows the hazy images, which are synthesized
from the haze-free images with known depth maps. The results of the five algorithms are shown in
Figure 8b–f. Figure 8g shows the ground truth images for comparison. These haze-free images and
their corresponding ground truth depth maps are taken from the Middlebury stereo datasets [31,32].
It is obvious that Tarel’s results are quite different from the ground truth images, as the results are much
darker (as shown in Figure 8b). By observing the images in Figure 8c, we find that He’s results have a
similar problem (for example, in the third image, the skin color of the child is obviously deepened, and
the color of the background behind the hat in the second image is darkened). Figure 8d is the recovery
result of Cai et al. [13], and Figure 8e,f is the recovery result of the fixed tolerance value algorithm and
the adaptive tolerance algorithm in this paper. They maintain the original color of the object, and the
result is that there is no oversaturation such that the corrected image is more similar to the ground
truth images.
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4.3. Quantitative Comparison

The subjective evaluation uses the naked eye to observe the contrast picture before and after
dehazing to judge the effect of it. This method is often susceptible to individual factors, such as the
aesthetics and psychology of the observer, and cannot be imported into the computer vision system
to achieve more accurate and detailed follow-up analysis. Objective evaluation is more automatic,
efficient, and easier to integrate than a subjective evaluation. Therefore, we use objective evaluation
methods to further evaluate the various algorithms described in this paper.

4.3.1. Blind Contrast Enhancement Assessment

In studying the dehazing effect, Hautière’s blind evaluation method based on the visible edge
contrast is well known [33,34]. This method evaluates the contrast enhancement of each image detail
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before and after dehazing. It uses three indicators to objectively describe the quality of the images (new
visible edge ratio e, visible edge normalized gradient r, saturated black or white percentage pixels σ):

e =
nr − n0

n0
, (16)

r = exp(
1
nr

∑
pi∈ψr

log ri), (17)

σ =
ns

dimx × dimy
, (18)

where n0 and nr are the numbers of visible edges of the image before and after the dehazing, respectively,
Ψr is the set of visible edges for the dehazed image, Pi is the pixels on the visible edge, ri is the ratio of
the Sobel gradient at Pi and the corresponding point of the original image, ns is the number of saturated
black and white pixels, dimx and dimy represent the width and height of the image, respectively.
The comparative data are shown in Table 1.

Table 1. Indicator e, r and σ of the images in Figure 6.

Indexes
Methods

Tarel’s Method He’s Method Cai’s Method Introducing Fixed Tolerance Our Method

Image 1

e 0.3163 0.1873 0.1116 0.1447 0.1918

σ 0 0 0.002 0 0

r 1.7532 0.9660 0.1023 1.2540 1.3576

Image 2

e 2.2372 0.2567 0.3605 0.2518 0.6276

σ 0 0 0.0126 0 0

r 2.3742 0.7349 1.1263 1.0557 1.2857

Image 3

e 0.3086 0.0723 0.1417 0.1174 0.1654

σ 0 0 0.0038 0 0

r 1.5427 1.0296 1.0957 1.1384 1.4328

Image 4

e 0.1752 0.0894 0.0060 0.0920 0.1103

σ 0 0 0.0092 0 0

r 1.3786 1.0870 1.0894 1.2175 1.7019

Image 5

e 1.3827 0.6887 0.5149 0.5483 0.8144

σ 0 0 0.0052 0.0052 0.0018

r 1.8337 1.4929 1.4040 1.5380 1.7013

Table 1 shows the results of the three objective indicators e, r and σ of the image in Figure 6.
A lower σ value represents better performance. Table 1 shows that the σ value of the algorithm in
this paper is the smallest. Even if the σ value of the fifth picture is higher than that of He’s method,
the difference is small. The two indicators e and r focus on edge recovery and usually larger values
indicate better performance. However, the increase in the visible edge may also result from a false
edge caused by severe color distortion (as shown in Figure 6b). Figure 9 shows it more concretely,
where Tarel’s result shows evident false edges in the local enlarged regions. Our method suppresses
the color distortion effectively, which is further manifested as a decrease in false fake edges. Thus,
our results often have a lower value than the results of Tarel and in those two indicators. However,
our method is actually better than most other methods in most images (as shown in Table 1).
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4.3.2. Structural Similarity (SSIM) Image Quality Assessment

The structural similarity (SSIM) image quality assessment index [35] is introduced to evaluate the
ability to preserve the structural information of the algorithms. This indicator was first proposed by
the Image and Video Engineering Laboratory at the University of Texas at Austin. It is often used in
image processing, especially in image denoising, which comprehensively surpasses SNR and PSNR in
image similarity evaluation. The high SSIM indicates that the haze-free image is highly similar to the
ground truth image, while the low SSIM indicates the opposite.

To directly compare the structural similarity between the restored image and the real image,
we compare the dehazing results of the synthesized depth image in Figure 7. Table 2 shows the SSIM of
the four restored images in Figure 7. The SSIM results of Tarel are all less than 0.8, indicating that a large
amount of structural information is lost in the restored image. It is clear that Cai’s SSIMs are higher
than those of the other four algorithms. Cai’s algorithm is a deep learning algorithm that continuously
trains to obtain the best-restored image by learning the relevant features of the synthesized depth
image. The algorithm can save structural information well. Our results reach the highest SSIM results
except for Cai. It is proved that the ability of the algorithm to save structural information is superior to
the general algorithm.

Table 2. Structural similarity (SSIM) of different algorithms in Figure 7.

Image Tarel ’s Method He’s Method Cai ’s Method Introducing Fixed Tolerance Our Method

Image 1 0.7867 0.9152 0.9463 0.9043 0.9222
Image 2 0.7984 0.8570 0.9094 0.8617 0.8902
Image 3 0.7322 0.8062 0.9115 0.7859 0.8578
Image 4 0.7619 0.8691 0.9163 0.8589 0.8755

All the simulations for our proposed algorithm are carried out in MATLAB R2016a environment
running on a personal computer with an Intel Core (i3-8100) central processing unit running at 3.6 GHz
with 4 GB of RAM. The average computing time for dehazing processing of our algorithm is less than
0.5 seconds. We think it is possible to apply it to a video including several frames in the future.

5. Conclusions

The dark channel prior is invalid when the scene brightness is similar to that of atmospheric
light, and there is no shadow projection. Therefore, this paper improves the dehazing algorithm
based on a dark channel prior. First, we estimate the atmospheric light using the method of quad-tree
subdivision and then combine the dark channel prior to introduce a value of adaptive tolerance K
to obtain the correct transmission. To prevent the occurrence of halo artifacts at the edges of the
restored image, the guided filtering technique is used to optimize the transmission. Finally, these
parameters are brought into the atmospheric scattering imaging model to complete the dehazing
treatment. The experimental results show that our dehazing algorithm not only better recovers images



Algorithms 2020, 13, 45 14 of 15

with large areas of bright areas but also better preserves image details compared with other methods.
In future work, we will extend our work to the issue of video dehazing.
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